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Abstract

Two prior distributions are said to be (P a : a ∈ A)-equivalent when they
have in common all the families of posterior distributions (with respect to a
fixed statistical experiment (P a : a ∈ A)).
It is shown that two (P a : a ∈ A)-equivalent prior distributions are necessarily
mutually absolutely continuous and two cases of statistical experiment in some
sense opposite are presented.
Furthermore a partial order for statistical experiments can be defined in a
natural way by comparing the quotient sets of prior distributions w.r.t. the
(P a : a ∈ A)-equivalences.
Finally a result about the ε-contaminations is presented.

1 Introduction and preliminaries

In this paper we shall refer to the frame of Bayesian experiments (see e.g. [5]).
Throughout this paper we shall denote the parameter space by (A,A) and the sample
space by (S,S) and we shall assume they are two Polish spaces. Then, given a
Markov kernel (P a : a ∈ A) from (A,A) to (S,S) and a probability measure µ on
A, we can consider the probability measure Πµ,(Pa:a∈A) on A⊗S such that

Πµ,(Pa:a∈A)(E ×X) =
∫
E
P a(X)dµ(a), ∀E ∈ A and ∀X ∈ S. (1)
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Then, for the Bayesian experiment E = (A×S,A⊗S,Πµ,(Pa:a∈A)), we can say that µ
is the prior distribution and (P a : a ∈ A) are the sampling distributions; (P a : a ∈ A)
is also called statistical experiment. Furthermore we can also say that E is regular
(see e.g. Remark (i) in [5], page 31), i.e. we have a Markov kernel (µs : s ∈ S) from
(S,S) to (A,A) such that

Πµ,(Pa:a∈A)(E ×X) =
∫
X
µs(E)dPµ(s) (∀E ∈ A and ∀X ∈ S), (2)

where Pµ is the predictive distribution, i.e. the probability measure on S such that

X ∈ S 7→ Pµ(X) = Πµ,(Pa:a∈A)(A×X). (3)

A Markov kernel (µs : s ∈ S) satisfying (2) is called family of posterior distributions
and, when we need, we shall denote condition (2) as follows:

Πµ,(Pa:a∈A)(da, ds) = µs(da)Pµ(ds).

The aim of this paper is to define and to study the (P a : a ∈ A)-equivalence
between prior distributions (where (P a : a ∈ A) is a fixed statistical experiment);
as we shall see in Definition 1, two prior distributions are said to be (P a : a ∈ A)-
equivalent when they have in common all the families of posterior distributions with
respect to the statistical experiment (P a : a ∈ A).

In Section 2 we shall define the (P a : a ∈ A)-equivalence and we shall show
that, for any statistical experiment (P a : a ∈ A), two (P a : a ∈ A)-equivalent prior
distributions are necessarily mutually absolutely continuous.

In Section 3 we shall consider two different cases concerning the statistical ex-
periment (P a : a ∈ A) which are in some sense opposite. Indeed, for the first one,
two prior distributions are (P a : a ∈ A)-equivalent if and only if they coincide while,
for the second one, the mutual absolute continuity between two prior distributions
is sufficient for their (P a : a ∈ A)-equivalence. Furthermore in Section 4 we shall
present an example which represents an intermediate case.

In Section 5, we shall study some properties of a partial order for the family
of the statistical experiments; this partial order can be defined in a natural way
by comparing the quotient sets of prior distributions w.r.t. the (P a : a ∈ A)-
equivalences.

Finally we shall present a result about the ε-contaminations (Section 6) and some
concluding remarks.

At the end of this Section it is useful to introduce some notation.
The family of Markov kernels from (A,A) to (S,S) (i.e. the family of statistical
experiments) will be denoted by κ(A,S);
the family of Markov kernels from (S,S) to (A,A) will be denoted by κ(S,A);
the family of probability measures on A will be denoted by Φ(A) (in this paper it
will be seen as the family of prior distributions);
the symbol ≡ will denote the mutual absolute continuity between two positive mea-
sures;
given a set C ∈ A⊗ S, we shall consider the notation

C(a, .) = {s ∈ S : (a, s) ∈ C}, ∀a ∈ A



The “statistical experiment”-equivalence for prior distributions 651

and
C(., s) = {a ∈ A : (a, s) ∈ C}, ∀s ∈ S.

Finally let us recall two propedeutic results: the first one follows from Lemma
7.4 in [6] (page 287), for the second one see [4] (Theorem, page 57).

