Approximation Theorems for spherical
monogenics of complex degree

P. Van Lancker

Abstract

Spherical monogenics of complex degree correspond to local eigenfunctions
of the (Atiyah-Singer) Dirac operator on the unit sphere S™~! of R™. In this
paper we will consider Runge approximation Theorems and some of their
consequences for this class of functions.

1 Introduction

Let (e, ..., en) be an orthonormal basis of Euclidean space R™ endowed with the
inner product (x,y) = X", 2y, =,y € R™. By C,, we denote the complex 2"-
dimensional Clifford algebra over R™ generated by the relations e? = —1, i =
1,...,m and ee; + eje; = 0, ¢ # j. An element of C,, is of the form a =
SYacm @aea, ag € C, M ={1,...,m} and e, = ¢g = 1. The elements a € C,, such
that a4 € R for all A C M determine a real subalgebra of C,, denoted by R,,; this
is the real Clifford algebra over R™ generated by the above relations. Conjugation
on C,, is the anti-involution on C,, given by a@ = > 4c s G4€4 Where €4 = €, . . . €4,
and €; = —e;, j =1,...,m. Vectors x € R™ are identified with Clifford numbers
x =37, xje;. For vectors z,y € R™,

TYy=x-y+tr Ay

where the inner product and outer product are given by

Ty = _<3;’y> = — ijyj, TNy = Z(:L“Zyj - xjyz‘)ez‘j .
j=1

1<j
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A norm | |p on C,, is given by |a|3 = [aa]o and satisfies |a + blo < |a|o + [b]o,
|ablo < 2% [alo[blo.

Let 0, = >, €;0,, be the Dirac operator on R™. In spherical coordinates x =
pw, p=lz|=(22+...+22)Y? and w € S™!, the Dirac operator admits the polar
decomposition 0, = w(d, + %Fw) where I', = —x A 0, is the spherical Dirac operator
on S™!. In terms of the momentum operators L;; = 20y, — X0z, 1,7 =1,...,m
on R™ the I'-operator is given by I' = — 37, e;;Li;. In [18] we studied spherical
monogenics of degree a, (o € C) on the unit sphere S™! in R™. Let us recall the
following

Definition

Let Q C S™ ! be open. A C'-function f : Q — C,, satisfying (I' +a)f =0 in

is called a spherical monogenic of order (degree) « in §2. The right module of this
class of functions is denoted by M, (£2).
The value a = %ﬂ plays a special role in the scheme presented. The corresponding
spherical monogenics are null solutions of the (Atiyah-Singer) Dirac operator w(I', +
=2tL) on S™! used in differential geometry (see [10]). Amongst the operators
w(I" + a) this particular operator has the special property that it is conformally
invariant. The family of operators w(I'+a), a € C, can be regarded as a holomorphic
perturbation of the Dirac operator on the sphere. Spherical monogenics of degree
o # =2 can be regarded as (local) eigenfunctions of the (A-S) Dirac operator on
Smt Ifeg. (P+a)f =0inQ, then w(P+=2)(1+w)f = F(a+22)(1+w)f in
Q. If on the other hand w(I'+=2+)g = \g in , then (I'+(A+=2))(1£w)g = 0 in
). Hence eigenfunctions of the I'-operator (which is the submanifold Dirac operator
on S™ ! induced by the Dirac operator on the embedding space R™) correspond
to eigenfunctions (with shifted eigenvalue) of the Dirac operator on the sphere (see
also [3]).

In this paper we prove the following type of Runge approximation Theorems.
Let ©, Q" C S™ " be open and let K C S™! be compact. Then M, (Q) is dense in
M@y(K), K C Qand Mg, (?) is dense in M@, ('), € C Qiff Q\K and O\ satisfy
some topological condition. As our proof of these Theorems relies on the existence of
a Cauchy kernel for the operator I"+ a, we impose the condition o € C\ (NU(—m+
1 —N)). As a consequence we solve the equation (I'+«)f = g, g € C*(Q2), Q open
and prove Mittag-Leffler’s Theorem for the operator I' + a on S™!. As a result we
solve the inhomogeneous equation (I' + ) f = g in Q, g € C*(R2), Q € S™! open.
This leads to Mittag-Leffler’s Theorem for the operators I' + a.

