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Abstract

Knarr shows that given a derivable affine plane, every line not in the associ-
ated derivable net produces a spread which is a dual spread in some PG(3,K),
for K a skewfield. More generally, if a derivable net has a transversal T , there
is also a spread in PG(3,K). This article generalizes results of Knarr by
an investigation of spreads in three-dimensional projective spaces realized as
transversals to derivable nets. As an application of the ideas, the finite deriv-
able affine planes which are ‘partially flag-transitive’ are determined.

1 Introduction.

The author’s work on derivable nets shows that every derivable net is combinato-
rially equivalent to a three-dimensional projective space over a skewfield K. More
precisely, the points and lines of the net become the lines and points skew to a fixed
line N . Recently, Knarr [18] proved that, for any derivable affine plane π, every
line ` not belonging to the derivable net embeds to a set of lines in the projective
space such this set union N becomes a spread S(`) of PG(3, K) which is also a dual
spread.

Hence, it is of interest to ask what sorts of spreads arise from a given derivable
affine plane. We first point out that it is not actually the existence of the derivable
plane which provides the spread nor that of the stronger condition that there is an
affine plane containing a derivable net but simply the existence of a ‘transversal’ to a
derivable net. That is, given a transversal to a derivable net, there is a corresponding
spread of the projective space associated combinatorially or ‘geometrically’ by the
embedding process. The nature of the transversal determines whether the spread
constructed is also a dual spread.
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Definition 1. (1) A spread of a three-dimensional projective space over a skewfield
shall be said to be a ‘transversal spread’ if and only if it arises from a transversal to
a derivable net by the embedding process mentioned above.

(2) A transversal spread shall be said to be a ‘planar transversal-spread’ if and
only if there is an affine plane π containing the derivable net such that the transversal
to the derivable net is a line of π.

We show that every spread is a transversal spread and, in fact, every spread is a
planar transversal-spread. But more can be said concerning transversal spreads by
applying some ideas of Ostrom regarding extension of derivable nets. We show how
the extension techniques of Ostrom can be related to the question of transversal
spreads and show how to interconnect these ideas with the geometric embedding
process to determine that all spreads are planar transversal-spreads.

Using these ideas, we have a framework to be able to discuss the structure
of derivable affine planes which admit various collineation groups. In particular,
we show that a finite derivable affine plane of order q2 which admits a (linear)
collineation group leaving the derivable net D invariant and acting flag-transitively
on flags on lines not in D must always be a semi-translation plane which admits
either an elation group of order q or a Baer group of order q. When the semi-
translation plane is a translation plane, the structure of the spread is more-or-less
determined in this situation.

The assumption on partial flag-transitivity may be relaxed to assumptions on
orders of certain groups. In this case, we are able to provide some structure theory
for finite affine planes as follows:

Theorem 2. (1) If a derivable affine plane π of order q2 admits a linear p-group of
order q5 if q is odd or 2q5 if q is even that fixes the derivable net D then π contains
a group which acts transitively on the affine points.

(2) Furthermore, the group contains either an elation group of order q or a Baer
group of order q with axis a subplane of D . If the order of the stabilizer of a point
H is at least 2q then the order is 2q and H is generated by an elation group of order
q and a Baer involution with axis in D or by a Baer group of order q and an elation.

(3) π is a nonstrict semi-translation plane of order q2 admitting a translation
group of order q3pγ. Furthermore, either π is a translation plane or there is a unique
((∞), `∞)-transitivity and the remaining infinite points are centers for translation
group of orders qpγ.

(4) If π is non-Desarguesian in the elation case above then π admits a set of q
derivable nets sharing the axis of the elation group of order q.

2 Extensions of Derivable Nets.

As is well known, the concept of the derivation of a finite affine plane was conceived
by Ostrom in the 1960’s. During this period, one of the associated problems that
Ostrom considered concerned the extension of the so-called derivable nets to either
a supernet or to an affine plane. At that time, coordinate geometry was the primary
model in which to consider extension questions. With a particular vector-space
structure assumed for a derivable net, Ostrom ([19]) was able to show that any
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transversal to such a finite derivable net allowed its embedding into a dual translation
plane. The author was able to extend this to the arbitrary or infinite case. Before
we proceed with other models, we review some of the definitions and recall some of
the results of the coordinate or algebraic method.

Definition 3. Let K be a skewfield and V a right two-dimensional vector space over
F . A ‘vector-space derivable net’ D is a set of ‘points’ (x, y) ∀x, y ∈ V and a set of
‘lines’ given by the following equations:

x = c, y = xα + b ∀c, b ∈ V , ∀α ∈ F .

Definition 4. A ‘transversal’ T to a net N is a set of net points with the property
that each line of the net intersects T in a unique point and each point of T lies on
a line of each parallel class of N .

A ‘transversal function’ f to a vector-space derivable net is a bijective function
on V with the following properties:

(i) ∀c, d, c 6= d of V , f(c)− f(d) and c− d are linearly independent,
(ii) ∀α ∈ F and ∀b ∈ V , there exists a c ∈ V such that f(c) = cα + b.

It follows from Johnson [8] that transversals and transversal functions to vector-
space derivable nets are equivalent, each giving rise to the other. It should be
noted that everything can be phrased over the ‘left’ side as well. That is, a ‘right
vector-space net’ over a skewfield F is naturally a ‘left vector-space net’ over the
associated skewfield F opp where multiplication • in F opp is defined by a • b = ba
where juxtaposition denotes multiplication in F .

Theorem 5. (Johnson [8] (1.7)) Let D be a vector-space derivable net and let T
be a transversal. Then there is a transversal function f on the associated vector
space V such that D may be extended to a dual translation plane with lines given as
follows:

x = c, y = f(x)α + xβ + b ∀α, β ∈ K and ∀b, c ∈ V .

Conversely, any dual translation plane whose associated translation plane has its
spread in PG(3, K) may be constructed from a transversal function as above.

Proof. The proof of the converse is not properly given in [8], however a dual
translation plane arising from a translation plane with spread in PG(3, K) has
components of the general form

x = 0, y = x ∗m + b ∀m, b ∈ K ⊕K,

where (K ⊕ K, +, ∗) is a coordinatizing right quasifield. We generally consider a
left vector space setting x ∗m = m ◦ x where the multiplication m ◦ x arises from
the translation plane associated with the spread. In this instance, the coordinate
structure for the dual translation plane becomes a right two-dimensional vector space
over K and m = e ∗ α + β where {1, e} is a right basis. Then y = x ∗ m + b =
(x ∗ e) ∗ α + x ∗ β + b and with f(x) = x ∗ e, we obtain the form demanded of the
extension process. The reader might note that these ideas will be considered more
completely in the next section. �
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We will be recalling a more geometric approach shortly and to distinguish be-
tween the two, we formulate the following definition:

Definition 6. Let D be a (right) vector-space derivable net with transversal function
f then the dual translation plane with lines given by

x = c, y = f(x)α + xβ + b ∀α, β ∈ K and ∀b, c ∈ V

shall be called the ‘algebraic extension’ of D by f and the set of such shall be termed
the set of ‘algebraic extensions of D’.

3 Geometric Extension.

Historically, perhaps the most important question left open by the coordinate ap-
proach was whether ‘derivation’ could be considered a geometric construction and
the text of the author ‘Subplane Covered Nets’ [15] examines this question in detail.
In particular, the structure of a derivable net D has been determined in Johnson
[11] and [12]. The points and lines can be embedded as the lines and points of a
3-dimensional projective space Σ isomorphic to PG(3, K), K a skewfield, which are
skew or non-incident with a fixed line N . The parallel classes of the net become the
planes of Σ containing N and the Baer subplanes of the net become the planes of Σ
which do not contain N . It then turns out that every derivable net is a ‘right’ vector-
space net over a skewfield F and, of course, may be considered a ‘left vector-space
net’ over F opp. In particular, when the net is considered a ‘left net’ the embedding
into the projective space is determined by a left 4-dimensional vector space over the
associated skewfield.

When one has a derivable affine plane π, [18], Knarr asked of the general nature
of the lines of an affine plane π containing D in terms of the embedding. Knarr
showed that every line of π − D produces a spread of lines of Σ that contain N .
Also, this spread is a dual spread.

Since we are interested in the more general situation, we assume only that there
is a transversal T to the derivable net D which defines a simple net extension D+T .
In Johnson [14], it is pointed out that it is possible to embed any derivable net
into an affine plane where the affine plane may not be derivable itself. Hence, we
distinguish between having a net extension and having a ‘derivable-extension’ by
which we mean that each Baer subplane of the net remains Baer when considered
within the extension net; each point is on a line of each subplane, taken projectively
(the subplane structure is ‘point-Baer’) and each line is incident with a point of each
subplane, taken projectively (the subplane structure is ‘line-Baer’). In essence, we
would merely require that T intersect each Baer subplane.