Proposition 1. Let (P a : a ∈ A) ∈ κ(A,S) and µ ∈ Φ(A) be such that

µ({a ∈ A : P a � λ}) = 1

for a suitable σ-finite measure λ.
Then we have a jointly measurable function fλ such that

µ({a ∈ A : X ∈ S 7→ P a(X) =
∫
X
fλ(a, s)dλ(s)}) = 1 (4)

and

Pµ({s ∈ S : E ∈ A 7→ µs(E) =

∫
E fλ(a, s)dµ(a)∫
A fλ(a, s)dµ(a)

}) = 1. (5)

Proposition 2. Let (P a : a ∈ A), (Qa : a ∈ A) ∈ κ(A,S) be such that

Qa � P a, ∀a ∈ A. (6)

Then there exists a jointly measurable function h such that

X ∈ S 7→ Qa(X) =
∫
X
h(a, s)dP a(s), ∀a ∈ A.

2 The (P a : a ∈ A)-equivalence for prior distributions

Let us start with the definition of (P a : a ∈ A)-equivalence on Φ(A) (where (P a :
a ∈ A) is a fixed statistical experiment).

Definition 1. µ1 and µ2 are said to be (P a : a ∈ A)-equivalent if and only if
the two following conditions hold:

∃(µs : s ∈ S) ∈ κ(S,A) : Πµk,(Pa:a∈A)(da, ds) = µs(da)Pµk(ds), (k = 1, 2); (7)

Pµ1 ≡ Pµ2 . (8)

In this case we shall write µ1℘µ2(mod(P
a : a ∈ A)).

In other words we have µ1℘µ2(mod(P
a : a ∈ A)) if and only if the Bayesian

experiments
Ek = (A× S,A⊗ S,Πµk,(Pa:a∈A)) (k = 1, 2)

have in common all the families of posterior distributions; indeed, almost surely
w.r.t. the predictive distribution, any Bayesian experiment has a unique family of
posterior distributions.

The next proposition allows to express the (P a : a ∈ A)-equivalence between two
prior distributions by a more easily-handled equivalent condition.

Proposition 3. We have µ1℘µ2(mod(P
a : a ∈ A)) if and only if (7) and

µ1 ≡ µ2. (9)

contemporary hold.
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Proof. Assume that µ1℘µ2(mod(P
a : a ∈ A)). Then we have (7) while (9) follows

from (8); indeed, by taking into account (1), (2) and (7), we obtain

µ1(E) =
∫
S
µs(E)dPµ1(s) = 0⇔ µ2(E) =

∫
S
µs(E)dPµ2(s) = 0.

Assume that (7) and (9) contemporary hold. Then we obtain µ1℘µ2(mod(P
a : a ∈

A)) deriving (8); indeed, by taking into account (3) and (1), we have

Pµ1(X) =
∫
A
P a(X)dµ1(a) = 0⇔ Pµ2 (X) =

∫
A
P a(X)dµ2(a) = 0.

�

In what follows we shall use the symbol [µ](Pa:a∈A) to denote the (P a : a ∈ A)-
equivalence class of µ while the symbol [µ]≡ will be used to denote the class of all
the prior distributions mutually absolutely continuous w.r.t. µ. In other words we
set

[µ](Pa:a∈A) = {ν ∈ Φ(A) : ν℘µ(mod(P a : a ∈ A))}
and

[µ]≡ = {ν ∈ Φ(A) : ν ≡ µ};
thus, by Proposition 3, we can say that

{µ} ⊂ [µ](Pa:a∈A) ⊂ [µ]≡. (10)

Both the inclusions in (10) are equality if and only if µ is a degenerating proba-
bility measure (i.e. a probability measure concentrated on a singleton).

Proposition 4. Let (P a : a ∈ A), (Qa : a ∈ A) ∈ κ(A,S) and µ ∈ Φ(A) be
such that

µ({a ∈ A : P a = Qa}) = 1.

Then we have
[µ](Pa:a∈A) = [µ](Qa:a∈A).

Proof. We have to show that ν ∈ [µ](Pa:a∈A) if and only if ν ∈ [µ](Qa:a∈A).
Given ν ∈ [µ](Pa:a∈A), for a suitable (µs : s ∈ S) ∈ κ(S,A) we have

Πµ,(Pa:a∈A)(da, ds) = µs(da)Pµ(ds)

and
Πν,(Pa:a∈A)(da, ds) = µs(da)Pν(ds);

furthermore, by Proposition 3, we also have ν ≡ µ and, consequently, we can say
that

ν({a ∈ A : P a = Qa}) = 1.