2 Some introductory Lemmas

The following lemmas of a topological nature are of importance. We list them
without proof.
Let u € S™ !, Then we define the ball Bs(u,d) = B(u,d)NS™ ! ={w e Sm !
2(1 — (w,u)) < 0}. Obviously the sets Bg(u,d), 0 < § < 2, form a fundamental
system of connected neighbourhoods of u on S™~!.

Lemma 1. Let K C Q c S™ ', K compact and Q open. Then the following
conditions are equivalent:
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(i) Q\K has no components of which the closure (in S™ ') is contained in Q
(ii) For each component W of S™N\K : W N (S™1N\Q) #£0 .
Lemma 2. V is a component of Q\K satisfying V C Q iff OV C K.

Lemma 3. Let Q, € be open subsets of S™ ' such that ¥ C Q. Then the following
conditions are equivalent:

(1) Q\Q' has no components which are closed in S™*
(ii) For each component W of S™N\Q': W N (S™MN\Q) #0
(iii) For each component G of Q\QY : GNIQ# D .

Lemma 4. Let Q, Q) be open subsets of S™ L, QO C Q and let V be a component
of Q\Q' which is closed in S™'. Then OV C 0.

Lemma 5. (Ezhaustion of open sets on S™ ' by means of compacta)
Define for j € Ny:

[ =

K, = {we S dw,S"N\Q) > -}

| — <

G = {we S dw,S™MN\Q) > =}

where d(w, &) = |w — & = 1/2(1 — (w,€)), w,& € S™ L. Then:

(i) K; CKji1, Q=UK; =UK;

<

(i) Each compact set K C Q is contained in some K},
(iii) Each component of S™ '\ K; contains a component of S™'\Q
(iv) Q\K; has no components of which the closure is contained in €

(v) Put Hy = Go, H; = Gj11\Gj_1, j > 2; then {H;};>1 is a locally finite cover
of Q.

Theorem 6. Let Q2 be a proper open subset of S™ 1 and let K C Q be compact such
that Q\K has no components of which the closure is contained in 2. Then there
exists a fundamental system {F;} of compact neighbourhoods of K in 0 such that
for each i:

(i) F; has piecewise smooth boundary

(ii) Q\F; has no components whose closure is contained in ) .
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Proof.
Consider the sets

1 — 1
K; = {weS™ " d(w, K) <~} = User Bs(w, 7)

—

1
Gj = {WESm_lid(waK><3}:UweKBS(w73>7 J €N .

Each K is compact while each G; is open and K;;; C G, C[O(j. By compactness
of K; {Gj}jen, and {K}jen, are fundamental systems of neighbourhoods of K on
Sm=1. For each j,G; is an open cover of K and therefore has a finite subcover
UgjleS(fi]., %) C G, covering K. Put K; = U _Bs(&;,, —,) then K; is compact
and has piecewise smooth boundary. As K C K C Kj, {K;}jen, is a fundamental
system of neighbourhoods of K on S™7; since Kj, C Q for some jo, {K;}jjo
is then a fundamental system of neighbourhoods of K in 2. Consider now an
arbitrary K;, j > jo. Since Q\K C Q\K, each component of Q\ K is contained in
a component of Q\K. As K is the union of a finite number of closed balls, Q\ K