Theorem 7. (see Knarr [18]) Let D be a derivable net and assume that T is a
transversal to D defining a extension net D+T .

(1) Then the points of T determine a spread S(T ) of lines in the projective space
Σ associated with D that contains the special line N .

(2) If the net extension is a derivable-extension then S(T ) is a dual spread.
(3) Conversely, if S(T ) is a dual spread, for each line of T − D , then the net

extension is a derivable extension.
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Proof. Knarr’s proof generalizes to cover this situation but we have changed the
assumptions so much that we repeat it here.

A point of Σ − N is a line of the net D which must intersect T in a unique
point as D+T is a net. Hence, every point of Σ−N is incident with a unique line of
S(T )−N and it thus follows that every point of Σ is incident with a unique line of
S(T ). This proves (1).

Now assume that the net extension is a derivable extension. To show that S(T )
is a dual spread, we need to show that every plane contains a unique line of S(T ).
Since the planes not containing N correspond to Baer subplanes of D, the question
becomes whether each Baer subplane shares a unique net-point of T . Since each
line of the net which is not in D shares a point, taken projectively, with each Baer
subplane, it is immediate that this point is affine; i.e. an actual point of T . Hence,
each plane of Σ contains exactly one line of S(T ); S(T ) is a dual spread.

It also follows that if S(T ) is a dual spread then the line T must share a net-point
with each Baer subplane. Furthermore, since D is a derivable net, every point is
incident with a line of each Baer subplane. Hence, it is now immediate that S(T )
is a dual spread for each line of T exterior to the derivable net D if and only if the
net extension is a derivable-extension. �

Now we see that any derivable net is, in fact, a vector-space derivable net so the
two approaches merge.

Definition 8. Let D be any derivable net. Then D may be considered a ‘left’ vector-
space net over a skewfield K. Let Σ denote the three-dimensional projective space
PG(3, K) for K a skewfield, with special line N defined combinatorially by D and
so that D may be embedded in Σ. Let T be any transversal to D and let S(T )
denote the spread of Σ defined by the net-points of T as lines of Σ together with
the line N . Let πS(T ) denote the associated translation plane and let πD

S(T ) denote
any affine dual translation plane whose projective extension dualizes to πS(T ), taken
projectively. Then πD

S(T ) contains a derivable net isomorphic to D but considered as
a ‘right’ vector-space net over the skewfield Kopp.

We shall call πD
S(T ) a ‘geometric extension of D’ by S(T ).

Hence, given a derivable net D with transversal T , we may consider two possible
situations. First of all, we know that D may be considered a right vector-space net
over a skewfield F and there is an associated transversal function which we may
use to extend D to a dual translation plane πD

f (the algebraic extension). On the
other hand, we may consider D as a left vector-space net over F opp = K, embed the
net combinatorially into a (left) three-dimensional projective space Σ isomorphic to
PG(3, K), with distinguished line N and then realize that the transversal T, as a set
of points of D, is a set of lines whose union with N , is a spread of Σ which defines
a translation plane with an associated dual translation plane πD

S(T ) (the geometric
extension).

Hence, we arrive at the following fundamental question:
Given a derivable net D with transversal T and associated transversal

function f , is the algebraic extension of D by f isomorphic to a geometric

extension of D by S(T )?
Before we consider this question, we note the following connection with spreads

in three-dimensional projective space and transversals to derivable nets. However,
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the reader might note that there are possible left and right transversal functions
depending on whether the vector-space derivable net is taken as a left or a right
vector space and this will play a part in our discussions.

Theorem 9. The set of spreads in 3-dimensional projective spaces is equivalent
to the set of transversals to the set of derivable nets; every spread is a transversal
spread.

Proof. Let K be any skewfield and let Σ be isomorphic to PG(3, K) and let S
be a spread of Σ. Choose any line N of S and form the corresponding derivable net
D defined combinatorially with lines the points of Σ − N . Then S − N is a set of
lines of Σ and hence points of D such each point of Σ − N ‘line of D’ is incident
with a unique line ‘point of D’. Hence, S−N , as a set of net ponts, is a transversal
to the derivable net D. �

In the next sections, we show that the algebraic and geometric extensions pro-
cesses are equivalent and examine the nature of the transversal extensions.

4 Planar Transversal Extensions

Theorem 10. (see Knarr [18] (2.7)) Let P be any spread in PG(3, K), for K a
skewfield. Let D be a derivable net and T a transversal to it which geometrically
constructs P by the embedding process.

Then there is a dual translation plane πT
D constructed by the algebraic extension

process. For any line of πT
D −D, the spread in the associated three-dimensional pro-

jective geometry obtained by the geometric embedding process produces a translation
plane with spread S(T ) isomorphic to P and whose dual is isomorphic to πT

D.

Hence, all spreads are planar transversal spreads.

Proof. We refer the reader to Johnson [15] for any background information not
given explicitly. The reader might note that when a translation plane is defined from
a spread in PG(3, K), it is usually most convenient to consider the vector space as
a left vector space and spread components left 2-dimensional vector spaces of the
general form x = 0, y = xM where M is a 2 × 2 matrix over K. Ultimately, we
shall be constructing a derivable net from K ⊕ K considered as a right K-space.
On the other hand, following the structure theory of the embedding of the derivable
net into PG(3, K) considered as a left vector space, we obtain a derivable net with
components x = 0, y = αx as opposed to x = 0, y = xα. Furthermore, we may
define x � α = αx which forces the vector-space derivable net to be defined over
Kopp as opposed to K. However, we shall see that the derivable net arising from
a spread and, hence, a translation plane, is a right two-dimensional vector space
over K. To be clear, a derivable net written as x = 0, y = xα for α in K embeds
within PG(3, K) considering the associated vector space as a ‘right’ vector space. If
we start with a ‘left’ vector space to facilitate the spread and the translation plane,
we end up with a derivable net contained in a dual translation plane written as
x = 0, y = xα with α in K which then embeds within PG(3, K) as a ‘right’ vector
space which may be taken as a ‘left’ Kopp space PG(3, Kopp).
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Given a derivable net D, there is a skewfield K such that the set of points
of the net is K ⊕ K ⊕ K ⊕ K and there is an associated four-dimensional K-
vector space V , which we fix as a left space, such that the corresponding three-
dimensional projective space Σ isomorphic to PG(3, K) has a fixed line N generated
as 〈(1, 0, 0, 0), (0, 1, 0, 0)〉 and such that the points of D (d1, d2, d3, d4) correspond to
〈(d1, d2, 1, 0), (d3, d4, 0, 1)〉. In this context, the derivable net will have components
written in the form x = 0, y = αx for all α ∈ K. We note that the set of vectors of
y = αx is not necessarily always a left K-subspace, although each point of the net
may be considered a left K-subspace embedded in the associated projective space.

When there is a transversal T to D, we may form the algebraic extension process,
dualize, and construct a ‘left’ spread in PG(3, K). We will be taking the spread in
PG(3, K), more properly a ‘spread set’ and forming the associated translation plane.
We choose the spread set as follows: We choose a particular set of three lines and
vectorially denote these by x = 0, y = 0, y = x. Then, any other line (including
y = 0 and y = x) has the following form:

y = x

[
g(t, u) f(t, u)

t u

]
∀u, t ∈ K

where g and f are functions from K × K to K, and x and y are denoted by row
2-vectors over K.

We define a multiplication

x ◦ (t, u) = x

[
g(t, u) f(t, u)

t u

]
.

Note that we assume when t = 0 and u = 1, we obtain y = x so that g(0, 1) = 1
and f(0, 1) = 0.

To define an associated dual translation plane, we define

x ∗m = m ◦ x.

However, when x ∈ K, we see that the coordinate structure for the dual translation
plane contains Kopp instead of K and is a ‘right’ two-dimensional Kopp vector space.
Furthermore, we may take lines to have the following equations:

x = c, y = x ∗m + b ∀c, m, b ∈ Kopp ⊕Kopp.

We note that allowing (0, α) = α ∈ K, we have a dual translation plane contain-
ing a vector-space derivable net defined by lines

x = c, y = x ∗ α + b ∀α ∈ Koppand ∀b, c ∈ Kopp ⊕Kopp

which is isomorphic to the original net D. Now let {e, 1} be a right Kopp-basis for
Kopp ⊕ Kopp so that a general element m = α ∗ e + β = (α, β). Since x ∗ m =
(x ∗ e) ∗ α + x ∗ β, we have the representation of the lines of the dual translation
plane as given in the introduction. Note that basically all that we have done is
return to the ‘right’ vector-space derivable net over Kopp from which we started.
The transversal T is simply a line not in the derivable net.
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Now we combine the two concepts and consider the spread S(T ) geometrically
constructed and arising from a line of the form y = x ∗ (t, u) + (b1, b2) (i.e. the
transversal T ).

