
Another curvature in synthetic differential

geometry

Hirokazu Nishimura

Abstract

Although the second Bianchi identity has been discussed in somewhat
nonstandard literature of synthetic differential geometry (cf. Lavendhomme
[1991] and Kock [1996]), it still remains to be couched and established within
the standard realm of synthetic discourses. The principal objective of this
paper is to show that a slightly modified version of curvature form enjoys the
identity. Our discussion will be carried out within the appropriate framework
of vector bundles.

0 Introduction

Although Kock [1996] and Lavendhomme [1991] have established the second Bianchi
identity in their own synthetic discourses, they have approached the identity some-
what nonstandardly. The identity still remains to be established on the main street
of synthetic differential geometry. By our locution “the main street of synthetic
differential geometry” we have in mind Lavendhomme’s [1996] celebrated textbook
on synthetic differential geometry up to Chapter 5 (but not later chapters) as its
quintessence. This locution is not intended at all to lessen their somewhat non-
standard approaches to synthetic differential geometry, let alone to insist that their
approaches are of little geometric interest. We would like to contend exactly that
any story of curvature form could not be finished without the second Bianchi identity
even touched.
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While we do not commit ourselves to founding synthetic differential geometry
solely upon neighborhood relations and we do continue to account tangent vectors
its basic ingredients, we gladly acknowledge our great indebtedness to Kock’s [1996]
inspiring paper, in which he deduced the classical second Bianchi identity from a
combinatorial one to be traced back to the so-called homotopy addition theorem
(cf. Whitehead [1978, Chap. IV, §6]). In Section 5 we will also elicit the classical
second Bianchi identity from a combinatorial one, yet our combinatorial variant is
not simplicial but cubical. The identity will be established within the framework
of linear connections on vector bundles (cf. Moerdijk and Reyes [1991, Chap. 5,
Definitions 3.1 and 3.4.10]). Since we suspect that the curvature form of standard
synthetic differential geometry (cf. Lavendhomme [1996, §5.3, Definition 5]) is not
expected to satisfy any meaningful version of the second Bianchi identity while the
torsion form of standard synthetic differential geometry (cf. Lavendhomme [1996,
§5.3, Definition 3]) was shown to satisfy the first Bianchi identity (cf. Nishimura
[1998b]), we have to introduce another curvature form in Section 3. Section 4 is
devoted to induced connections. The first two sections are a laconic review on
vector bundles and linear connections in synthetic context.

1 Vector Bundles

A mapping ξ : E →M of microlinear spaces is called a vector bundle providing that:

(1.1) Em = ξ−1(m) is an R-module for any m ∈ M , where R is the set of real
numbers pervious to the so-called general Kock axiom (cf. Lavendhomme
[1996, §§2.1.3]).

(1.2) The R-module Em is Euclidean for any m ∈M (cf. Lavendhomme [1996, §1.1,
Definition 1]).

We call M the base space of ξ and Em the fiber over m. The totality of mappings
ζ : M → E with ξ ◦ ζ = idM (idM denotes the identity transformation of M) is
denoted by Sec ξ.

If ξ : E → M and η : F → N are vector bundles, then a pair (ϕ̄, ϕ) of maps
ϕ̄ : E → F and ϕ : M → N is called a bundle map from ξ to η providing that
η ◦ ϕ̄ = ϕ ◦ ξ and ϕ̄ induces a linear map Em → Fϕ(m) for each m ∈ M . In
particular, if M = N and ϕ is idM , then the bundle map (ϕ̄, ϕ) is called a strong
bundle map from ξ to η.

If M is a microlinear space, then its tangent bundle τM : MD → M is a vector
bundle, where τM assigns, to each t ∈ MD, t(0) ∈ M (cf. Lavendhomme [1996,
§3.1, Proposition 4]). If M is a microlinear space and A is an Euclidean R-module
which is microlinear, then the trivial bundle M × A → M is a vector bundle.
Various algebraic constructions on vector bundles in standard differential geometry
(cf. Greub, Halperin and Vanstone [1972, Chap II, §2]) can be carried over to
our synthetic context. If ξ : E → M and η : F → M are vector bundles over
the same base space M , then their Whitney sum ξ ⊕ η and the natural projection
πL(ξ,η) : L(ξ, η)→ M are vector bundles, where L(ξ, η) denotes the totality L(ξ, η) of
linear maps from Em to Fm for m ∈M (cf. Lavendhomme [1996, §1.1, Propositions
4 and 5; §2.3, Proposition 1]). In particular, the dual bundle ξ∗ of ξ (in case that
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η is the trivial bundle M × R → M) and the mapping πL(ξ) : L(ξ) → M with
L(ξ) = L(ξ, ξ) are vector bundles.