Thus Πµ,(Qa:a∈A) = Πµ,(Pa:a∈A) and Πν,(Qa:a∈A) = Πν,(Pa:a∈A).
In conclusion ν ∈ [µ](Qa:a∈A) follows from Proposition 3; indeed ν ≡ µ and there
exists (µs : s ∈ S) ∈ κ(S,A) such that

Πµ,(Qa:a∈A)(da, ds) = µs(da)Pµ(ds)

and
Πν,(Qa:a∈A)(da, ds) = µs(da)Pν(ds).

Similarly, given ν ∈ [µ](Qa:a∈A), we obtain ν ∈ [µ](Pa:a∈A). �
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3 Two opposite cases of statistical experiments

First of all let us recall the following definition (see e.g. [1]).

Definition 2. The statistical experiment (P a : a ∈ A) is said to be dominated
if there exists a σ-finite measure λ such that

P a � λ, ∀a ∈ A.

Example 1. Consider (A,A) = (S,S) = (]0,∞[,B) where B is the usual Borel
σ-algebra and let (P a : a ∈ A) be such that

X ∈ S 7→ P a(X) = a−1m(X∩]0, a[), ∀a ∈ A,

where m is the usual Lebesgue measure on B. Then (P a : a ∈ A) is a dominated
statistical experiment with λ = m.

The assumption of dominated statistical experiment is common in mathematical
statistics. Several examples are presented in [3] (see Section 9) for illustrating the
construction of conjugate families of prior distributions; these examples shall refer
the two following cases: (S,S) is a discrete measurable space (i.e. S is at most
countable and S is the power set of S); (S,S) is an interval of the real line equipped
with the usual Borel σ-algebra and λ is the usual Lebesgue measure.

Now we present two other definitions which allow to introduce the two opposite
cases of statistical experiments cited in the Introduction; the first one is a slight
modification of Definition 2, for the second one see Definition 1.1 in [9]. Each
definition will be followed from an example.

Definition 3. The statistical experiment (P a : a ∈ A) is said to be strongly
dominated if there exists a σ-finite measure λ such that

P a ≡ λ, ∀a ∈ A. (11)

Example 2. Consider (A,A) = (S,S) = (] −∞,∞[,B) where B is the usual
Borel σ-algebra and let (P a : a ∈ A) be such that

X ∈ S 7→ P a(X) =
∫
X

exp(− (s−a)2

2
)√

2π
ds, ∀a ∈ A.

Then (P a : a ∈ A) is strongly dominated with λ as the usual Lebesgue measure.

Definition 4. The statistical experiment (P a : a ∈ A) is said to be completely
orthogonal if there exists a set K ∈ A⊗ S such that

P a(K(a, .)) = 1, ∀a ∈ A (12)

and

a 6= b⇒ K(a, .) ∩K(b, .) = ∅. (13)

Example 3. Let (G,G) be an arbitrary Polish space and consider (A,A) =
(S,S) = (G,G). Moreover let (P a : a ∈ A) be such that

X ∈ S 7→ P a(X) = 1X(a), ∀a ∈ A.
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Then (P a : a ∈ A) is a completely orthogonal statistical experiment with

K = {(a, s) ∈ G×G : a = s}.
For a completely orthogonal statistical experiment (P a : a ∈ A) we have

a 6= b⇒ P a⊥P b;

then (P a : a ∈ A) is totally informative (see definition in [7], page 235).

Remark. Obviously a strongly dominated statistical experiment is dominated
but we can have dominated statistical experiments which are not strongly dominated
(see Example 1). We also remark that a statistical experiment cannot be completely
orthogonal and strongly dominated contemporary but we can easily build completely
orthogonal statistical experiments which are dominated; for instance consider Ex-
ample 3 with (G,G) discrete.

Now we shall prove the first result which can be seen as a generalization of
Proposition 2.1 in [8].

Proposition 5. Let (P a : a ∈ A) be a strongly dominated statistical experi-
ment. Then

µ1℘µ2(mod(P
a : a ∈ A))⇔ µ1 = µ2.

Proof. Obviously we have to show that

µ1℘µ2(mod(P
a : a ∈ A))⇒ µ1 = µ2;

indeed the inverse implication holds because ·℘·(mod(P a : a ∈ A)) is an equivalence.
By the hypothesis, (11) holds for a suitable σ-finite measure λ and we have Pµ1 , Pµ2 ≡
λ for any pair µ1, µ2 ∈ Φ(A). Moreover (P a : a ∈ A) is dominated and there exists
a function fλ satisfying (4) by Proposition 1; more precisely we can choose a version
of such fλ which is positive and finite.
Now let us assume that µ1℘µ2(mod(P

a : a ∈ A)). Then, by (5), λ a.e. we have∫
E
fλ(a, s)dµ1(a, s) = k(s)

∫
E
fλ(a, s)dµ2(a), ∀E ∈ A (14)

with

k(s) =

∫
A fλ(a, s)dµ1(a)∫
A fλ(a, s)dµ2(a)

.