We note that y = x ∗ (t, u) + (b1, b2) = (t, u) ◦ (x1, x2) + (b1b2), where

(t, u) ◦ (x1, x2) = (t, u)

[
g(x1, x2) f(x1, x2)

x1 x2

]

= (tg(x1, x2) + ux1, tf (x1, x2) + ux2) ,

is the following set of points:

{(x1, x2, tg(x1, x2) + ux1 + b1, tf (x1, x2) + ux2 + b2) ; b1, b2 ∈ K} .

Now we have a delicate issue. In order to consider this set of points as ‘left’
vectors so as to apply the appropriate embedding as ‘left’ 2-dimensional vector
spaces or perhaps ‘left lines’, we need to consider the vector subspace as a left space
over K.

Now each of these points embeds as a ‘left’ line (a two-dimensional left K sub-
space) as

〈(x1, x2, 1, 0), (tg(x1, x2) + ux1 + b1, tf (x1, x2) + ux2 + b2, 0, 1)〉 which is

α(x1, x2, 1, 0) + β(tg(x1, x2) + ux1 + b1, tf (x1, x2) + ux2 + b2, 0, 1)

= (αx1 + β(tg(x1, x2) + ux1 + b1), αx2 + β(tf(x1, x2) + ux2 + b2), α, β)

∀α, β ∈ K.

To reconstruct a spread, we choose to reconstruct a spread set, hence, letting

x̂2 = αx1 + β(tg(x1, x2) + ux1 + b1),

x̂1 = αx2 + β(tf(x1, x2) + ux2 + b2),

it follows that when there is an inverse, we have:

(x̂1, x̂2)

[
x2 x1

tf(x1, x2) + ux2 + b2 tg (x2, x2) + ux1 + b1)

]−1

= (α, β).

When x1 = x2 = 0 then we obtain the subspace generated by

(x̂1, x̂2) = (b2,b1).

Now translate by adding −(b2, b1). We note that, in this form, N has equation
y = 0.

Now change the spread set by applying the mapping (x, y) 7−→ (y, x) so that
now N has the form x = 0, and, generally, we have the spread represented as

x = 0, y = 0,y = x

[
v s

tf(s, v) + uv tg (s, v) + us

]
∀v, s ∈ K.

Now change bases by 


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
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to obtain the form of the spread as:

x = 0, y = 0,y = x

[
tg (s, v) + us tf(s, v) + uv

s v

]
∀v, s ∈ K.

For fixed elements t 6= 0 (as we must have a proper transversal to the derivable
net) and u in K, we have

[
tg (s, v) + us tf(s, v) + uv v

s v

]
=

[
t u
0 1

] [
g(s, v) f(s, v)

s v

]
,

a basis change again by [
A 02

02 I2

]

where A =

[
t u
0 1

]
transforms the spread into the form:

x = 0, y = x

[
g(s, v) f(s, v)

s v

]
∀s, v ∈ K.

Hence, the geometric extension process produces (by dualization) the original
spread constructed from the algebraic extension process (by dualization). �

5 Planar Transversal-Spreads and Dual Spreads.

We have not yet dealt with the possibility that a planar transversal-spread may not
actually arise from a derivable affine plane, that it may be possible that the spread
is not a dual spread.

In Johnson [14], similar constructions to the following are given and the reader
is referred to this article for additional details.

Theorem 11. Let D be a derivable net and let Σ be isomorphic to PG(3, K) and
correspond to D with special line N . If K is infinite then there exists a dual trans-
lation plane π extending D and a line T of π − D such that S(T ) is a spread of
PG(3, K) which is not a dual spread. In particular, if K is a field then S(T ) is
non-Pappian.

There exist planar transversal-spreads which are not dual spreads.

Proof. As noted above, if K is infinite, we may embed D into a non-derivable
dual translation plane. Hence, there exists a line T such that there is some Baer
subplane which does not intersect T in an affine point. Therefore, S(T ) is not a
dual spread. If K is a field then any Pappian spread in PG(3, K) is a dual spread
(see e.g. Johnson [15]). Thus, S(T ) is non-Pappian. �



118 N. L. Johnson

6 Translation Extension-Nets.

Suppose that D is a derivable net and there exists a transversal T and construct
the spread S(T ). In Knarr [18], the question was raised when S(T ) is Pappian
or what happens when D is contained in a translation plane. By the previous
sections, we may apply the algebraic extension process to consider such questions.
In particular, there are lines x = c, y = f(x)α+xβ + b which define any affine plane
containing the derivable net D. Hence, if D is contained in a translation plane then
the dual translation plane containing D is a translation plane which implies that
S(T ) is a semifield spread. Knarr observes this fact by noting that the ‘translation’
collineation group of the derivable net would then act on the net extended by the
transversal implying a collineation group fixing a component N and transitive on
the remaining components of the spread (points of T ). Hence, we obtain:

Theorem 12. (see Knarr [18], also see Johnson [8]) Let D be a derivable net and let
T be a transversal. If the extension net 〈D∪{T}〉 defined by D∪{T} is a translation
net then the spread S(T ) defines a semifield plane.

Furthermore, all semifield spreads in PG(3, K), for K a skewfield, are ‘semifield
planar transversal-spreads’ (arising from semifield planes).

Proof. Apply the main result of the section on planar transversal-spreads. �

Remark 13. Let P be any non-Desarguesian semifield spread in PG(3, K), for K
a skewfield. If we choose the axis of the affine elation group to be N and view the
spread as a transversal to a derivable net with the embedding in PG(3, K)−N , the
corresponding dual translation plane will be a semifield plane. On the other hand,
if any other line of P is chosen as N in the embedding, the affine dual translation
plane will not be an affine semifield plane. So, a semifield spread in PG(3, K) could
arise as a planar transversal-spread without the affine plane containing the derivable
net being an affine semifield plane.

With the above remark in mind, we now examine the semifield spreads which
can be obtained when 〈D∪{T}〉 is a translation extension-net.

From the section on algebraic and geometric extensions, the affine plane con-
taining the derivable net will correspond to the dual translation plane side where
the components are left subspaces over the skewfield Kopp, provided the geometric
embedding is in the left projective space PG(3, K). By the arguments of John-
son [13], there is a vector space V over a prime field P of the form W ⊕ W such
that points are the vectors (x, y) for x, y ∈ W and we may choose a basis so that
x = 0, y = 0, y = x belong to the derivable net D. We want to consider the derivable
net as a right vector-space net over a skewfield at the same time we are considering
the vector space and the components of the derivable net as left spaces over the
same skewfield. Furthermore, there is a skewfield Kopp such that W = Kopp ⊕Kopp

as a left Kopp-vector space and components of D may be represented as follows:

x = 0, y = x

[
B 0
0 B

]
; B ∈ Kopp.

We again note that the components of D are not necessarily all right Kopp-subspaces,
although we say thatD is a ‘right’ vector-space net over Kopp. We note that following
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the ideas in the section on algebraic and geometric extensions, we are working in
the dual translation plane side which contains the derivable net. The translation
plane obtained by dualization has its spread in PG(3, K). Recall that this means
that the so-called ‘right-nucleus’ of the semifield in question is Kopp.

It also follows that any translation net has components of the general form
y = xT where T is a P-linear bijection of W . If W is decomposed as Kopp ⊕ Kopp

over the prime field P , choose any basis B for Kopp over P. Then, we may regard
V as (x1, x2, y1, y2) where xi, yi are in K for i = 1, 2 and also may be represented
as vectors over B. That is, for example, xj = (xj,i; i ∈ λ), for j = 1, 2, with respect
to B for xj,i ∈ P for some index set λ. With this choice of basis, we may represent
T as follows:

T = (y = x

[
T1 T2

T3 T4

]
)

where Ti are linear transformations over P represented in the basis B. Note that we
are not trying to claim that the T ′

is are Kopp-linear transformations, merely P-linear.
The action is then

(y1, y2) = (x1, x2)

[
T1 T2

T3 T4

]
= (x1T1 + x2T3, x1T2 + x2T4).

where the xi and yj terms are considered as P-vectors.
Hence, the T ′

is are merely additive mappings on Kopp but not necessarily Kopp-
linear.

In reading the next theorem, it might be kept in mind that a derivable net may
always be considered algebraically a pseudo-regulus net with spread in PG(3, Kopp)
when the geometric embedding is in PG(3, K). When K is a field, this is not to
say that these two projective spaces are the same as D can be a regulus in a three-
dimensional projective space while being embedded in another and both projective
spaces are isomorphic.

Theorem 14. If D is a derivable net and 〈D∪{T}〉 a translation net regarded as
a left vector space net over the associated prime field P, and D regarded as a right
vector-space net over Kopp then the geometric embedding of D into Σ isomorphic to
PG(3, K) is considered as a ‘left’ space embedding.