has only a finite number of components; say W}, i =1,...,n;,1 <1 < k; satisfying

Wﬁ C Q. Call Q; the components of Q\K such that W'il C Q1 =1,...,nj.
Suppose now that G is a component of Q\ K which does not contain any component
of O\K;, then GN(Q\K;) =0 or G C (NK)\(Q\K,) = K;\K C K, hence G C Q
which contradicts the assumption in the Lemma; therefore each component of Q\ K
contains a component of Q\K;. In the same way each component of Q\ K contains
a component of Q\L where L is the compact set given by L = K; U (Ui,1W§); as
Q\L and Q\K; have the same components of which the closure is not contained in
Q, it follows that each §2; contains a component G; of Q\[N( such that G; N OQ # 0.
Choose in each ©; containing a component W/, a set G; satisfying G; N 9Q # 0
and choose points a; € G; N 9N, b € W!. As Q; is open and connected, ©; is path
connected and for each [ there is an arc L! in €; connecting a; and b!. Choose for
each ¢ € L! an open ball Bg(&,r¢) C €, the union of these balls forms an open cover
of Lt; as Lt is compact there exists a finite subcover T} = UN(ZZ Bs(&j,re;) C €.
Put F; = K\ U;; T/, then F} is compact and has piecewise srnooth boundary. Since
T! N K = it follows that K C F; C [N(j. Applying this construction to each j > 7o
we thus obtain a fundamental system {F}},>;, of compact neighbourhoods of K in
Q. Call Hjj, the remaining components of Q\K;. Then:

O\F; = Q\(K;\(Ui 1Y) = (\K;) U (Ui T}) = Ui(W U T U Gy) U (UkHyy)

Put Wl WIUT!UG;; then Wl is connected and W NI # (). Since each component

of Q\F contains some connected set VVZZ or Hjy, Q\F has no components whose

closure is contained in §2. This proves the Theorem. [ |

The following is proved in [11].

Theorem 7. Let Y be a locally compact Hausdorff space, let X be a closed subset
of Y and let K be a connected component of X which is compact. Then there exists
a fundamental system of neighbourhoods U of K in'Y such that

UNX =0,



Approximation Theorems for spherical monogenics of complex degree 283

oU denoting the boundary of U in'Y .

In particular, this Theorem is valid when we put Y = Q, X = Q\Q', Q' C Q C
Sm=1. (). Q open.

3 Runge Theorems

The Cauchy kernel for spherical monogenics of complex degree « is denoted by
E, (&, w) and satisfies (I' + a)Ey(§,w) =d(w—€)§, a € C\ (NU(—m+1—N)) (see
also [18]).

Definitions.

(i) Let K € S™! be compact and let u be a C,,-valued regular Borel measure on
S™=1 with support [u] contained in K. Then the Cauchy transform CT, (1)
of the measure p is defined by:

CT()(©) = [ dn@)Ealgw). we ™

By a standard argument (C'T,(1)(€))(Te—8) = 0in S™ '\ [u], a+3 = —m~+1.
By means of the Riesz Representation Theorem the dual of the right module
C'(Or)(K ) of continuous functions on K can be identified with the left module

of C,,-valued regular Borel measures on S™ ! having support contained in K
and

(k) = [ du(h(w), e Ch(K) |

(i) Let K € S™ ! be compact. Then M, (K) consists of the elements f which
are null solutions of I'+ o in some open neighbourhood of K. On Mg, (K) we
consider two different topologies. First of all, M, (K) is a subspace of C°(K).
The space C°(K) endowed with the supremum norm || f [|= supg |flo is
a Banach space and M(O;)(K ) can be given the topology inherited from the
Banach space C°(K). In general Mg, (K) is not a closed subspace of C°(K).
Secondly one can consider M, (K) = limindgcoM§,) (), i.e. M{,)(K) is given
the inductive limit topology determined by the Fréchet modules M (O;)(Q), K C
Q.

The following Lemma plays an important role in the sequel.

Lemma 8. Let K C S™ ! be compact and suppose that p is a C,,-valued reqular
Borel measure on S™ ' having support contained in K. Then:

/sm—1 dp(w) f(w) =0 for all f € MGy (K) iff CTa(p)(€) = 0 in S I\K,
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Proof.