Moreover, by Proposition 3, we have µ1 ≡ µ2. Thus, µ2 ⊗ λ a.e., we obtain

fλ(a, s)
dµ1

dµ2
(a) = k(s)fλ(a, s)

that is equivalent to
dµ1

dµ2

(a) = k(s)

because fλ is positive and finite.
Then, by taking the integral over A w.r.t. µ2, λ a.e. we have

k(s) = 1; (15)

thus, by putting (15) in (14) and by taking in (14) the integral over S w.r.t. λ, we
obtain

µ1(E) = µ2(E), ∀E ∈ A
as a consequence of Fubini theorem and (4). In conclusion we have µ1 = µ2. �
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Before presenting the opposite case, let us consider a propedeutic result.

Proposition 6. Let (P a : a ∈ A) be a completely orthogonal statistical experi-
ment and put

R = {s ∈ S : K(., s) 6= ∅}. (16)

Then

#(K(., s)) = 1, ∀s ∈ R, (17)

where #(K(., s)) denotes the cardinality of K(., s).
Moreover, for any µ ∈ Φ(A), we have

Πµ,(Pa:a∈A)(K) = 1 (18)

and consequently

Pµ({s ∈ S : µs(K(., s)) = 1}) = Pµ(R) = 1. (19)

Proof. To obtain (17) we reason by contradiction. Let us suppose there exists s ∈ R
such that we have a, b ∈ K(., s) with a 6= b. Then we obtain s ∈ K(a, .) ∩K(b, .)
that is impossible because (13) holds.
Moreover, by (12), we obtain (18). Indeed

Πµ,(Pa:a∈A)(K) =
∫
A
P a(K(a, .))dµ(a) = µ(A) = 1.

Finally we also have∫
S
µs(K(., s))dPµ(s) = Πµ,(Pa:a∈A)(K) = 1.

Thus we obtain (19); indeed

Pµ({s ∈ S : µs(K(., s)) = 1}) = 1

and consequently Pµ(R
c) = 0. �

Then we can prove the following

Proposition 7. Let (P a : a ∈ A) be a completely orthogonal statistical experi-
ment. Then

µ1 ≡ µ2 ⇔ µ1℘µ2(mod(P
a : a ∈ A)).

Proof. The proof consists to show that

µ1 ≡ µ2 ⇒ µ1℘µ2(mod(P
a : a ∈ A));

indeed, by Proposition 3, the inverse implication holds in general.
By Proposition 6 we know that K(., s) has only one element when it is not empty.
Then it is useful to put

K(., s) = {a∗(s)}, ∀s ∈ R,
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where R is the set defined by (16).
Now let µ ∈ Φ(A) be arbitrarily fixed. By (18) we have

Πµ,(Pa:a∈A)(E ×X) = Πµ,(Pa:a∈A)((E ×X) ∩K) =

=
∫
X
µs(E ∩K(., s))dPµ(s), ∀E ∈ A and ∀X ∈ S

and, by (19), we obtain

Πµ,(Pa:a∈A)(E ×X) =
∫
X∩R

µs(E ∩K(., s))dPµ(s) =

=
∫
X∩R

µs(E ∩ {a∗(s)})dPµ(s), ∀E ∈ A and ∀X ∈ S.

Thus a Markov kernel (µs : s ∈ S) ∈ κ(S,A) such that

E ∈ A 7→ µs(E) = 1E(a∗(s)), ∀s ∈ R

represents a family of posterior distributions for E = (A × S,A ⊗ S,Πµ,(Pa:a∈A))
which does not depend on µ. Then, given µ1, µ2 ∈ Φ(A) satisfying (9), we can say
that (7) holds. Thus the proof is complete by Proposition 3. �

In conclusion, by Proposition 5 and Proposition 7 respectively, for any µ ∈ Φ(A)
we have the following situations:
when (P a : a ∈ A) is strongly dominated

[µ](Pa:a∈A) = {µ}; (20)

when (P a : a ∈ A) is completely orthogonal

[µ](Pa:a∈A) = [µ]≡. (21)

The author thinks that, even if (P a : a ∈ A) in Example 1 is not strongly dominated,
(20) holds for any µ ∈ Φ(A). Finally, by taking into account Proposition 4, as
immediate consequences of Proposition 5 and Proposition 7 respectively, we have
the ensuing results.