Representing D as

x = 0, y = x

[
B 0
0 B

]
; B ∈ Kopp,

we may represent T as

(y = x

[
T1 T2

T3 T4

]
)

where the Ti are additive mappings of Kopp and P-linear transformations.

(1) The line y = x

[
T1 T2

T3 T4

]
determines a semifield spread admitting an affine

homology group with axis y = 0 and coaxis x = 0 isomorphic to Kopp−{0} (the dual
semifield plane has its spread in PG(3, K) and is S(T )).
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The semifield spread has the following form:

x = 0, y = x

([
T1 T2

T3 T4

] [
A 0
0 A

]
+

[
B 0
0 B

])
∀A, B ∈ Kopp.

(2) The semifield spread with spread in PG(3, K) (the S(T )) has the following
form (where here the Ti’s are considered additive mappings of K):

x = 0, y = x

[
sT1 + vT3 sT2 + vT4

s v

]
∀v, s ∈ K.

(3) The semifield spread in PG(3, K) is a skew-Desarguesian spread if and only if
the T ′

is are all K-linear transformations (i.e. multiplication by elements of K) if and
only if D+T is a partial spread in PG(3, Kopp); considering D as a pseudo-regulus
in PG(3, Kopp), T is a subspace in the projective spread PG(3, Kopp).

(4) (see Knarr [18]) If K is a field then the semifield spread in PG(3, K) is
Pappian if and only if the T ′

is are all K-linear transformations (i.e. multiplication
by elements of K) if and only if 〈D∪{T}〉 is a partial spread in PG(3, K); T is a
subspace in the projective spread PG(3, K) wherein D is considered a regulus.

Proof. Although some of the following has been previously presented in the
section on algebraic and geometric extension, we revisit these ideas here. Part
(1) follows immediately from the algebraic extension process considering T as a
transversal function.

We consider a point (x1, x2, x1T1 + x2T3, x1T2 + x2T4). By Johnson [12],
we may represent N by 〈(1, 0, 0, 0), (0, 1, 0, 0)〉, the zero vector (0, 0, 0, 0) by
〈(0, 0, 1, 0), (0, 0, 0, 1)〉 and a general point (d1, d2, d3, d4) by 〈(d1, d2, 1, 0), (d3, d4, 0, 1)〉
where the 2-dimensional K-subspaces are considered right spaces and lines
in PG(3, K).

Hence, the lines associated with the net-points (x1, x2, x1T1 + x2T3, x1T2 + x2T4)
are

〈(x1, x2, 1, 0), (x1T1 + x2T3, x1T2 + x2T4, 0, 1)〉

= α(x1, x2, 1, 0) + β(x1T1 + x2T3, x1T2 + x2T4, 0, 1)

for all α, β ∈ K.
Let x∗2 = (αx1 + β(x1T1 + x2T3)), and x∗1 = (αx2 + β(x1T2 + x2T4)).
Then

(x∗1, x
∗

2)

[
x2 x1

x1T2 + x2T4 x1T1 + x2T3

]−1

= (α, β).

Now change bases by interchanging x = 0 and y = 0 to obtain the spread as

x = 0, y = x

[
v s

sT2 + vT4 sT1 + vT3

]
∀v, s ∈ K.

Change bases by 


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
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to change the form into:

x = 0, y = x

[
sT1 + vT3 sT2 + vT4

s v

]
∀v, s ∈ K.

This proves (2). The proofs to (3) and (4) and then immediate. (The reader is
referred to Johnson [15] for a definition of skew-Desarguesian planes.) �

We noted in part (4) that the associated spreads in PG(3, K) are Pappian if a
derivable net is a regulus net in PG(3, K) and the transversal is a subspace within
the same PG(3, K). We might inquire as to the nature of the semifield spreads if
we assume initially that the transversal is a subspace in PG(3, K) but the derivable
net is not necessarily a K-regulus.

The following background result is required for our analysis.

Lemma 15. (see Johnson [9] for the finite case and Jha-Johnson [5], for the infinite
case) A derivable net D with partial spread in PG(3, K), for K a field, may be
represented in the following form:

x = 0, y = x

[
u A(u)
0 uσ

]
∀u ∈ K

and where σ is an automorphism of K, and where x and y are 2-vectors over K and
A is a function on K such that

[
u A(u)
0 uσ

]
∀u ∈ K

is a field isomorphic to K.
Furthermore, A ≡ 0 in the finite case, or when there are at least two Baer

subplanes incident with the zero vector which are K-subspaces. When there is exactly
one K-subspace Baer subplane, the characteristic is two, σ = 1 and A(u) = Wu +
uW for some linear transformation W of K over the prime field.

First consider the situation when there are two Baer subplanes which are K-

subspaces so that A is identically zero. Suppose that we have y = x

[
a b
c d

]
a

transversal to the derivable net for a, b, c, d in K. We need to re-coordinatize so as
to realize the derivable net as a regulus in an associated projective space.

We consider the mapping:

τ : (x1, x2, y1, y2) 7−→ (x1, x
σ−1

2 , y1, y
σ−1

2 ).

It follows that τ maps

(x1, x2, x1u, x2u
σ) 7−→ (x1, x

σ−1

2 , x1u, xσ−1

2 u).

It then follows that the derivable net has the general form

x = 0, y = x

[
u 0
0 u

]
∀u ∈ K
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in the associated projective space. Now we consider the τ -image of y = x

[
a b
c d

]
.

As a linear transformation over the prime field, consider xσ−1

= xM . Then, the

image of y = x

[
a b
c d

]
can be written in the following form:

y = x

[
a Mbσ−1

M−1c dσ−1

]
=

[
T1 T2

T3 T4

]
,

in the notation of the previous section, and where x = (x1, x
σ−1

2 = x2M) and
y = (y1, y

σ−1

2 = y2M). Hence, we obtain the semifield spread in PG(3, K) in the
form

x = 0, y = x

[
sa + vσ−1

c sσ−1

bσ−1

+ vdσ−1

s v

]
∀v, s ∈ K.

Now change bases by 


c bσ−1

0 0
0 1 0 0
0 0 1 0
0 0 0 1




to transform the spread set into the form:

x = 0, y = x

[
vσ + s(ac−1 + c−1dσ−1

) sσ−1

c−1bσ−1

s v

]
.

Hence, we obtain:

Theorem 16. A derivable net D with transversal extension T giving a partial spread
〈D∪{T}〉 that is in PG(3, K), for K a field, and such that there are at least two
Baer subplanes which are K-subspaces constructs a semifield spread in PG(3, K) of
the following form:

x = 0, y = x

[
vσ + sk sσ−1

l
s v

]
∀v, s ∈ K,

for σ an automorphism of K, and constants k, l ∈ K ∈ K.

Remark 17. The spreads mentioned above are considered in Johnson [10] and
are generalization of spreads originally defined by Knuth and hence, perhaps, these
should be called ‘generalized Knuth spreads’.

We now consider the possibility that the function A is not identically zero.

for all u, v ∈ K. With A(u) = Wu + uW , a basis change by




I W 0 0
0 I 0 0
0 0 I W
0 0 0 I
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will change the form of the derivable net into a regulus in PG(3, K). We note that
the regulus will have the form:

x = 0, y = x

[
u 0
0 u

]
∀u ∈ K.

Moreover, a transversal in PG(3, K) of the net D (in the original form) of the
form

y = x

[
a b
c d

]

for a, b, c, d becomes a transversal to the standard regulus (note that the transversal
is no longer then in PG(3, K)) and has the form:

y = x

[
a + Wc (a + Wc)W + b + Wd

c cW + d

]
.

Hence, we obtain in PG(3, K), the spread:

x = 0, y = x

[
sT1 + vT3 sT2 + vT4

s v

]
∀v, s ∈ K

where a + Wc = T1, (a + Wc)W + b + Wd = T2, c = T3 and cW + d = T4. It is
important to note that the vector space is now of the form (x1, x1W+x2, y1, y1W+y2)
which we identify with (x1, x2, y1, y2). With this identification, it follows that Ti ’s
are additive mappings of K.

Hence, we obtain:

Theorem 18. Let a derivable net D with transversal extension T giving a partial
spread 〈D∪{T}〉 that is in PG(3, K), for K a field, such that there is exactly one
Baer subplane which is a K-subspace. Then there is an associated semifield spread
in PG(3, K) of the following form:

x = 0, y = x

[
s(a + Wc) + vc s((a + Wc)W + b + Wd) + v(cW + d)

s v

]
∀v, s ∈ K

where W is some prime field linear transformation of K, a, b, c, d constants in K.

7 Vector Space Transversals

Now assume that we have a derivable net and a vector space transversal. We repre-
sent the derivable net as in the previous section as

x = 0, y = x

[
B 0
0 B

]
∀B ∈ Kopp

where Kopp = F is a skewfield and we represent the transversal in the form

(y = x

[
T1 T2

T3 T4

]
) = xT
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where the T ′
is are prime field linear transformations and additive F -mappings.