If ψ : N →M is a map of microlinear spaces and ξ : E →M is a vector bundle,
then a differential n-form on N with values in ξ relative to ψ is a map Ξ from NDn

to E satisfying the following conditions:

(1.3) For any γ ∈ NDn Ξ(γ) lies in E(ψ(0,...,0)).

(1.4) Ξ is n-homogeneous in the sense that Ξ(αiγ) = αΞ(γ) (1 ≤ i ≤ n).

(1.5) Ξ is alternating in the sense that Ξ(Σσ(γ)) = εσΞ(γ) for any permutation σ of
{1, ..., n}, where Σσ(γ)(d1, ..., dn) = γ(dσ(1), ..., dσ(n)) for any (d1, ..., dn) ∈ Dn,
and εσ is the sign of the permutation σ.

We denote by An(N
ψ−→M ; ξ) the totality of differential n-forms on N with values

in ξ relative ψ. If N = M and ψ is the identity map idM of M , then An(N
ψ−→ M ; ξ)

is denoted also by An(M ; ξ). If ξ is furthermore a trivial bundle M ×R→M , then
An(M ; ξ) is denoted simply by An(M).

2 Linear Connection

Let ξ : E → M be a vector bundle. We denote by Kξ the mapping which assigns,
to each t̄ ∈ ED, (ξ ◦ t̄, t̄(0)) ∈MD ×M E. Both ED and MD ×M E can be regarded
naturally as vector bundles over E and over MD, and Kξ is linear with respect to
both vector bundle structures (cf. Moerdijk and Reyes [1991, Chap. V, Proposition
3.4.8]). A (linear) connection on ξ is a mapping ∇ : MD ×M E → ED pursuant to
the following conditions:

(2.1) It is a section of Kξ . I.e., Kξ ◦ ∇ is the identity transformation of MD ×M E.

(2.2) It is homogeneous with respect to both vector bundle structures � over E and
· over MD.

(2.3) For any x ∈M and any (t, d) ∈MD×D, the mapping u ∈ Ex| → ∇(t, u)(d) ∈
Et(d), denoted by p∇(t,d) or p(t,d), is bijective. Its inverse is denoted by q∇(t,d) =
q(t,d) : Et(d) → Ex. We call p(t,d) the parallel transport from t(0) to t(d) along
t while q(t,d) is called the parallel transport from t(d) to t(0) along t.

If the vector bundle ξ : E → M is a trivial bundle M×A→ M , and if∇(t, (t(0), a))(d) =
(t(d), a) for any t ∈MD, any a ∈ A and any d ∈ D, then the connection ∇ is called
trivial.

As Lavendhomme [1996, §§5.3.1] pointed out, his theory of covariant exterior
differentiation can be generalized easily so as to yield mappings

d∇ : Ak(N
ϕ−→ M ; ξ) → Ak+1(N

ϕ−→M ; ξ),

where ϕ : N → M is a mapping from another microlinear space N to M . The
covariant exterior differentiation d∇ is a natural generalization of the exterior differ-
entiation d (cf. Lavendhomme [1996, §4.2]), in which the vector bundle ξ is trivial
and the connection ∇ is also trivial.
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3 Two Curvatures

The principal objective of this section is to introduce another curvature by somewhat
modifying the well-known curvature in synthetic differential geometry (cf. Lavend-
homme [1996, §5.3, Definition 5]). It is this modified curvature that is to be shown
in Section 5 to satisfy the second Bianchi identity. Now let us review the famil-
iar curvature within the slightly more general context of vector bundles. A vector
bundle ξ : E → M and a connection ∇ on ξ are chosen once and for all in this
section.