Proposition 8. Let (P a : a ∈ A) ∈ κ(A,S) and µ ∈ Φ(A) be such that

µ({a ∈ A : P a ≡ λ}) = 1

for a suitable σ-finite measure λ.
Then (20) holds.

Proposition 9. Let (P a : a ∈ A), (Qa : a ∈ A) ∈ κ(A,S) and µ ∈ Φ(A) as in
Proposition 4. Moreover assume that (Qa : a ∈ A) is completely orthogonal.
Then (21) holds.



The “statistical experiment”-equivalence for prior distributions 657

4 An intermediate case

In this Section we shall consider an example which can be considered as an interme-
diate case. Indeed, as we shall see, we can find a prior distribution µ ∈ Φ(A) such
that both the inclusions in (10) are strict or, equivalently, conditions (20) and (21)
are both false.

Before presenting this example, it is useful to consider some further notation. In
this Section the Lebesgue measure on the real line will be denoted by m and, for
x ∈]−∞,∞[, we shall set

Ix =]x− 1

2
, x+

1

2
[.

Example 4. Consider (A,A) = (S,S) = (] −∞,∞[,B) where B is the usual
Borel σ-algebra and let (P a : a ∈ A) be such that

X ∈ S 7→ P a(X) = m(X ∩ Ia), ∀a ∈ A.

Then in particular, according to Definitions 2 and 3, (P a : a ∈ A) is dominated with
λ = m but it is not strongly dominated.

As an immediate consequence we can say that, for any µ ∈ Φ(A), the set

Sµ = {s ∈ S : µ(Is) = 0}

has measure zero w.r.t. Pµ. Moreover, by considering (5) with λ = m, µ1 and µ2

are (P a : a ∈ A)-equivalent if and only if they are mutually absolutely continuous
and the ensuing condition holds:

µ1(Is), µ2(Is) > 0⇒ µ1(·|Is) = µ2(·|Is).

Then, under the assumption of µ1(Is) and µ2(Is) positive (note that they are both
positive or both zero because of the mutual absolute continuity between µ1 and µ2)
we shall consider the condition µ1(·|Is) = µ2(·|Is) whence we obtain

µ1({a ∈ A :
1Is(a)

µ1(Is)
=

1Is(a)

µ2(Is)

dµ2

dµ1
(a)}) = 1

and
µ1(Es|Is) = 1,

where

Es = {a ∈ A :
dµ2

dµ1
(a) =

µ2(Is)

µ1(Is)
};

thus, if µ1(Is) and µ2(Is) are positive, we can say that, almost surely w.r.t. µ1(·|Is),
the density dµ2

dµ1
(a) is equal to a constant (depending on s).

Now let s, t ∈ S be arbitrarily fixed and assume that

µ1(Is ∩ It) > 0;

in this case |s − t| < 1 and we also have µ2(Is ∩ It) > 0 because µ1 and µ2 are
mutually absolutely continuous. Then we obtain

µ1(Es ∩Et|Is ∩ It) = 1.
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Indeed we have

µ1(Es ∩ Et|Is ∩ It) =
µ1(Es ∩ Et ∩ Is ∩ It)

µ1(Is ∩ It)
=
µ1(Es ∩Et ∩ Is|It)µ1(It)

µ1(Is ∩ It)
=

=
µ1(Es ∩ Is|It)µ1(It)

µ1(Is ∩ It)
=
µ1(Es ∩ Is ∩ It)
µ1(Is ∩ It)

=
µ1(Es ∩ It|Is)µ1(Is)

µ1(Is ∩ It)
=

=
µ1(It|Is)µ1(Is)

µ1(Is ∩ It)
=
µ1(It ∩ Is)
µ1(Is ∩ It)

= 1

and then

µ1(Is ∩ It) > 0⇒ µ2(Is)

µ1(Is)
=
µ2(It)

µ1(It)
.

Thus, if I is an interval of the real line having positive measure w.r.t. µ1 (and
µ2), there exists a positive constant cI such that

µ1({a ∈ A :
dµ2

dµ1

(a) = cI}|I) = 1

when one of the two next conditions holds:
m(I) < 1;
m(I) ≥ 1 but we cannot find open subintervals J of I such that m(J) = 1 and
µ1(J) = 0.