First let F be isomorphic to GF (q) for q = pr, p a prime. Let Hp,f,g,u be a group
of order q − 1 whose elements are defined as follows:

τu =




p(u) 0 0 0
0 f(u) 0 0
0 0 p(u)λ(u) 0
0 0 0 f(u)λ(u)


 for u ∈ F − {0}

and p, f, λ are functions on F . We require that the derivable net is left invariant.
For this, we must have

[
p(u)−1p(u)λ(u) = λ(u) 0

0 f(u)−1f(u)λ(u) = λ(u)

]

for some function v of u.
We consider situations under which

x = 0, y = x

[
p(u)−1 0

0 f(u)−1

]
T

[
p(u)λ(u) 0

0 f(u)λ(u)

]
+ wI

for all u 6= 0, w ∈ F defines a spread. We note that there is an associated elation
group E of order q and the spread fixes x = 0.

Definition 19. When the above set defines a spread, we denote the spread by
πT,Hp,f,pλ,fλ

and call the spread a ‘(T, EHp,f,pλ,fλ)-spread’.
More generally, it might be possible to have a group containing an elation group

E of order q and a group H such that EH acts transitively on the components of
the spread not in the derivable net but H may not be diagonal. In the more general
case, we refer to the spread as a ‘partially transitive elation group spread’.

Remark 20. Any (T, Hp,f,pλ,fλ)-spread is derivable and the derived plane admits a
collineation group fixing the spread and acting transitively on the components not in
the derivable net. The elation group is turned into a Baer group B and the group
Hp,f,pλ,fλ is turned into the group Hp,pλ,f,fλ.

We call such a spread a ‘(T ∗, BHp,pλ,f,fλ)-spread’. Also, more generally, if we
have a partially transitive elation group spread, it derives to a so-called ‘partially
transitive Baer group spread’.

Proof. Change bases relative to F by the mapping that takes (x1, x2, y1, y2) to
(x1, y1, x2, y2). Then, the group Hp,f,g,h is changed to the group Hp,g,f,h. �

Example 21. Examples of partially transitive elation group spreads are as follows:
(1) Any semifield plane of order q2 whose semifield is of dimension two over

its middle nucleus. This plane is a (T, EHλ−1,λ−1,1,1)-spread which derives to a
(T ∗, BHλ−1,1,λ−1,1)-spread that is also known as a ‘generalized Hall spread’ (i.e.
of type 1).

Note that if y = xT is a vector-space transversal to a finite derivable net then
we may realize the derivable net as a left vector space net and automatically use the
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‘left’ extension process to construct a dual translation plane which then becomes a
semifield plane with spread:

x = 0, y = αT + βI, ∀α, β ∈ F .

(2) Any semifield plane of order q2 whose semifield is of dimension two over its
right nucleus. This plane provides a (T, EH1,1,λ,λ)-spread which derives a
(T ∗, BH1,λ,1,λ)-spread that is also known as a ‘generalized Hall spread of type 2’.

This is merely the situation with which we began, realizing the derivable net as
a right vector space and constructing the dual translation plane which is then a
semifield plane with spread:

x = 0, y = Tα + βI, ∀α, β ∈ F .

(3) Other known examples all correspond to situations where the y = xT is a line
in the projective space wherein the derivable net is a regulus. The partially transitive
elation spreads correspond to flocks of quadratic cones. When the order q2 is odd,
there is a classification of such partially transitive elation spreads in Hiramine and
Johnson [4] and the possibility that the group H may not be diagonal is included
in this study. However, the known examples are (T, EHp,f,pλ,fλ)-spreads. When
q = 2, any partially transitive elation spread turns out to be a (T, EHp,f,pλ,fλ)-spread.
Furthermore, combining this work with a study of Penttila and Storme [20] shows
that the known examples are the only possible examples. For details and additional
information, the reader is referred to the survey paper of Johnson and Payne [16].

To list but one of these examples in the odd order case, we consider the spread:

x = 0, y = x

[
u γtσ

t u

]
; ∀u, t ∈ GF (q)

where γ is a nonsquare, q is odd and σ is an automorphism of GF (q).
We note that the elements of the elation group E have the following form:




1 0 u 0
0 1 0 u
0 0 1 0
0 0 0 1


 ; ∀u ∈ GF (q).

Furthermore, the group is H1,f,λ,fλ where f(u) = uσ, λ(u) = uσ+1.

One of the early results using group theory to determine the structure of finite
affine planes is the result of Wagner [21] who proved that finite affine planes that
admit a collineation group acting transitive on the flags of the plane are always
translation planes.

In a later section, we take up the following problem:

Problem 22. Let π be a finite derivable affine plane and let D denote the derivable
net.

(1) If π admits a collineation group G leaving D invariant that acts transitively
on the flags of π on lines not in D, is π a translation plane?

(2) If π is a translation plane, is it always either a partially transitive elation
plane or a partially transitive Baer plane?
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Definition 23. We shall call a derivable affine plane that admits a collineation
group leaving the derivable net invariant and acting flag-transitively on the flags on
lines not in the derivable net a ‘partially flag-transitive plane’.

7.1 Dual Translation Planes.

Let π be a translation plane with spread in PG(3, q). Choose any component x =
0 and let (∞) denote the parallel class containing the component. Take any 1-
dimensional GF (q)-subspace X on any component y = 0. Then the lines x(∞) union
(∞), for all x in X, form a derivable net in the dual translation plane obtained by
taking (∞) as the line at infinity in the dual plane. Notice that the dual translation
plane admits a collineation group of order q3(q − 1) which leaves the derivable net
invariant. This group consists of the translation group of order q3 generated by the
subgroups with center (∞) of order q2 and the group of order q with center (0) which
leaves X invariant. The kernel homology group H of order q− 1 leaves X invariant.
Hence, the product of these two groups is a group W of the dual translation plane
π∗. Furthermore, there is an infinite point (∞)∗ of the derivable net D∗ which is
fixed by W . The group of order q mentioned above becomes an elation group E of
order q. Note that HE acts transitively on the lines of (∞) not in (∞)X since E
fixes no lines and has q orbits of length q and H fixes exactly one line and has orbits
of length q− 1. Note that E is normal in EH so that H can fix exactly one orbit of
E. Hence, HE has orbits of length q and q(q − 1).

Thus, EH acting on the dual translation plane is transitive on the infinite points
of the plane which are not in the derivable net D∗.

Now assume that the associated translation plane admits a collineation group of
order q2 that is in the linear translation complement (i.e. in GL(4, q)), fixes (∞)
and acts transitively on the components other than x = 0.

It follows from the work of Johnson and Wilke [17] that the group of order q2

may be represented so that acting on x = 0, the group is a subgroup of

〈[
1 a
0 1

]
; a ∈ GF (q)

〉
.

Hence, it follows that, representing the vector space by 4-vectors (x1, x2, y1, y2), the
lines x = (0, α) ∀ α ∈ GF (q) are fixed. Thus, if we take

X = {(0, α, 0, 0); α ∈ GF (q)}

as defining the derivable net D∗, we have a group S of order q2 acting on the dual
translation plane. Furthermore, we then obtain a collineation group of order q5(q−1)
which fixes the derivable net and acts partially flag-transitively on the affine dual
translation plane. In order to see this, we note that the group of order q(q − 1)
mentioned previously is transitive on the parallel classes. The translation group
with center (∞) becomes a translation group of the dual translation plane with
center (∞)∗ and this group acts transitively on the affine lines of any parallel class
not equal to (∞)∗. Take any point P of the translation plane such that P (∞) is
not a line of (∞)X. Then, using the translation group, there is a group conjugate



Transversal spreads 127

to S by a translation which acts transitively on the lines incident with P other than
P (∞).

Hence, we obtain:

Theorem 24. Let π be any translation plane of order q2 with spread in PG(3, q).
Assume that there exists a collineation group in the linear translation complement of
order q2 that fixes a component and acts transitively on the remaining components
of π.

Then the dual translation plane is a partially flag-transitive derivable affine plane
admitting a collineation group of order q5(q − 1).

The dual translation plane is a translation plane (and hence a semifield plane) if
and only if the group of order q2 mentioned above is an elation group of the associated
translation plane.

Corollary 25. Any semi-translation plane obtained by the derivation of a par-
tially flag-transitive dual translation plane is also partially flag-transitive. The dual
translation plane is of ‘elation’ type whereas the semi-translation plane is of ‘Baer’
type (the dual translation plane admits an elation group of order q and the semi-
translation plane admits a Baer group of order q).

The previous examples all involve solvable groups. Are there ‘nonsolvable’ par-
tially flag-transitive affine planes?