(Necessary condition.) Take £ € S™'\K and put f(w) = E.({,w). Then f €
M, (K), hence CTo(p)(§) = 0 in SmI\K.

(Sufficient condition.) Let f € Mg, (K); then f € Mg, () for some open neigh-
bourhood € of K. Consider a compact neighbourhood K’ having piecewise smooth

o/
boundary and such that K CK C K’ C Q. By Cauchy’s Theorem:

f@) = [ Ea&windsf(¢), we K.

and by Fubini’s Theorem:

/Sm_l dp(w) f(w) = /BKAOTa(m)(f)ndsf(f) =

Lemma 9. Let a € C\ (NU (—m + 1 —N)) and put My = L¢ — je;, LY =
w;iO,, — w;0,, being the momentum operators. Then:

(i) The T-operator and Mi;-operators commute, i.e. Uy, M| =0

(i1) Mg Eal&,w) = —Fa(&w) I,
Proof.
(i) See [16]. N N
(ii) Up to a constant E,(&,w) is given by £C2 (—(w, £)) + wC2 | (—{w, &) and
L5602 (—{w.€) + w021 (~{w. )]
= —(wig - wj&)[fgo?'(—w@) +wCi (= {w, &))]
+(wiej — wjei) Ca_y (—(w, )

while
[6CE (—(w,8)) +wCE 1 (—(w, )L
(wigj — wi&)ECE '(—(w, &) + wCZ " (—(w, )] + (Giej — &) O (—(w, €))
where " denotes derivation with respect to the variable —(w, §). Hence
MEIECE (—(w, ) +wCI 1 (—(w, &)] + [0 (—(w, €)) + wCE, (—{w, )T,
1 1
= [5l& eu] + (&Giej — &e)lCa (~w,6) + [5lws ei] + (wie; — wje)]Caa (= {w, §)
= 0,
since 3[w, e;;] = —wie; + wje;. n
Lemma 10. Let © be an open connected subset of S™1, let £ € Q and let f €

M@0 If My, .. My f(W)|w=e = 0 for all couples (i1, i), it < ji, 1 < i, 51 <
m, 0<I <k, k€N, then f =0 in Q.
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Proof.
Extend f to an a-homogeneous null solution f of 8, in the connected cone R4Q. By

assumption all derivatives of f in ¢ vanish. Since f is real analytic in R4 Q, f =0
in R, €.

Definition.
Let £ € S™ ! and let « € C\ (NU (—m + 1 —N)). Then we define the set

()_{ 21_]1 Zk_]k (57 )7 (ilajl)6{17"'7m}x{17"~7m}7

’i1<j1,0§l§k,k€N}.

In view of Lemma 9(i) the operators M;; and I' commute; therefore each element
of this set belongs to M) (S™\{¢}).
Consider a set V = {¢, & € S™1, i € I} of points & on S™! then we put:

R(V) = UierR*(£)

and we call Rf, (V) the right C,,-span of the set R*(V), i.e. R{;(V) is the space of
finite right Cy,-linear combinations of elements of R*(V'). Clearly R, (V) is a right
C,,-module of null solutions of I + o having singularities in the set V.

Theorem 11. Let K C S™ ! be compact and let S™\K = U®,Q; be the decom-
position of S™\K in connected components. Choose in each Q; a point & and put
V ={¢, i e Ng}. Then:

R{,(V) is dense in MG, (K) with respect to the topology given by the supremum
norm on K.

Proof.