In conclusion, given two mutually absolutely continuous prior distributions µ1

and µ2, we can say that they are (P a : a ∈ A)-equivalent if and only if one can
find disjoint and closed intervals (eventually reduced to a single point) such that the
distance between two different intervals is not less than 1 and, almost surely w.r.t.
µ1, in each one of those intervals the density dµ2

dµ1
(a) is constant.

Before concluding this Section we shall present two not trivial examples of
[µ](Pa:a∈A) (i.e. two examples in which the inclusions in (10) are strict).
The first one is quite simple. Let µ be such that

E ∈ A 7→ µ(E) =
1

2
{m(E ∩ [0, 1]) +m(E ∩ [2, 3])};

then (20) and (21) fail because

[µ](Pa:a∈A) = {αm(· ∩ [0, 1]) + (1− α)m(· ∩ [2, 3]) : α ∈]0, 1[}.

The following slight modification of the previous example is more illustrative. For
β ∈]0, 1[ set

E ∈ A 7→ µβ(E) =
β

2
[m(E ∩ [0, 1]) + 1E(2)] + (1− β)m(E ∩ [2, 3]);

thus we have
E ∈ A 7→ µβ(E|[0, 1]) = m(E ∩ [0, 1])

and

E ∈ A 7→ µβ(E|[2, 3]) =
β
2
1E(2) + (1− β)m(E ∩ [2, 3])

1− β
2
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with µβ([0, 1]) = β
2

and µβ([2, 3]) = 1− β
2
. Then

µβ =
β

2
µβ(·|[0, 1]) + (1− β

2
)µβ(·|[2, 3]);

thus (20) and (21) are false because

[µβ ](Pa:a∈A) = {αµβ(·|[0, 1]) + (1− α)µβ(·|[2, 3]) : α ∈]0, 1[}.

5 A partial order for the statistical experiments

In this Section we shall consider a partial order between statistical experiments.
This partial order will be denoted by � and in some sense its definition follows in a
natural way from the (P a : a ∈ A)-equivalence defined in Section 2. Indeed we shall
set

(P a : a ∈ A) � (Qa : a ∈ A) (22)

if and only if we have

µ1℘µ2(mod(P
a : a ∈ A))⇒ µ1℘µ2(mod(Q

a : a ∈ A)).

Thus (22) holds if and only if any (P a : a ∈ A)-equivalence class is a subset of a
(Qa : a ∈ A)-equivalence class.

First of all, by Proposition 5 and Proposition 7 respectively, we can say that the
strongly dominated statistical experiments are maximal and the completely orthog-
onal statistical experiments are minimal.

Furthermore we can consider another partial order between statistical experi-
ments. It will be denoted by � and it is defined as follows; we have

(P a : a ∈ A)� (Qa : a ∈ A) (23)

if and only if condition (6) holds.
Before presenting the next result, it is useful to consider the following notation.

When we consider (Qa : a ∈ A) as statistical experiment and µ as prior distribution,
the predictive distribution will be denoted by Qµ; in other words we set

X ∈ S 7→ Qµ(X) = Πµ,(Qa:a∈A)(A×X). (24)

The first result of this Section shows that (23) is stronger than (22).

Proposition 10. Let (P a : a ∈ A), (Qa : a ∈ A) ∈ κ(A,S) be such that (23)
holds.
Then we have (22).

Proof. Let µ1, µ2 ∈ Φ(A) be such that µ1℘µ2(mod(P
a : a ∈ A)). Then, by Proposi-

tion 3, (9) holds and we shall complete the proof by showing that

Πµk,(Qa:a∈A)(da, ds) = νs(da)Qµk(ds) (k = 1, 2), (25)
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for a suitable (νs : s ∈ S) ∈ κ(S,A).
It is useful to remark that, for h as in Proposition 2, we have

Πµk,(Qa:a∈A)(E ×X) =
∫
E
Qa(X)dµk(a) =

∫
E
[
∫
X
h(a, s)dP a(s)]dµk(a) =

=
∫
E×X

h(a, s)dΠµk,(Pa:a∈A)(a, s), ∀E ∈ A and ∀X ∈ S (k = 1, 2)

and, by (24), we obtain

X ∈ S 7→ Qµk(X) =
∫
A×X

h(a, s)dΠµk,(Pa:a∈A)(a, s) =∫
X

[
∫
A
h(a, s)dµs(a)]dPµk(s) (k = 1, 2), (26)

with (µs : s ∈ S) ∈ κ(S,A) satisfying (7). Now let us consider (νs : s ∈ S) ∈ κ(S,A)
such that

Pµk({s ∈ S : E ∈ A 7→ νs(E) =

∫
E h(a, s)dµ

s(a)∫
A h(a, s)dµ

s(a)
}) = 1, (k = 1, 2).