Remark 26. The Hall and Desarguesian planes are the only translation planes of
order q2 that admit SL(2, q) and are partially flag-transitive affine planes

Proof. The translation planes admitting SL(2, q) as a collineation group are
determined in Foulser and Johnson [2] and [1]. The only derivable planes that
admit a collineation group transitive on the components exterior to the derivable
net are the Hall and Desarguesian. Any translation plane of this sort is partially
flag-transitive. �

8 Transposed Spreads.

In this section, we ask the following question:
Let D be a derivable net and T a transversal such that D ∪ {T} is a derivable-

extension. Let D̂ ∪ {T} denote the corresponding derivable-extension where D̂ is
the derived net of D. When is the spread S(T ) with respect to D ∪ {T}, S(T )D+T ,
isomorphic to the spread S(T )

D̂+T with respect to D̂ ∪ {T}?
First of all, we note that if the corresponding projective space is PG(3, K) ofD+T

then S(T )D+T is in PG(3, K), whereas S(T )
D̂+T is in PG(3, Kopp). However, the

points and (Baer) subplanes of PG(3, K) are subplanes and points of PG(3, Kopp)
respectively. Hence, the question only makes genuine sense when K is a field.

Theorem 27. Let D be a derivable net embedded in PG(3, K), where K is a field,
and let T be a transversal to D which is also a transversal to the derived net D̂.
Then the spread S(T )D+T corresponding to D+T is isomorphic to the spread S(T )

D̂+T

corresponding to D̂+T is and only if there is a duality of PG(3, K) which maps one
spread to the other.
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Proof. By Johnson [15], we may interpret derivation in terms of a duality of
the associated projective space. Here we have merely extended these notions to the
corresponding constructed spreads. �

9 Reconstruction.

We have noted that transversals to derivable nets are basically equivalent to spreads
in PG(3, K). However, although transversals are then used to construct dual trans-
lation planes, there are other affine planes containing a derivable net which are not
dual translation planes. The question is whether there is a way to use various sets
of spreads to construct or reconstruct an affine plane containing a derivable net.

Definition 28. A ‘skew parallelism’ of PG(3, K) − N is a set of spreads each
containing N which forms a disjoint cover of the lines of PG(3, K) skew to N .

Let S be a skew parallelism of PG(3, K)−N and let P be any spread containing
N . We shall say that P is ‘orthogonal’ to S if and only if P intersects each spread
of S in a unique line 6= N .

A set of skew parallelisms of PG(3, K) − N is ‘orthogonal’ if and only if each
spread of any one skew parallelism is orthogonal to each of the remaining skew
parallelisms.

A set A of skew parallelisms of PG(3, K)−N is said to be ‘planar’ if and only
if, given any two lines `1 and `2 of PG(3, K) which are skew to N , there is a skew
parallelism of A containing a spread sharing `1and `2.

If the spreads of a set of skew parallelisms are all dual spreads, we shall say that
the set is a ‘derivable’ set of skew parallelisms.

Theorem 29. Given an orthogonal and planar set A of skew parallelisms of
PG(3, K) − N , then there is a unique affine plane πA containing a derivable net
such that the set of transversals to the derivable net are the spreads of the set A.

Conversely, any affine plane containing a derivable net corresponds to a uniquely
defined orthogonal and planar set of skew parallelisms.

Hence, the set of derivable affine planes is equivalent to the set of derivable,
orthogonal and planar sets of skew parallelisms.

Proof. We have seen that any spread P containing N may be considered a
transversal to a derivable net. A skew parallelism S containing P consists of a set
of mutually disjoint transversals with the property that each point of the derivable
net is incident with exactly one transversal. (Since the ‘points’ of the derivable
net are lines of the projective space, each net-point is a line of exactly one spread
of S. Hence, each net-point is incident with exactly one transversal.) So, a skew
parallelism corresponds exactly to a parallel class external to the derivable net.
Two skew parallelisms which are orthogonal then correspond to two distinct parallel
classes of a net extension of a derivable net and a planar and orthogonal set of skew
parallelisms is such that any two distinct points of the net as lines of the projective
space are incident with exactly one spread of some skew parallelism; two distinct
points are incident with a unique transversal to the derivable net. Hence, an affine
plane is constructed from a planar and orthogonal set of skew parallelisms. In order
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that the affine plane actually be derivable, it follows that each transversal spread
must actually be a dual spread. Hence, a derivable, planar and orthogonal set of
skew parallelisms constructs a derivable affine plane. �

Now we ask the nature of a ‘transitive’ skew parallelism.

Definition 30. A skew parallelism of PG(3, K) − N is ‘transitive’ if and only if
there exists a subgroup of PΓL(4, K)N that acts transitively on the spreads of the
skew parallelism.

A planar and orthogonal set of skew parallelisms is ‘transitive’ if and only if there
exists a subgroup of PΓL(4, K)N which acts transitively on the set.

We shall say that the set is ‘line-transitive’ if and only if the stabilizer of a spread
is transitive on the lines not equal to N of the spread, for each spread of the skew
parallelism.

We have seen the following in a previous section, we re-introduce the ideas again
here.

Remark 31. Let πD be a dual translation plane with transversal function f(x) to a
right vector-space derivable net so that lines have the equations:

x = 0, y = f(x)α + xβ + b

for all α, β ∈ K and for all b ∈ V (see the notation of introductory section).
Then, there is a collineation group of πD which leaves invariant the derivable

net and acts transitively on the lines not in the derivable net and of the form y =
f(x)α + xβ + b where α 6= 0.

The ‘translation group’ T is transitive on the lines of each such parallel class and
represented by the mappings:

(x, y) 7−→ (x, y + b) ∀b ∈ V .

The affine elation group E is represented by mappings of the form

(x, y) 7−→ (x, xβ + y) ∀β ∈ K

and the affine homology group H is represented by mappings of the form:

(x, y) 7−→ (x, xα) ∀α ∈ K − {0}.

Notice that T and E correspond to certain translation subgroups with fixed centers
of the corresponding translation plane and the group H corresponds to the kernel
homology group of the associated translation plane.

(1) It also follows that any derivable affine plane coordinatized by a cartesian
group will admit a group isomorphic to T and hence corresponds to a transitive skew
parallelism.

(2) Any such dual translation plane will produce a transitive planar and orthog-
onal set of transitive skew parallelisms.

(3) Any semifield spread which contains a derivable net as above will admit a
translation group with center (f(x)) which fixes f(x) and acts transitively on the
points of f(x) which implies that the transversal-spread is transitive.

Hence, any semifield spread produces a line-transitive planar and orthogonal set
of skew parallelisms.
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So, we would ask whether a line-transitive planar and orthogonal set of skew
parallelisms corresponds either to a translation plane, a dual translation plane or
a semi-translation plane. Hence, not all such sets of skew parallelisms in three-
dimensional projective spaces can force the affine plane containing the derivable net
to be a semifield plane or even a translation plane. We formulate a fundamention
question?

Is a finite derivable partially flag-transitive plane of order q2 a trans-

lation plane, a dual translation plane or a semi-translation plane and if

so, is there either a Baer group or elation group of order q?

10 Partially Flag-transitive Affine Planes.

Assume that π is a finite partially flag-transitive affine plane. The derivable net D
is combinatorially equivalent to a projective space PG(3, K), where K is isomorphic
to GF (q), relative to a fixed line N of PG(2, K). Furthermore, the full collineation
group of the net D is PΓL(4, K)N . Assume now that the given collineation group
G of π is linear; i.e. in PGL(4, K)N . It follows that the linear subgroup which fixes
an affine point and the derivable net (which is now a regulus net) is a subgroup of
GL(2, q)GL(2, q) where the product is a central product with common group the
center of order q−1. Note we are not trying to say that the derivable net corresponds
to a regulus in the particular PG(3, q) wherein lives the skew parallelisms, merely
that the derivable net can be realized as arising from a regulus in some three-
dimensional projective space.

Let pr = q. Then, there must be a group of order divisible by q2(q2)(q2 − q) by
the assumed transitive action. Hence, the p-groups have orders divisible by q5 and
note that the full linear p-group of the derivable net has order q6. Any such p-group
Sp must leave invariant an infinite point (∞) of the derivable net D as the derivable
net consists of q + 1 parallel classes.

So, again let G denote the full collineation group of the associated affine plane
π, under the assumption that the group is ‘linear’ with respect to the derivable net
and let T denote the translation group with center (∞) of Sp. We note that T is
normal in Sp. Let ` be any transversal line to the derivable net. Then there exists
a collineation group G` which acts transitively on the points of `.

Lemma 32. The p-groups of G` have orders q2, or 2q2 and q is even.