The vector bundle τE : ED → E can be decomposed as the Whitney sum
V (ED) ⊕ H(ED) with V (ED) = {t̄ ∈ ED|t̄ is tangent to Eξ◦t̄(0)} and H(ED) =
{∇(t, u)|(t, u) ∈MD×ME}. Therefore any tangent vector t̄ on E can be decomposed
into a vertical tangent vector ω1(t̄) on E (i.e., an element of V (ED)) and a horizontal
tangent vector t̄−ω1(t̄) on E (i.e., an element of H(ED)). Since V (ED) can naturally
be identified with E×M E in such a way that (v, w) ∈ E×M E gives rise to a tangent
vector d ∈ D| → v+dw to E, the second compoment of ω1(t̄), regarded as an element
of E ×M E, is denoted by ω(t̄), whereby we have the connection form ω : ED → E.

The following proposition is merely a variant of Lavendhomme [1996, §5.2,
Proposition 7].

Proposition 3.1. For any t̄ ∈ ED and any d ∈ D with t = ξ ◦ t̄, we have

(3.1) q(t,d)(t̄(d)) = t̄(0) + dω(t̄).

Proof. Consider the mapping

(d, d′) ∈ D(2)| → p(t,d)(t̄(0) + d′ω(t̄)) ∈ E,

which coincides with ∇(t, t̄(0)) on the first axis and which coincides with ω1(t̄) on
the second axis. Therefore the mapping

d ∈ D| → p(t,d)(t̄(0) + dω(t̄)) ∈ E

coincides with t̄, which means the desired proposition. �

The connection form ω is surely an element of A1(E
ξ−→ M ; ξ), and its covariant

exterior derivative d∇ω ∈ A2(E
ξ−→ M ; ξ) is called the curvature form of the first

kind and denoted by Ω, for which we have

Proposition 3.2. For any γ̄ ∈ ED2
and any (d1, d2) ∈ D2 with γ = ξ ◦ γ̄,

t1 = γ(·, 0), t2 = γ(d1, ·), t3 = γ(0, ·) and t4 = γ(·, d2), we have

(3.2) d1d2Ω(γ̄) = q(t1,d1) ◦ q(t2,d2)(γ̄(d1, d2))− q(t3,d2) ◦ q(t4,d1)(γ̄(d1, d2)).

Proof. By the definition of covariant exterior differentiation, we have

(3.3) d1d2Ω(γ̄) = d1ω(γ̄(·, 0)) + d2q(t1,d1)(ω(γ̄(d1, ·)))
− d1q(t3,d2)(ω(γ̄(·, d2)))− d2ω(γ̄(0, ·)).

By Proposition 3.1 we have
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(3.4) d1ω(γ̄(·, 0)) = q(t1,d1)(γ̄(d1, 0))− γ̄(0, 0)

(3.5) d2q(t1,d1)(ω(γ̄(d1, ·))) = q(t1,d1){q(t2,d2)(γ̄(d1, d2))− γ̄(d1, 0)}
= q(t1,d1) ◦ q(t2,d2)(γ̄(d1, d2))− q(t1,d1)(γ̄(d1, 0))

(3.6) d1q(t3,d2)(ω(γ̄(·, d2))) = q(t3,d2){q(t4,d1)(γ̄(d1, d2))− γ̄(0, d2)}
= q(t3,d2) ◦ q(t4,d1)(γ̄(d1, d2))− q(t3,d2)(γ̄(0, d2))

(3.7) d2ω(γ̄(0, ·)) = q(t3,d2)(γ̄(0, d2))− γ̄(0, 0).

Therefore the desired conclusion follows. �

If ξ is the tangent bundle of M , then the curvature form of the first kind is
no other than that of Lavendhomme (1996, §5.3, Definition 5). Now we introduce
another curvature form, to be called the curvature form of the second kind and to
be denoted by Ω̃, as follows:

(3.8) Ω̃(γ̄) = Ω(h(γ̄)) for any microsquare γ̄ on E,

where h(γ̄) denotes the horizontal component of γ̄ [cf. Moerdijk and Reyes (1991,
Chap. V, §6)] in the sense that

(3.9) h(γ̄)(d1, d2) = p(γ(d1,·),d2) ◦ p(γ(·,0),d1)(γ̄(0, 0))

with γ = ξ ◦ γ̄. For the curvature form of the second kind, we have

Proposition 3.3. Using the same notation as in Proposition 3.2, we have

(3.10) d1d2Ω̃(γ̄) = γ̄(0, 0)− q(t3,d2) ◦ q(t4,d1) ◦ p(t2,d2) ◦ p(t1,d1)(γ̄(0, 0)),

so that Ω̃(γ̄) depends only on γ = ξ ◦ γ̄ and v = γ̄(0, 0), which enables us to regard
Ω̃ as a function from MD2

to L(ξ) in the sense that Ω̃(γ)(v) = Ω̃(γ̄).

