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Efforts have been made to characterize a strong basis. It has been established
that each Schauder basis in a DF-nuclear space is a strong basis, which in turn, is
applied to prove that a Schauder basis {xi, fi} in a Frechet space E is strong iff
{fi, Jxi} is a strong basis for E∗β. As an application of strong basis it is observed
that a Schauder basis {xi, fi} in a barrelled space E is a fully-λ(P )-basis iff {fi, Jxi}
is a fully-λ(P )-basis for E∗β , λ(P ) being a nuclear G∞-space.

In order that a Frechet space with a basis be nuclear each basis in it should
be an absolute basis. On the other hand Mertins [10], shows that presence of a
single ‘strong’ basis ensures the nuclearity of a Frechet space. This establishes that
the impact of a strong basis is rather stronger as compared to that of absolute
bases. Characterization of absolute bases and the related application aspects has
been investigated by Pietsch. DeGrande-DeKimpe studied strong bases and their
applications in [7]. Some of the results incorporated therein regarding the impact
of strong basis, suggested us to carry out the study further.

For an appropriate understanding of the material incorporated in this short pa-
per, one is assumed to have familiarity with (i) the rudiments of the theory of locally
convex spaces (cf. [2], [8]), (ii) a general study of sequence spaces (cf. [4], [8]), (iii)
nuclearity and its ramifications (cf. [11], [12]) and (iv) Schauder bases and their
types (cf. [5], [6]). However, for the notion of strong basis we request the reader to
have a glance at [7]. Lastly, the generalized bases, namely, fully-λ(P )-bases and the
related aspects can be had from [5] and [6].

For an l.c. TVS E, DE denotes the fundamental system of seminorms determin-
ing the topology of E while BE is a fundamental system of closed, absolutely convex
and bounded subsets of E.
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Let E be an l.c. TVS with a Schauder basis {xi, fi} and λ be a perfect sequence
space. Then

(1) {xi, fi} is called a semi-λ-basis if for all x ∈ E and p ∈ DE , {fi(x)p(xi)} ∈ λ.

(2) {xi, fi} is called a fully-λ-basis if for each p ∈ DE the mapping ψp : E → λ :
x→ {fi(x)p(xi)} is continuous.

For λ = `1, we get semi-absolute basis from (1), while (2) gives absolute basis.

Finally, we call {xi, fi} a strong basis if for each B ∈ BE and p ∈ DE ,
{pB(fi)p(xi)} ∈ `1.

Each strong basis in an l.c. TVS E is semi-absolute. Further, if E is a Mackey
space with a weakly sequentially complete dual then each strong basis is an absolute
basis.

Theorem 3.1 [3] indicates that an l.c. TVS with an equicontinuous basis is nuclear
iff for each p ∈ DE there corresponds a q ∈ DE with {p(xi)/q(xi)} ∈ `1. Using this
result one can conclude immediately that an equicontinuous basis in a nuclear space
is strong iff for each B ∈ BE and p ∈ DE , {pB(fi)p(xi)} ∈ `∞.

Note: A Banach space with a strong basis is finite dimensional. Indeed, a normed
barrelled space with a strong basis is finite dimensional by the Corollary to Propo-
sition 4, p. 647 [7]. This, serves to exhibit the significant difference between the two
notions, namely; “absolute basis” and “strong basis”.

The discussion of this article is initiated by the characterization of strong basis,
contained in

Proposition 1. Let E be an l.c. TVS with a Schauder basis {xi, fi}. Suppose
E∗ is weakly sequentially complete. Then {xi, fi} is a strong basis iff {xi, fi} is a
semi-absolute basis for E and {fi, Jxi} is a semi-absolute basis for E∗β.

Proof. Suppose {xi, fi} is strong. Then following the procedure laid down in Propo-
sition 4, p. 647 [7] we find that {fi, Jxi} is a semi-absolute basis for E∗β .

Conversely, suppose {xi, fi} is a semi-absolute basis for E while {fi, Jxi} is a
semi-absolute basis for E∗β . Since {fi, Jxi} is a semi-absolute basis, the sequence
{PB(fi)f(xi)} is in `1 for each f ∈ E∗ and for every B ∈ BE . Now, take any p ∈ DE
and B ∈ BE . Then for a = (ai) = (1, 1, ...) ∈ `∞ proceeding as in the Proof of
Proposition 1 [6], we get f ∈ E∗ such that p(xi)ai = f(xi), for all i. Consequently,
{PB(fi)p(xi)} ∈ `1. This completes the proof. �

This immediately leads to

Corollary 2. Let {xi, fi} be a Schauder basis for a Mackey space E with a weakly
sequentially complete dual. Suppose that {fi, Jxi} is a semi-absolute basis for E∗β.
Then {xi, fi} is semi-absolute iff weakly summable sequences in E are absolutely
summable.

Proof. It is just the application of Proposition 5 p. 647, [7] in view of Proposition 1.
�
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Remarks. (i) Let E be a nuclear or a dual nuclear space having a Schauder basis
{xi, fi} such that {fi, Jxi} is a semi-absolute basis for E∗β. Then {xi, fi} is a strong
basis.