Proof. There is a spread in PG(3, q), S(`). Furthermore, there is a group
which fixes a line N of the spread and acts transitively on the remaining lines of
the spread. We have assumed that the group is a subgroup of PGL(4, q)N . Now
consider the associated translation plane and realize that the collineation group, as
a translation complement, acting here is a subgroup of GL(4, q). Since the group
fixes a component and is linear, the group induced on that component is a subgroup
of GL(2, q). Since the group is transitive on S(`)−N , let the order of the p-group
be pαq2. Hence, the elation group with axis N as order at least pαq. On the other
hand, since the group is linear and transitive on the components not equal to N ,
the stabilizer of a second line is a Baer group of order pα. By Johnson and Wilke
[17] (2.7), if pα > 1 then pα = 2. This completes the proof of the lemma. �
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Lemma 33. The order of a Sylow p-group of G is either q5, or 2q5 and q is even.

Proof. Since the group G acts transitively on components of the derivable affine
plane π −D, it follows that Sp permutes q(q − 1) points on the line at infinity and
hence there must be an orbit of Sp of length q as otherwise pq would divide q(q−1).
Since this is, in fact, an orbit, the stabilizer of an infinite point (β) has order |Sp| /q.
Since the lines of (β) are also in an orbit then the stabilizer of a line ` has order
|Sp| /q3 which is either q2 or 2q2. This completes the proof. �

Lemma 34. Let Sp be a Sylow p-subgroup. Hence, Sp leaves invariant an infinite
point of D, say (∞). The stabilizer of a second point fixes all infinite points of D.

Proof. The group G is a subgroup of GL(2, q)GL(2, q)T acting on the derivable
net D. A Sylow p-group is a subgroup of a group S+

p of order q6 consisting of a
Sylow p-group of each of the two GL(2, q)′s and T of order q4. The subgroup of S+

p

that fixes two infinite points has order q5 and consists of a Baer p-group together
with T and hence fixes all infinite points. �

Lemma 35. Let σ be an nontrivial elation with axis x = 0 in D and let τ be a
nontrivial Baer collineation of D, also fixing x = 0 such that στ is in Sp (acts as
a collineation of π). Then στ is a Baer collineation of π such that Fixστ has q
parallel classes exterior to D.

Proof. Coordinatize so that

σ =




1 0 u 0
0 1 0 u
0 0 1 0
0 0 0 1




and

τ =




1 a 0 0
0 1 0 0
0 0 1 a
0 0 0 1




for a and u ∈ F ' GF (q).
Then στ fixes {(0, y1au−1, y1, y2); yi ∈ F} pointwise and fixes no component of

the derivable net except x = 0. Moreover, σ and τ share fixed points on x = 0.
Hence, στ fixes exactly q2 points, fixes x = 0, fixes exactly q points on x = 0 and
fixes any line of the plane which contains points of Fixστ . Suppose that στ fixes
lines x = 0 and ` concurrent with a particular affine point P . So, στ fixes a Baer
subplane πo incident with P of D and induces an elation on πo. Let (α) denote the
parallel class containing `. Then, στ fixes each of the q affine lines of πo incident
with (∞), fixes (α) so fixes each of the q affine lines incident with (α), as στ induces
an elation on πo. It follows that στ fixes q points on each of the lines fixed by στ
incident with (∞). This argument shows that the set of fixed points belongs to a
Baer subplane. �



132 N. L. Johnson

Lemma 36. (1) Assuming that Sp fixes (∞), the stabilizer of a line x = 0 in Sp

has order either q3 or 2q3.

(2) Further, the stabilizer H of an affine point has order at least q in the q3 case
or at least 2q in the 2q3 case above.

(3) H contains either an elation group of order q, or a Baer group of order q
with axis a subplane of D .

(4) If the order of H is at least 2q then the order is 2q and H is generated by an
elation group of order q and a Baer involution with axis in D or by a Baer group of
order q and an elation.

Proof. (1) is clear since the group acts transitively on the points of ` and fixes
(∞) also acts transitively on the affine lines of (∞). Since x = 0 has q2 points, the
stabilizer of one of these has order at least q or 2q.

Now H must actually fix a line of some Baer subplane πo pointwise and permute
the parallel class of subplanes to which πo belongs. Since this parallel class has
q2 total members, H must leave invariant another subplane π1 disjoint to πo (the
parallel class to which πo belongs is the set of all subplanes of D disjoint from πo

union πo). It follows from Johnson [11] that πo and π1 share a parallel class of lines.

If the shared parallel class is not (∞) then the group H fixes a second infinite
point so it fixes all infinite points of D and hence fixes πo pointwise. However, in
this case, the order of H must, in fact be q.

Hence, assume that πo and π1 share a parallel class of lines of (∞). It follows
that the elements of H are in GL(2, q)GL(2, q) so that each element is the product
of an elation σ and a Baer p-element τ . However, this implies that either σ or τ is
1 or there is an ‘external’ Baer p-element by a previous lemma. If this is so, then
p = 2 and the order of H is at least 2q. Note that each external Baer subplane
contributes exactly q components outside of the derivable net. If there is an overlap,
we may assume the overlap occurs at least on ` so there is a group generated by Baer
elements of order at least 4 and fixing `. But, this means that within the translation
plane of the associated spread corresponding to `, we have a group of order at least
4q2, a contradiction. Hence, there are at most q−1 ‘external’ Baer involutions (axes
external to the derivable net). Let the external Baer involutions be denoted by σiτi

where the σi are elations (not necessarily distinct and possibly trivial) and the τi

are Baer involutions (not necessarily distinct but nontrivial) for i = 1, 2, ..., bo where
bo ≤ q − 1 and let the elements of H be denoted by σiτi = ρi for i = 1, 2, ...,≥ 2q.
Note that if σiτi is a Baer involution and σk is an elation not equal to σi then σkσiτi

is an external Baer involution. Since the plane can be derived, it follows that if τs is
a Baer involution (internal) not equal to τi then σiτiτs is also a Baer involution. So,
consider a given external Baer involution σ1τ1. Then there are at least q elements
which are non-identity elations or non-identity internal Baer involutions in H and
at least q−2 of these are neither equal to σ1 nor τ1. Hence, multiplication of a given
σ1τ1 by elements of H result in q− 2 distinct other external Baer involutions. That
is, if σkσ1τ1 is σsσ1τ1 or σ1τ1τj then either σk is σs or τj. So, there are exactly q− 1
distinct external Baer involutions, assuming that there is one. The remaining two
non-identity elements of H then cannot produce external Baer involutions. Hence,
it must be that the remaining two elements are either σ1 or τ1. So, there are exactly
q−1 external Baer involutions, implying there are exactly q−1 non-identity elations
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or internal Baer involutions.
Assume that there are s σ′js and hence q−s τ ′ks. Note that the σjτk’s are s(q−s)

distinct external Baer involutions. Hence, we must have

s(q − s) ≤ q − 1.

So, we have
(s− 1)q ≤ s2 − 1

so that if s−1 is not zero then q ≤ s+1. But, q−1 ≤ s ≤ q−1, implying s = q−1.
Thus, s = 1 or q − 1 so that there is either an elation group of order q in H or

an internal Baer group of order q in H. This implies that there is either an elation
group of order q and an extra internal Baer involution that generates H of there is
an internal Baer group of order q and an extra elation that generates H.

If the order of H is q then it follows that in all cases, we can have only ela-
tions types or only Baer p-element types for otherwise we generate external Baer
p-elements and a larger p-group than possible. That is, either H is a Baer p-group
of order q with fixed axis in the derivable net or H is an elation group of order q.

Thus, the result is completed unless the order of H is at least 2q. In this case, the
stabilizer of ` has order at least 2q2 and hence, exactly 2q2 by Johnson [9] (section
6). So, the order of H is either 2q or q and our above argument completes the proof.

�

Hence, in any case, by derivation, we may assume that the group H contains
an elation group E of order q which then acts transitively on the infinite points of
D−(∞). Then, the group Z which fixes a second infinite point and hence all infinite
points has order q4 or 2q4. If this group is not fixed-point-free then there is a Baer
p-element with axis in D. We may set up our argument so that such an element
is in H and commutes with H and hence generates with E exactly q − 1 external
Baer p-elements and p = 2. (Since the group acts transitively on the lines of (∞),
the axis of E may be chosen to correspond to the fixed point of the element of Z in
question). Hence, for each affine point P , there is a unique internal Baer involution
τP with axis in D. Thus, there is a set of q2 mutually disjoint Baer subplanes in
an orbit under Z. Therefore, Z is transitive on the set of Baer subplanes of some
parallel class (as a parallel class of the derived net).

So, in any case, there are at least 2q4− q4 = q4 elements of Z which are products
of Baer p-elements and translations on the net D and which are fixed-point-free. We
now require some information on how a group or set can be fixed-point-free. But,
the Baer p-group part comes from a group of order q and we have a group of order
q4 or 2q4, and hence, a fixed-point-free set of cardinality at least q4.