Proof. Simply put h(γ̄) in place of γ̄ in Proposition 3.2. �

Surely, if Ω̃ claims to deserve its name, it has to be shown to satisfy the following:

Proposition 3.4. The function Ω̃ : MD2 → L(ξ) is a differential 2-form with
values in πL(ξ). I.e., Ω̃ ∈ A2(M ; πL(ξ)).

Proof. We define a function h : MD2 ×
M

E → ED2
as follows:

(3.11) h(γ, v)(d1, d2) = p(γ(d1,·),d2) ◦ p(γ(·,0),d1)(v)

for any (γ, v) ∈MD2 ×
M

E and any (d1, d2) ∈ D2.
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Then it is easy to see that

(3.12) h(αiγ, v) = αih(γ, v) for any α ∈ R (i = 1, 2).

Since Ω̃(γ)(v) = Ω(h(γ, v)) and Ω is 2-homogeneous, Ω̃ is also 2-homogeneous. To
show that Ω̃ is alternating, we let v0 = v and define v1 and v2 in order as follows:

(3.13) v1 = q(t3,d2) ◦ q(t4,d1) ◦ p(t2,d2) ◦ p(t1,d1)(v0)

(3.14) v2 = q(t1,d1) ◦ q(t2,d2) ◦ p(t4,d1) ◦ p(t3,d2)(v1).

On the one hand it follows directly from (3.13) and (3.14) that

(3.15) v2 = v0.

On the other hand we can calculate v1 and v2 in order by making use of Proposition
3.3:

(3.16) v1 = v0 − d1d2Ω̃(γ)(v0)

(3.17) v2 = v1 − d1d2Ω̃(Σ(γ))(v1)

= v0 − d1d2Ω̃(γ)(v0)− d1d2Ω̃(Σ(γ))(v0 − d1d2Ω̃(γ)(v0)) [(3.16)]

= v0 − d1d2Ω̃(γ)(v0)− d1d2Ω̃(Σ(γ))(v0).

It follows from (3.15) and (3.17) that

(3.18) Ω̃(γ)(v0) + Ω̃(Σ(γ))(v0) = 0,

which means that Ω̃ is alternating. �

4 Induced Connections

Now we define some induced connections. Let ξ : E → M and η : F → M be vector
bundles over the same base space M with linear connections ∇ and ∇′ bestowed
upon them. First we define an induced connection ∇⊕∇′ on the Whitney sum ξ⊕η
as follows:

(4.1) (∇⊕∇′)(t, vξ ⊕ vη)(d) = ∇(t, vξ)(d)⊕∇′(t, vη)(d)

for any t ∈MD, any vξ ∈ Et(0), any vη ∈ Ft(0) and any d ∈ D.

Proposition 4.1. For any γξ ∈ ED and any γη ∈ FD with ξD(γξ) = ηD(γη), we
have

(4.2) ωξ⊕η(γξ + γη) = ωξ(γξ)⊕ ωη(γη),

where ωξ⊕η , ωξ and ωη denote the connection forms of∇⊕∇′, ∇ and ∇′ respectively.

Proof. Let t = ξD(γξ) = ηD(γη). For any d ∈ D, we have

(4.3) q∇⊕∇
′

(t,d) (γξ(d)⊕ γη(d)) = (γξ(0) + dωξ(γξ))⊕ (γη(0) + dωη(γη))
= (γξ(0) ⊕ γη(0)) + d(ωξ(γξ)⊕ ωη(γη)).

Therefore the desired proposition follows from Proposition 3.1. �
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Corollary 4.2. For any µ ∈ Sec ξ and any ν ∈ Sec η, we have

(4.4) d∇⊕∇′ (µ + ν) = d∇µ + d∇′ν.