Let C'(OT)(K ) be the right module of C,,-valued continuous functions on K endowed
with the supremum norm on K. Then we have the following inclusions where the
supremum norm on K is restricted to the corresponding subspaces of C'(Or)(K ):

(V) C MG (K) C C(Or)(K> :

By the Hahn-Banach Theorem each continuous linear functional on R(O‘r)(V) can be
extended to a continuous linear functional on M, (K) and hence also to C'(Or)(K ).
In view of the Riesz Representation Theorem the dual of C'(OT)(K ) can be identified
with the left module of C,,-valued regular Borel measures on S™ ! having support
in K. The space R, (V) will be dense in M, (K) iff the zero functional on R, (V')
has only the zero functional on M, O;,)(K ) as continuous extension. To prove this it
is sufficient to prove that each regular Borel measure on S™ ! having support in
K which annihilates the space Rf, (V) also annihilates M, (K). Consider such a
measure . By assumption p annihilates in particular R*(£%), hence for all couples
(’il,jl) € {1,...,777,} X {1,...,m}, u<g, 0<I<k keN:

(w), My, .. M5 Ba(8',w)) = 0.

1171 ° Tk Jk
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By Lemma 9(ii):

M

111 °

w 7 w w Vi

111 7 T ig—1k—1 Tk

=7¢ EWis
= (=DF[EL(, W)M; 5 M eeei

hence
(1(w), Ea(& )M, .. M,

kI
Since CT, (1) (€) = (pu(w), Euo(&,w)) is a right null solution of T — § in S™ 1\ K (a+
B = —m + 1) one has by Lemma 10 that CT,(ux)(§) = 0 in €;, i being chosen
arbitrarily, hence CT,(p) = 0 in S™"\K. By Lemma 8 p annihilates M) (K),
q.e.d. [ ]

We will now determine under which conditions M, (€2) is dense in Mg, (K), K C
) compact, €2 open. In view of the previous Theorem such a result will hold when
we can choose V such that VN Q = (. This will only be possible if € satisfies some
further topological condition with respect to K. This is formulated in the following

Theorem 12. (First Approximation Theorem of Runge)
Let K c QC S™ L, Q open and K compact. Then the following conditions are
equivalent:

(i) MG,(S2) is dense in MG, (K) = lim indkxcoM,(€2)
(i) Q\K has no components of which the closure (in S™ ') is contained in §2 .

Proof.

(ii) = (i) First of all we prove that M,(€2) is dense in M, (K) for supg. Let
G, i € Ny be the components of S™ 1\ K. By the topological condition on Q\K
and Lemma 1: G;N(S™1\Q) # 0. Choose for all i € Ny points £ € G;N(S™1\Q) C
Gin(S™N\K) =G and put V = {¢, i € No}. By the previous Theorem R{;,(V)
is dense in M, (K) for supg. Since VC S™'\Q, R, (V) is a subspace of M, (Q);
thus M, (€2) is dense in M, (K) for supy.

Let f € Mg, (K); then there is an open set 0y, K C Qf C Q such that f € Mg, (€y).
In view of Theorem 6 one can always find a compact set F;,, K C F;, C 2y such
that Q\ F}, has no components of which the closure is contained in 2. Hence there
is a sequence (f;)ien,, fi € M{,(€2) such that f; — f in supp, and thus f; — f in

the Fréchet module M2, ( Fi ). As the inductive limit topology on M, (K) is the
(nFio m Q

strongest locally convex topology on M(O;)(K ) which is weaker than the topology on
any MG (2), K C , the sequence (f;)ien, converges to f in limindxco M, ().

(i) = (ii) Suppose that W is a component of Q\K such that W C €; by Lemma
2, OW C K. Take a fixed point ¥ € W and consider the function f(w) = E,(v,w);
then f € MG, (K). By assumption there is a compact set F, K CFCFC ON\{v}
and a sequence of functions (f;)jen,, fj € M) (§2) such that f; — f for supp. Since

OWCKcCFandve W\F it follows that W'\ F= W\ F is a non empty compact

subset of W. Therefore one can always find a compact set C' which covers W\ ja
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and has piecewise smooth boundary dC contained in W\ (W\ 1:2’) = W\(W\ 1%) =
W FCF. For all w € W\ P