(ii) Suppose E is a Mackey space with a strong basis {xi, fi} such that for some
B ∈ BE , pB(fi) ≥ ε > 0, for some ε. Further, if E∗ is weakly sequentially complete
and given p ∈ DE there exists a g ∈ DE with p(xi) ≤ g2(xi), for all i, then E is
nuclear. (Here the only thing to be observed is that {p(xi)} ∈ `1 for each p ∈ DE
and then apply Theorem 3.1 [3] as the basis is equicontinuous).

(iii) Since a barrelled space with an absolute basis is complete and quasi-complete
nuclear spaces are semi-reflexive, by a result of Pietsch [11] one can infer that, each
equicontinuous basis in a barrelled nuclear space is strong, in view of Proposition 1.

For a Frechet space E with a basis {xi, fi} Mertins [10] proves that, E is nuclear
iff {xi, fi} is a strong basis. Turning to DF-spaces we have

Proposition 3. Let E be DF-nuclear space with a Schauder basis {xi, fi}. If E is
nuclear, then {xi, fi} is a strong basis. Further the converse holds if E is barrelled.

Proof. Since E is DF-nuclear, E∗β is a Frechet nuclear space. Also DF-nuclear
spaces are reflexive (cf. [11]) and hence {xi, fi} is shrinking (cf. [1]). Conse-
quently, {fi, Jxi} is a semi-absolute (indeed, an absolute) basis for E∗β . Since weakly
summable sequences, are absolutely summable in a DF-nuclear space, (cf. [11]),
Corollary 2 indicates that {xi, fi} is a semi-absolute basis. Hence Proposition 1
concludes that {xi, fi} is strong.

Conversely, if {xi, fi} is a strong basis for E, then E becomes a complete space as
a barrelled space with an absolute basis is always complete. Then invoking Theorem
10.1.4 [11], we can identify E topologically with the Köthe space λ(P ) where

P = {pB(fi) : B ∈ BE}.

Now the strong character of {ei, ei} implies that bounded sets are simple in λ(P ),
by Proposition 2, p. 650 [7]. Hence λ(P ) becomes a nuclear space by a result of
Köthe [9]. �

This above result paves the way for

Corollary 4. Let E be Frechet space with a Schauder basis {xi, fi}. Then {xi, fi}
is a strong basis iff {fi, Jxi} is a strong basis for E∗β.

Proof. The proof follows from Proposition 3 and Mertins result in view of the fact
that E is Frechet nuclear iff E∗β is DF-nuclear. �

Note: A sequentially complete DF-space with a strong basis is strongly nuclear. This
results from Proposition 3 as separable DF-spaces are infrabarrelled and nuclear DF-
spaces are strongly nuclear (cf. [11]).

For the final result of this article we make use of

Lemma 5. An l.c. TVS E with a fully-λ(P )-basis {xi, fi} is always nuclear, for a
nuclear G∞-space λ(P ).
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Proof. Since λ(P ) is a nuclear G∞-space, invoking Proposition 3.6.12 [12], we find
a b ∈ P with {1/bi} ∈ `1. Now, for any p ∈ DE there exists q ∈ DE such that

(∗)
∑
|fi(x)|p(xi)bi ≤ q(x).

In particular, we have p(xi)bi ≤ q(xi) for every i, thereby giving {p(xi)/q(xi)} ∈ `1.
Also, (∗) yields that {xi, fi} is an equicontinuous basis. Then nuclearity of E follows
from Theorem 3.1 [3]. �

Lastly, we have a result in which the application of strong bases is prominently
displayed;

Theorem 6. Let {xi, fi} be a Schauder basis for a barrelled space E and λ(P )
be a nuclear G∞-space. Then {xi, fi} is a fully-λ(P )-basis for E iff {fi, Jxi} is a
fully-λ(P )-basis for E∗β.

Proof. Suppose {xi, fi} is a fully-λ(P )-basis for E. Then, if B ∈ BE , the set ψp(B)
is bounded in λ(P ) for each p ∈ DE where ψp : E → λ(P ) defined by ψp(x) =
{fi(x)p(xi)} is continuous. But in a nuclear Köthe space bounded sets are simple
(cf. [9]) and hence we have

{PB(fi)p(xi)} =

{
sup
x∈B
|fi(x)|p(xi)

}
∈ λ(P ) ⊂ `1.

So {xi, fi} is a strong basis which gives the Montelness of E by Corollary to Propo-
sition 1 in [7]. Now apply Corollary 1, p. 517 [6] to conclude that {fi, Jxi} is a
fully-λ(P )-basis for E∗β .

Conversely, suppose {fi, Jxi} is a fully-λ(P )-basis for E∗β. Since an l.c. TVS with
a fully-λ(P )-basis is always nuclear, it follows that E∗β is nuclear. Now by Theorem
1, p. 649 [7], we infer that {xi, fi} is strong and hence E is Montel by Corollary, p.
647 [7]. Consequently, {xi, fi} is a fully-λ(P )-basis in view of Corollary 1, p. 517
[6]. �

Note: Compare this result with Corollary 4.7 [5] and Corollary 1, p. 517 [6].
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