We now define an induced connection ∇̂ on πL(ξ,η) as follows:

(4.5) ∇̂(t, v̂)(d)(v) = p∇
′

(t,d)(v̂(q∇(t,d)(v)))

for any t ∈MD, any d ∈ D, any v̂ ∈ L(ξ, η)t(0) and any v ∈ Et(0).

Proposition 4.3. For any δ ∈ L(ξ, η)D and any γ ∈ ED with (πL(ξ,η))
D(δ) =

ξD(γ), we have

(4.6) ωη(δ(γ)) = ω̂(δ)(γ(0)) + δ(0)(ωξ(γ)),

where ω̂ denote the connection form of ∇̂ and δ(γ) denotes the mapping d ∈ D| →
δ(d)(γ(d)).

Proof. Let t = (πL(ξ,η))
D(δ) = ξD(γ). For any d ∈ D, we have

(4.7) q∇
′

(t,d)(δ(d)(γ(d))) = q∇̂(t,d)(δ(d))(q∇(t,d)(γ(d)))

= (δ(0) + dω̂(δ))(γ(0) + dωξ(γ))

= δ(0)(γ(0)) + d{ω̂(δ)(γ(0)) + δ(0)(ωξ(γ))}.

Therefore the desired proposition follows from Proposition 3.1. �

Corollary 4.4. For any µ ∈ Sec ξ and any ι ∈ Sec πL(ξ,η), we have

(4.8) d∇′(ι(µ)) = (d∇̂ι)(µ) + ι(d∇µ).

If η is the trivial bundle M × R→M and the connection ∇′ is trivial, then the
connection ∇̂ is usually denoted by ∇∗. If ξ = η and ∇ = ∇′, then the connection
∇̂ is usually denoted by ∇̃.

5 Bianchi Identity

The principal objective of this section is to establish the second Bianchi identity of
our curvature form of the second kind. Let us begin with a cubical version of Kock’s
[1996, Theorem 2] simplicial and combinatorial Bianchi identity. As in Section 3, a
vector bundle ξ : E → M and a connection ∇ on ξ are chosen once and for all.

Theorem 5.1. Let γ be a microcube on M . Let d1, d2, d3 ∈ D. We denote points
γ(0, 0, 0), γ(d1, 0, 0), γ(0, d2, 0), γ(0, 0, d3), γ(d1, d2, 0), γ(d1, 0, d3), γ(0, d2, d3), and
γ(d1, d2, d3), by O, A, B, C , D, E, F and G respectively. These eight points are
depicted figuratively as the eight vertices of a cube:

C F

E

~~~~~
G

}}}}}

O B

A D

}}}}}

Then we have
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(5.1) PAO ◦ PDA ◦ PGD ◦ RGFBD ◦ RGECF ◦ RGDAE ◦ PDG ◦ PAD ◦ POA ◦ ROCEA ◦
ROBFC ◦ROADB = idO,

where

(5.2) for any adjacent vertices X, Y of the cube, PXY denotes the parallel transport
from X to Y along the line connecting X and Y (e.g., POA and PAO denote
p(γ(·,0),d1) and q(γ(·,0),d1) respectively),

(5.3) for any four vertices X, Y , Z, W of the cube rounding one of the six facial
squares of the cube, RXY ZW denotes PWX ◦ PZW ◦ PY Z ◦ PXY (e.g., ROADB

denotes q(γ(0,·,0),d2) ◦ q(γ(·,d2,0),d1) ◦ p(γ(d1,·,0),d2) ◦ p(γ(·,0,0),d1)), and

(5.4) idO is the identity transformation of EO.

Proof. Write over (5.1) exclusively in terms of PXY ’s, and write off all consecutive
PXY ◦ PY X ’s. �

The above theorem gives rise to the following standard form of the second Bianchi
identity.

Theorem 5.2. We have

(5.5) d∇̃Ω̃ = 0,

where d∇̃ is the covariant exterior differentiation with respect to the induced connec-
tion ∇̃ on πL(ξ), and recall that Ω̃ ∈ A2(M ; πL(ξ)), as was explained in Proposition
3.4.

Proof. Let γ, d1, d2, d3, O, A, B, C , D, E, F and G be as in Theorem 5.1.
Given v0 ∈ Eγ(0,0,0), we define vi ∈ Eγ(0,0,0) (i = 1, 2, 3, 4, 5, 6) in order as follows:

(5.6) v1 = ROADB(v0)

(5.7) v2 = ROBFC(v1)

(5.8) v3 = ROCEA(v2)

(5.9) v4 = PAO ◦ PDA ◦ PGD ◦RGDAE ◦ PDG ◦ PAD ◦ POA(v3)

= PAO ◦RAEGD ◦ POA(v3)

(5.10) v5 = PAO ◦ PDA ◦ PGD ◦RGECF ◦ PDG ◦ PAD ◦ POA(v4)

= PAO ◦RAEGD ◦ PEA ◦RECFG ◦ PAE ◦RADGE ◦ POA(v4)

= PAO ◦ PEA ◦REGDA ◦RECFG ◦READG ◦ PAE ◦ POA(v4)

= ROCEA ◦ PCO ◦ PEC ◦REGDA ◦RECFG ◦READG ◦ PCE ◦ POC

◦ROAEC(v4)

= ROCEA ◦ PCO ◦ PEC ◦REGDA ◦ PCE ◦RCFGE ◦ PEC ◦READG◦
PCE ◦ POC ◦ROAEC(v4)

(5.11) v6 = PAO ◦ PDA ◦ PGD ◦RGFBD ◦ PDG ◦ PAD ◦ POA(v5)

= PAO ◦ PDA ◦RDGFB ◦ PAD ◦ POA(v5)

= ROBDA ◦ PBO ◦RBDGF ◦ POB ◦ROADB(v5).
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Now we calculate vi (i = 1, ..., 6) in order. It follows directly from Proposition 3.3
that

(5.12) v1 = v0 − d1d2Ω̃(γ(·, ·, 0))(v0).

The calculations of v2 and v3 are similar, so we present details of the former calcula-
tion but simply register the result of the latter calculation, safely leaving its details
to the reader.

(5.13) v2 = v1 − d2d3Ω̃(γ(0, ·, ·))(v1) [Proposition 3.3]

= v0 − d1d2Ω̃(γ(·, ·, 0))(v0)− d2d3Ω̃(γ(0, ·, ·))
(v0 − d1d2Ω̃(γ(·, ·, 0))(v0)) [(5.12)]

= v0 − d1d2Ω̃(γ(·, ·, 0))(v0)− d2d3Ω̃(γ(0, ·, ·))(v0)

(5.14) v3 = v0 − d1d2Ω̃(γ(·, ·, 0))(v0)− d2d3Ω̃(γ(0, ·, ·))(v0)

+ d1d3Ω̃(γ(·, 0, ·))(v0)).

The three calculations of v4, v5 and v6 are similar, so we present their details only