(fi= 1)) = | Bal&wnds(fi = £)(€) -
Hence

sup [(fi = fi)(w)lo < A(OC)  sup |Ea(€,W)|o§Seua%l(fz‘—fj)(€)|oa

— O — O
weW\F weW\F, £€0C

A(dC) denoting the area of AC. Since W'\ F and 9C are compact and 0C C F
there is a constant K (W, F,0C) such that

sup [(fi = fi)(w)]o < Kilelg [(fi = fi)(@)lo -

WEW\F
From FUW C FU(W\ 1:2’) it follows that

sup_[(fi = f5)(W)lo < (1 + K)sup [(fi = f3)(w)lo -

weEFUW weF
Since (fi)ien, is a Cauchy sequence in M, (F') for SUp, (fi)ien, 1S alsNo Cauchy in
M(O;)(F UW) for sup,, 7. Consequently there is an f such that f; — f for sup
and f € M(O;)(lf" UW) where f|r = f. Since W # () there is a component G of

[ such that GO W £ (), therefore GUW is connected and f is the unique extension
of f to the region G U W; but v € W which leads to a contradiction (f is singular
inv) . ]

Theorem 13. (Second Approzimation Theorem of Runge)
Let 0, be open subsets of S™1, Q' C Q. Then the following conditions are
equivalent:

(i) MG, (S2) is dense in MG, (V') in the sense of Fréchet modules
(ii) Q\' has no components which are closed in the topology on S™! .

Proof.
(ii) = (i) Consider the exhaustion of {2 by means of the compact sets

Kj={wesmidw,s" N\ 2 2}, jeNo.,

R

The space M,(§2) will be dense in Mg, (€') in the sense of Fréchet modules if for
each j € Ny the space M(,(€2) is dense in M, (K7) for SUP e Choose an arbitrary
fixed j € Ng; then S "\Q' C S™'"\K/ and by Lemma 5 each component of
S™ '\ K} contains some component G; of S™'\(/. By assumption and Lemma 3:
G;N(S™1\Q) # 0 for each component G; of S™ 1\('. Choose for each component
GZ‘, 1el points fz € éz N (Sm_l\Q) C éz N (Sm_l\Q/) = éz N (Uje[Gj) = (G; and
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put V = {&, i € I}, then V intersects each component of Sm_l\KJ’». By Theorem
11 the space R{,,(V') is dense in M, (K7) for supg.. The particular choice of points
¢ shows that Rf, (V) C Mg, (Q); since j was chosen arbitrary, this proves the first
part.

(i) = (ii) Suppose that Q\Q' has some compact component V. By Theorem 7 there
exists an open U such that V € U Cc U C Q and 90U C €Y. Choose for each
€ € OU a ball Bs(&,re) C €Y. By compactness of QU there exists a finite number of
&edU,i=1,...,N such that OU C UN,Bg(&' rei). Put Uy = UU(UY, Bg(&',1¢1))
and Uy = U U (UN Bg(fZ ~<1)); then U; has piecewise smooth boundary OU; C
and V C Uy C Uy C Uy. Choose a fixed point & € V and put f(w) = E,(§,w);
then f € MG, (). By assumption there is a sequence (f;)jen, in M, (€2) such that
f; — [ uniformly on each compact subset of (¥, in particular f; — f for supyy,.
Hence

sup |i(w) = @)l = sup | [ Ealgwinds(f; = £)()lo — 0, inf(i,j) — o0

welUs welUs

thus (f;)ien, is a Cauchy sequence in the Fréchet space M, (Uz). Call W the
connected component of Us which contains V' and let ( € 9V; since W is open,
Bs(¢,6) € W for sufficiently small §. By Lemma 4, 9V C 9€), hence Bg((,5)NQ #
) or W N # 0. Therefore there is a component G of Q' such that W NG # ();
this implies that W U G is connected. As each closed subset of W U G can be
written as the union of a closed subset of W and G, (f;);en, is a Cauchy sequence
in M,(W UG). By the principle of analytic continuation f; — f = E,({,w) in
M@, (W UG), a contradiction ({ € V. C W) . ]