Then, by (26), we have

∫
X
νs(E)dQµk(a, s) =

∫
X

∫
E h(a, s)dµ

s(a)∫
A h(a, s)dµ

s(a)

∫
A
h(a, s)dµs(a)dPµk(s) =

=
∫
X

[
∫
E
h(a, s)dµs(a)]dPµk(s) =

∫
E×X

h(a, s)dΠµk,(Pa:a∈A)(a, s) =

= Πµk,(Qa:a∈A)(E ×X), ∀E ∈ A and ∀X ∈ S (k = 1, 2).

Thus (25) holds and the proof is complete. �

Remark. Condition (23) is not necessary to have (22). Indeed let us consider
the following example: (A,A) = (S,S) = (] −∞,∞[,B) with B as the usual Borel
σ-algebra, (P a : a ∈ A) is as in Example 2 and set

X ∈ S 7→ Qa(X) = 1X(a) ∀a ∈ A.

In this case (23) is false; indeed we have

Qa⊥P a, ∀a ∈ A.

But (P a : a ∈ A) is strongly dominated and (Qa : a ∈ A) is completely orthogonal;
then, by Proposition 5 and Proposition 7, we have (22).

In conclusion we can state the following immediate consequences of Proposition
10 and Proposition 4.

Proposition 11. Let (P a : a ∈ A), (Qa : a ∈ A) ∈ κ(A,S) be such that

Qa ≡ P a, ∀a ∈ A.
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Then, for any µ ∈ Φ(A), we have

[µ](Pa:a∈A) = [µ](Qa:a∈A). (27)

Proposition 12. Let (P a : a ∈ A), (Qa : a ∈ A) ∈ κ(A,S) and µ ∈ Φ(A) be
such that

µ({a ∈ A : Qa ≡ P a}) = 1.

Then (27) holds.

Proposition 13. Let (P a : a ∈ A), (P a
1 : a ∈ A), (P a

2 : a ∈ A) ∈ κ(A,S) be
such that

P a = αaP
a
1 + (1− αa)P a

2 , ∀a ∈ A
where

a ∈ A 7→ αa ∈]0, 1[

is a measurable mapping w.r.t. A.
Then we have

µ1℘µ2(mod(P
a : a ∈ A))⇒ µ1℘µ2(mod(P

a
k : a ∈ A)) (k = 1, 2).

6 A result about the ” ε-contaminations”

Given a prior distribution µ and ε ∈]0, 1[, we can consider the ε-contamination class
of prior distributions (see e.g. [2])

Γµε = {(1− ε)µ+ εν : ν ∈ Φ}

where Φ determines the allowed contaminations which are mixed with µ.
Throughout this paper we shall consider Φ = [µ]≡. Hence, by taking into account

(10) and the properties of mutual absolute contuinuity between positive measures,
given a statistical experiment (P a : a ∈ A) we have

{µ} ⊂ Γµε , [µ](Pa:a∈A) ⊂ [µ]≡.

It is easy to check that, when we have one of the two extreme cases in (10) (i.e.
[µ](Pa:a∈A) = {µ} or [µ](Pa:a∈A) = [µ]≡), we have

Γµε ∩ [µ](Pa:a∈A) = {(1− ε)µ+ εν : ν ∈ [µ](Pa:a∈A)}. (28)

Indeed, when [µ](Pa:a∈A) = {µ}, we have

Γµε ∩ [µ](Pa:a∈A) = {(1− ε)µ+ εν : ν ∈ [µ](Pa:a∈A)} = {µ}

while, when [µ](Pa:a∈A) = [µ]≡, we have

Γµε ∩ [µ](Pa:a∈A) = {(1− ε)µ+ εν : ν ∈ [µ](Pa:a∈A)} = Γµε .

However, as we shall see, (28) holds in general, i.e. it also holds when both the
inclusions in (10) are strict. Before proving this fact, we need a propedeutic result.
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Proposition 14. Let us consider µ1, µ2 ∈ [µ](Pa:a∈A) and ε ∈]0, 1[.
Then

ν = εµ1 + (1− ε)µ2 ∈ [µ](Pa:a∈A).

Proof. By the hypothesis we have µ1℘µ2(mod(P
a : a ∈ A)) and then

[µ](Pa:a∈A) = [µ1](Pa:a∈A) = [µ2](Pa:a∈A). (29)

Thus (7) holds and, for (µs : s ∈ S) ∈ κ(S,A) as in (7), we have

Πν,(Pa:a∈A)(da, ds) = εΠµ1,(Pa:a∈A)(da, ds) + (1− ε)Πµ2,(Pa:a∈A)(da, ds) =

= εµs(da)Pµ1(ds) + (1− ε)µs(da)Pµ2(ds) = µs(da)[εPµ1(ds) + (1− ε)Pµ2(ds)] =

= µs(da)Pν(ds).