in case of the first and the last, leaving details of the most tedious calculation of v5

to the reader.

(5.15) v4 = PAO ◦RAEGD ◦ POA(v0 − d1d2Ω̃(γ(·, ·, 0))(v0)−
d2d3Ω̃(γ(0, ·, ·))(v0)) + d1d3Ω̃(γ(·, 0, ·))(v0)) [(5.14)]

= PAO ◦RAEGD(POA(v0)− d1d2POA(Ω̃(γ(·, ·, 0))(v0))

− d2d3POA(Ω̃(γ(0, ·, ·))(v0)) + d1d3POA(Ω̃(γ(·, 0, ·))(v0)))

= PAO(POA(v0)− d1d2POA(Ω̃(γ(·, ·, 0))(v0))−
− d2d3POA(Ω̃(γ(0, ·, ·))(v0))+

d1d3POA(Ω̃(γ(·, 0, ·))(v0)) + d2d3Ω̃(γ(d1, ·, ·))
(POA(v0)− d1d2POA(Ω̃(γ(·, ·, 0))(v0))−
d2d3POA(Ω̃(γ(0, ·, ·))(v0))+

d1d3POA(Ω̃(γ(·, 0, ·))(v0)))) [Propositions 3.3 and 3.4]

= v0 − d1d2Ω̃(γ(·, ·, 0))(v0)− d2d3Ω̃(γ(0, ·, ·))(v0)

+ d1d3(Ω̃(γ(·, 0, ·))(v0) + d2d3PAO(Ω̃(γ(d1, ·, ·))(POA(v0)))

(5.16) v5 = v0 − d1d2Ω̃(γ(·, ·, 0))(v0)−
d2d3Ω̃(γ(0, ·, ·))(v0) + d1d3Ω̃(γ(·, 0, ·))(v0)+

d2d3PAOΩ̃(γ(d1, ·, ·))(POA(v0)))+

d1d2PCO(Ω̃(γ(·, ·, d3))(POC(v0))

(5.17) v6 = ROBDA ◦ PBO ◦RBDGF ◦ POB ◦ROADB(v0−
d1d2Ω̃(γ(·, ·, 0))(v0)− d2d3Ω̃(γ(0, ·, ·))(v0)+

d1d3Ω̃(γ(·, 0, ·))(v0) + d2d3PAO(Ω̃(γ(d1, ·, ·))(POA(v0)))+

d1d2PCO(Ω̃(γ(·, ·, d3))(POC(v0))) [(5.16)]

= ROBDA ◦ PBO ◦RBDGF ◦ POB(v0 − d1d2Ω̃(γ(·, ·, 0))(v0)

− d2d3Ω̃(γ(0, ·, ·))(v0) + d1d3Ω̃(γ(·, 0, ·))(v0)+

d2d3PAO(Ω̃(γ(d1, ·, ·))(POA(v0)))+
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d1d2PCO(Ω̃(γ(·, ·, d3))(POC(v0)))−
d1d2Ω̃(γ(·, ·, 0))(v0)) [Proposition 3.3]

= ROBDA ◦ PBO ◦RBDGF (POB(v0)− d1d2POB(Ω̃(γ(·, ·, 0))(v0))−
− d2d3POB(Ω̃(γ(0, ·, ·))(v0)) + d1d3POB(Ω̃(γ(·, 0, ·))(v0))+

d2d3POB ◦ PAO(Ω̃(γ(d1, ·, ·))(POA(v0)))+

d1d2POB ◦ PCO(Ω̃(γ(·, ·, d3))(POC(v0)))−
d1d2POB(Ω̃(γ(·, ·, 0))(v0)))

= ROBDA ◦ PBO(POB(v0)− d1d2POB(Ω̃(γ(·, ·, 0))(v0))

− d2d3POB(Ω̃(γ(0, ·, ·))(v0)) + d1d3POB(Ω̃(γ(·, 0, ·))(v0))+

d2d3POB ◦ PAO(Ω̃(γ(d1, ·, ·))(POA(v0)))+

d1d2POB ◦ PCO(Ω̃(γ(·, ·, d3))(POC(v0)))−
d1d2POB(Ω̃(γ(·, ·, 0))(v0))−
d1d3Ω̃(γ(·, d2, ·))(POB(v0))) [Proposition 3.3]

= ROBDA(v0 − d1d2Ω̃(γ(·, ·, 0))(v0)−
d2d3Ω̃(γ(0, ·, ·))(v0) + d1d3Ω̃(γ(·, 0, ·))(v0)+

d2d3PAO(Ω̃(γ(d1, ·, ·))(POA(v0)))+

d1d2PCO(Ω̃(γ(·, ·, d3))(POC(v0)))−
d1d2Ω̃(γ(·, ·, 0))(v0)−
d1d3PBO(Ω̃(γ(·, d2, ·))(POB(v0))))

= v0 − d1d2Ω̃(γ(·, ·, 0))(v0)−
d2d3Ω̃(γ(0, ·, ·))(v0) + d1d3Ω̃(γ(·, 0, ·))(v0)+

d2d3PAO(Ω̃(γ(d1, ·, ·))(POA(v0)))+

d1d2PCO(Ω̃(γ(·, ·, d3))(POC(v0)))−
d1d3PBO(Ω̃(γ(·, d2, ·))(POB(v0)))) [Propositions 3.3 and 3.4].

It should be the case by Theorem 5.1 that v6 = v0. Therefore

(5.18) d1d2Ω̃(γ(·, ·, 0))(v0) + d2d3Ω̃(γ(0, ·, ·))(v0)−
d1d3Ω̃(γ(·, 0, ·))(v0)−
d2d3PAO(Ω̃(γ(d1, ·, ·))(POA(v0)))−
d1d2PCO(Ω̃(γ(·, ·, d3))(POC(v0)))+

d1d3PBO(Ω̃(γ(·, d2, ·))(POB(v0)))) = 0.

Since v0 ∈ Eγ(0,0,0) was chosen arbitrarily, the proof is complete. �
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