4 Theequation (I'+a)f =g

We will first determine the global solutions of (I' + «)f = g, a € C, g belonging
to C°°(S™ 1) or &(S™1). Of course the situation is quite different when o €
N U (=m + 1 — N) because in this case the kernel of the operator I + « consists
precisely of the classical inner and outer spherical monogenics. Next we will consider
the equation (I'+ a)f =g, g € C®(Q), 2 C S™ ! open. In case g has compact
support contained in €2, the problem is reduced to the global case by extending g to
a C*-function on S™! equal to zero in S™ '\Q. However in case g € C*°() the
problem is not so straightforward and requires Runge’s Theorem.

4.1 Thecase ) = !

Let us repeat the following expansions in terms of spherical monogenics given in
[17].

(i)
5w — :ALZKM ) — whi(w, )]
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(ii)
7T . L > Kk(w7€> _ WKk(w7€>€
AmsinﬂaKa(_w’€>_A Z[ a—k oz—i—k—i—m—l]’

m k=0

aecC\(NU(-m+1-N))
(Mittag-Leftler expansion)

(iii)

T 1 & ) 1 & wKi(w,§)E
PV[———K, — k] = Skl AT
Zmsinma telmw 8@ A, & A 2t itm—1

[
keN

where the series converge in £(S™!). The principal value PV[f,z = 2] of f in
2o is defined to be the value in 2y of the regular part of f. In [13] the following
Theorem was proved.

Theorem 14. (Characterisation of the spaces C*°(S™1) and E'(S™1) in terms of
spherical monogenics)

(i) g(w) = 320 Pe(w) + Qr(w) € C°(S™ ) implies for all s € N the existence
of a constant ¢, > 0 such that sup,,cgm-1{|Pe(w)o, |Qr(w)|o} < cs(1+k)~* for
each k € N.

Conversely, let (Py, Qk)ren be a sequence of spherical monogenics which satis-
fies the above estimate, then g(w) = 332 Pr(w) + Qr(w) € C>(S™1).

(ii) S(w) = 3520 Pe(w) + Qr(w) € E'(S™ ) implies for all s € N the existence
of a constant ds > 0 such that sup e gm-1{|Fx(w)|o, |Qr(w)]o} < ds(1 + k)*® for
each k € N.
Conversely, let (Py, Qk)ren be a sequence of spherical monogenics which satis-
fies the above estimate, then S(w) =32, Pu(w) + Qr(w) € E'(S™1).
By means of this Theorem and the decompositions above one can easily prove
the following
Theorem 15.
Let g =20 P+ Qr € C®(S™ Y and S = 302, P + Qr € E'(S™ ). Then:

(i) In case a € C\ (NU (—m +1—N))
1. the equation (T + «)f = g has a unique solution f € C(S™ 1) given by

o0 - £R g

_ /S T Ku(—w,£)g(€)dS(€)

m-1 A, sin To

where the series converges in C°°(S™™1),
2. the equation (I' + o)T = S has a unique solution T € E'(S™1) given by

T(w) = i Py (w) N Qr(w)

iwa—k at+tk+m-—1

where the series converges in E'(S™1).
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(ii) In case « =k € N
1. the equation (I' + k)f = g has a solution iff Py(w) = 0. In this case the
unique solution f & C“(Sm_l) such that P(k)(f) = 0 is given by

= + A S
f i ZZ k+ l + m—1
= [ PV K. 6.0 = Hg()dS (©)

where the series converges in C*°(S™™1). The total solution space is then given
by {f(w) + Py(w), By € MT(k)},

2. the equation (I' + k)T = S has a solution iff Py(w) = 0. In this case the
unique solution f € E'(S™1) such that P(k)(f) =0 is given by

w)

+Zk+l+m—1

= B(w

Tlw) =25

7&

o~
W

where the series converges in E'(S™1). The total solution space is then given
by {T(w) + Py(w), P € M (k)}.