Moreover, by Proposition 3, we have µ1, µ2 ≡ µ; then ν ≡ µ1, µ2.
In conclusion, by Proposition 3, we can say that ν ∈ [µ1](Pa:a∈A) (or equivalently
ν ∈ [µ2](Pa:a∈A)) and, by (29), ν ∈ [µ](Pa:a∈A). �

Now we can prove the final result.

Proposition 15. Condition (28) holds for any prior distribution µ.

Proof. By (10) we can say that

{(1− ε)µ+ εν : ν ∈ [µ](Pa:a∈A)} ⊂ Γµε

and, by Proposition 14,

{(1− ε)µ+ εν : ν ∈ [µ](Pa:a∈A)} ⊂ [µ](Pa:a∈A).

Thus we have

{(1− ε)µ+ εν : ν ∈ [µ](Pa:a∈A)} ⊂ Γµε ∩ [µ](Pa:a∈A)

and we complete the proof by showing that

Γµε ∩ [µ](Pa:a∈A) ⊂ {(1− ε)µ+ εν : ν ∈ [µ](Pa:a∈A)}. (30)

To this aim, let us consider ρ ∈ Γµε ∩ [µ](Pa:a∈A) arbitrarily fixed.
Then there exists νρ ∈ [µ]≡ such that

ρ = (1− ε)µ+ ενρ

and we have

Pµ({s ∈ S : µs = ρs}) = 1 (31)

for a suitable (ρs : s ∈ S) ∈ κ(S,A) such that Πρ,(Pa:a∈A)(da, ds) = ρs(da)Pρ(ds).
For deriving (30) we have to show that νρ ∈ [µ](Pa:a∈A).
It is easy to check that (31) can be rewritten as follows

Pµ({s ∈ S : µs = (1− ε)dPµ
dPρ

(s)µs + ε
dPνρ
dPρ

(s)(νρ)
s}) = 1



The “statistical experiment”-equivalence for prior distributions 663

for ((νρ)
s : s ∈ S) ∈ κ(S,A) such that Πνρ,(Pa:a∈A)(da, ds) = (νρ)

s(da)Pνρ(ds); then

Pµ({s ∈ S : (1− (1− ε)dPµ
dPρ

(s))µs = ε
dPνρ
dPρ

(s)(νρ)
s}) = 1.

Thus we obtain

Pµ({s ∈ S : ε
dPνρ
dPρ

(s)µs = ε
dPνρ
dPρ

(s)(νρ)
s}) = 1

whence it follows

Pµ({s ∈ S : µs = (νρ)
s}) = 1; (32)

indeed we have

Pµ({s ∈ S : 1 = (1− ε)dPµ
dPρ

(s) + ε
dPνρ
dPρ

(s)}) = 1.

In conclusion, by (32), νρ ∈ [µ](Pa:a∈A) because νρ ≡ µ. �

7 Concluding remarks

The results presented in this paper show that the (P a : a ∈ A)-equivalence classes are
mostly reduced to a single prior distribution. As already stated, the author thinks
that, for (P a : a ∈ A) as in the Example 1, (20) holds for any prior distributions; in
other words it should not be necessary to consider a strongly dominated statistical
experiment to have all the corresponding (P a : a ∈ A)-equivalence classes reduced to
a single prior distribution. In general, by taking into account the example presented
in Section 4, the idea is that we can have (P a : a ∈ A)-equivalence classes with
more than one prior distribution only when we can find pairs of mutually singular
sampling distributions.

In some sense it could have been more interesting to come up with an analogous
equivalence weaker than the previous one so that it would be easier to have equiva-
lence classes not reduced to a single prior distribution, even for strongly dominated
statistical experiments. A way to do that it would be to consider a similar theory
for a given observation; in other words, for a given s ∈ S, the equivalence ℘(s) on
Φ(A) defined as follows

µ1℘(s)µ2 ⇔ µs1 = µs2

seems to be more interesting.
The trouble is that this equivalence is not well-defined because, in general, the family
of posterior distributions (µs : s ∈ S) is almost surely unique w.r.t. the predictive
distribution Pµ; thus, for a given s ∈ S such that Pµ({s}) = 0, we can set µs in an
arbitrary way. The author does not know how to solve this problem.
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