Proof.

Follows from applying I under the summation symbol and the decompositions above.
The uniqueness in (i) follows from the fact that a global C'*-or distributional null
solution of ' + a, @« € C\ (NU (—m + 1 — N)) must be identical zero. ]

4.2 The general case g € C*()

Consider the locally finite cover (H;) en, of © (see Lemma 5). Let (¢;);en, be a
partition of unity subordinate to this cover; then ¢; € D(H;, R) and

W) = iaﬁjg(w) in C(0)

Since ¢;g is C* on S™ ! and has support contained in H;, the function

5, = [ i Ka(—0.(0,9) €)dS(©)

m-1 A, sin mo

is C* on S™ ! and satisfies (I' + a)g; = ¢;¢. Hence (I'+ a)g; =0 in G;—1 (Gj_1 N
H; =0), thus g; € M (Kj-2). In view of Lemma 5 we can apply Runge’s Theorem
12 which ensures the existence of a sequence (h;);>3 in Mg, (€2) such that

sup |(g; — hy)(w)lo < 27

UJEK]'_Q

Therefore the series g1 +ga+3325(g; —h;) converges in the compact open topology on
C°%(f2) to an element f € C°(Q). Moreover f € C°°(€); this can be seen as follows:

consider an arbitrary ball Bg(u,d) C €; for [ sufficiently large Bs(u, ) C K, and the
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finite sum g, + g2 + Z§+13(gj h;) € C*(Bs(u,d)) while by Weierstrass’ Theorem
for spherical monogenics of complex degree:

> (g5 — hy) € MGy (Bs(u,9)) .
=142
Hence f € C*°(Q) and for each w € Q:
(T +a)f(w) :Z(F + a)gj(w Z‘b]g (w) -
j=1

We thus proved the following

Theorem 16. Let o« € C\ (NU(—m+1—N)) and let g € C>*(Q), Q C S™! open.
Then the equation (I' + a)f = g has a solution f € C*(Q).

We can now prove the following important Theorem.

Theorem 17. (Mittag-Leffler’s Theorem for the operator I' + «)

Let « € C\ (NU(—=m +1—N)). Let Q C S™ ! be open and let (V;);er be an
open cover of Q. Suppose that for each j,k € I such that V; NV # O there is a
fir € MG (V; N Vi) satisfying the cocycle condition:

(i) [ =—frj in Vi NV
(W) fix+ fu+fr;=0mVp,nV;,NV, .
Then there exists a family of functions (f;)ier, fi € MG, (Vi) such that fi, — f; = fu;
Proof.
First of all remark that the following C'*°-equivalent of this problem always has a
solution. Let ¢j;, € C(V; N'V},) satisty:
(2) ¢jk = _¢kj in Vk N Vj
(@) G+ + gy =0inV;NViNV;
then there exists a family of functions (¢;)icr, ¢; € C(V;) such that ¢ — ¢; = du;
inVpyNV;forall k,j €l.

To see this, let (1;);er be a partition of unity subordinate to the cover (V;);e; and
define

Zi/% W) (W), w e Vi;
then ¢; € C*°(V;) and in V; N Vj:
¢j(w) — gr(w) = Zdjl )Mo (w) — gur(w)]

= Z 1/11 (bk‘j

= <Z5kj :
Therefore one can always find functions h; € C*(V;) such that h; — hy = fjx in
Vi NV for all j,k € I. Define hly, = (I' + a)h;, ¢ € I; then h is well defined
(C'+ a)h; = (I'+ a)hy, in V; NVy) and h € C*(Q). By the previous Theorem 16
there is a g € C™(Q) such that (I' + a)g = h in Q. Put f; = h; — g in Vj, then
T+a)fi=0inViand fj — fr=(hj —g) — (e —g) =hj —hx = fr in V;NV;. m
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