Lemma 37. Represent a p-group fixing all infinite points of D as a subgroup of

〈
σa =




1 a 0 0
0 1 0 0
0 0 1 a
0 0 0 1


 ; a ∈ F

〉
T

where T has the following form acting on the points of the net D:〈
τ(c1,c2,c3,c4) : (x1, x2, y1, y2) 7−→ (x1 + c1, x2 + c2, y1 + c3, y2 + c4); ci ∈ F

〉
.
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Then the subset which acts transitively on the points of x = 0 contains elements
σaτ(0,0,c3,c4), for various values of a in F, and, for all c3, c4 ∈ F .

Similarly, the subset which acts transitively on the points of y = 0 contains
elements σbτ(c1,c2,0,0), for various values of b in F, and, for all c1, c2 ∈ F .

Proof. We note that the stabilizer of x = 0 in Z contains a set of cardinality
q2 which acts transitively and fixed-point-free on the affine points of x = 0. Hence,
(0, 0, 0, 0) is fixed by any element of the form σa so in order to obtain a transitive
action, we require all translations with center (∞) acting on D. The proof for the
action on y = 0 is analogous. �

Lemma 38. Referring to the lemma above, if there is a fixed-point-free transitive
action on x = 0 then the group acting contains a translation group of order q with
center (∞).

Proof. We note that (0, 0, y1, y2) 7−→ (0, 0, y1+c3, y1a+y2 +c4) for various values
of a and c3, c4. Since we require all c3 and c′4s for the transitive action, assume that
c3 = 0 and c4 6= 0. Then, if a is non-zero, we have the fixed points (0, 0,−y2c4a

−1, y2)
for all y2. Hence, all such values a must be zero. If c3 = 0 then c4 must be nonzero
since otherwise the collineation is a Baer p-element. Therefore, we obtain that an
element σaτ(0,0,0,c4) forces a to be zero. �

Since we may repeat the above argument for any infinite point, we have a trans-
lation group of order q with centers (∞) and (0).

More precisely,

Lemma 39. The derivable affine plane is a semi-translation plane.

Proof. The plane of order q2 admits a translation group of order q2 at least one
of whose orbits is a subplane πo of order q. The group leaving the infinite points
of D pointwise fixed is transitive on the affine points and is transitive on the set of
subplanes of the parallel class containing πo. To see this, note that the elements of
the group Z fixing the infinite points are products of Baer collineations fixing πo

pointwise times translations. Hence, Z permutes the parallel class of Baer subplanes
containing πo. The images of πo by elements of Z admit the same translation group
of order q2 as πo. Hence, the plane is a semi-translation plane. �

Lemma 40. The plane π admits a translation group of order at least q3.

Proof. The elements of Z are products of Baer p-elements and translations. For
any Baer p-element σa, assume that there are fewer than q3 translations τ such
that σaτ is a collineation. Since the translations are formally normal in the group
of the net, it follows that each element σaτ has a unique representation of this
kind. Therefore, the group order is strictly less than qq3. Hence, there exists a
collineation σaτ, for which there is a group Sa of at least q3 translations of the net
such that σaτg is a collineation for all g ∈ Sa. Fix g and consider σaτg(σaτh)−1.
This is a collineation which is also a translation which is not 1 if and only if g 6= h.
Hence, there are at least q3 − 1 non-identity collineations which are translations.
The translation group has order pβ so pβ ≥ q3 − 1 which implies that there is a
translation group of order at least q3.
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Lemma 41. If (∞) is moved by a collineation of G then π is Desarguesian.

�

Proof. We have an elation group of order q with axis x = 0. If (∞) is moved,
we may assume that we have an elation group with axis y = 0 by the existing tran-
sitivity. Hence, the group generated by the elations acts on a regulus net and thus
generated a collineation group isomorphic to SL(2, q). Since the group has orbits
of lengths q + 1 and q2− q, the translation group of order q3pγ has a decomposition
into groups with fixed centers of orders qpα and pβ such that

(q + 1)(qpα − 1) + (q2 − q)(pβ − 1) + 1 = q3pγ.

This equation reduces to:

qpα + pα + qpβ − pβ − q = q2pγ.

Hence it follows that pα − pβ is divisible by q. First assume that pα = pβ. Then

2pα − 1 = qpγ

which is a contradiction. If pα 6= pβ then min(α, β) = r if q = pr which implies that
pα = q. If pα = q then there are at least q+1 centers of translation group of order q2

so that plane is a translation plane. Thus, the plane is a translation plane of order
q2 which admits a collineation group isomorphic to SL(2, q) generated by elations.
Therefore, the plane is Desarguesian by Foulser, Johnson and Ostrom [3].

Lemma 42. The translation group contains a ((∞), `∞)-transitivity. Furthermore,
the translation group has order q3pγ and all infinite points not equal to (∞) are
centers for translation groups of order qpγ.

�

Proof. We may assume that the group fixes (∞). Let the translation group with
center (∞) have order qpδ.

Then,
qpδ − 1 + q(qpα − 1) + (q2 − q)(pβ − 1) + 1 = q3pγ.

This equation is equivalent to:

pδ + qpα + qpβ − pβ − q = q2pγ.

So that pδ − pβ is divisible by q. If pδ 6= pβ then q must divide pδ so that we have a
((∞), `∞)-transitivity. Thus, we are finished or we obtain:

pα + pβ − 1 = qpγ

which is a contradiction.
If pδ = q then pβ = qpρ

pα + pβ − pρ = qpγ.

For this equation, it clearly follows that pα = pρ = pγ . �
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Hence, we obtain:

Theorem 43. (1) A finite derivable partially flag-transitive affine plane of order
q2 with linear group is a nonstrict semitranslation plane with a translation group of
order q3pγ .

(2) The plane admits either an elation group or a Baer group of order q.
(3) Furthermore, in the elation case, either the plane is Desarguesian or the

plane admits a ((∞), `∞)-transitivity, the point (∞) is invariant and the infinite
points not equal to (∞) are centers for translation groups of order qpγ.

Corollary 44. A finite derivable partially flag-transitive affine plane of order q2

where (p, r) = 1 for pr = q, is a nonstrict semitranslation plane with a translation
group of order q3pγ.

We have seen that dual translation planes arising from translation planes with
spreads in PG(3, q) that admit a collineation group of order q2 in the translation
complement and transitive on the components other than a fixed component admit
collineation groups of order q5(q − 1) fixing a derivable net D. Since the plane is
a dual translation plane, there is an elation group of order q2. Hence, there is a
collineation group of order q6(q − 1). We may ask if partially flag-transitive planes
admitting the larger group must be dual translation planes. We first establish some
additional general properties.

Theorem 45. Let π be a finite derivable affine plane of order q2 admitting an elation
group H of order q leaving invariant a derivable net. Then the H-orbits of infinite
points union the center of H define a set of q derivable nets of π.

Proof. Let D denote the derivable net in question and choose (∞) to be the
center of H. Let T be any line of π − D. Then there is a dual translation plane
defined by the algebraic extension process admitting H as a collineation group. But,
it is now clear that any dual translation plane has the property stated in the theorem
and one of the derivable nets is defined by the image of T under H union the center
of H. But, the orbits of H in the dual translation plane share at least the orbit of
π containing T . Since this argument is valid for any such line, it follows that the
affine plane is a union of derivable nets whose infinite points share (∞). �

Lemma 46. If π is a non-Desarguesian partially flag-transitive affine plane of order
q2 with elation group of order q then H is normal in the subgroup of the stabilizer
of the derivable net D that fixes the axis of H.

Proof. We have seen that (∞) is invariant. Since H is the maximal elation group
with axis x = 0 fixing the derivable net, it follows that the stabilizer of x = 0 must
normalize H. �

Hence, we see that

Theorem 47. Let π be a non-Desarguesian partially flag-transitive affine plane of
order q2 with linear group and of elation type. Then the corresponding group G fixes
one derivable net containing the axis of (∞) and acts transitively on the remaining
q − 1 derivable nets sharing (∞).
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Theorem 48. Let π be a non-Desarguesian partially flag-transitive affine plane of
order q2 with linear group and of elation type. If q = pr, assume that (p, r) = 1.

(1) If π admits a p-group S of order q6, or 2q6 if q = 2, then π admits a
collineation group which fixes an infinite point (∞) and is transitive on the remaining
infinite points.

(2) Furthermore, either the plane is a dual translation plane or the full group
acts two-transitively on a set of q derivable nets sharing the infinite point (∞).

Proof. Let H+ denote the full elation group with center (∞). Since H+ is
elementary Abelian, H+ permutes the orbits of H on the line at infinity each of
which defines a derivable net. It follows that the full collineation group of π which
fixes the axis of H+ must normalize H+. Let S be a p-group of order q6. Then S
must fix (∞). Within S, there is a subgroup of order at least q4 which fixes x = 0
and there is a subgroup S− of order at least q2 which fixes a point 0 on x = 0.
Suppose that some element g of S− fixes a line ` incident with 0. So, g leaves
invariant the H+-orbit containing `.

Now assume that there exists another elation group of order q, H1 of H+, of
order q, whose orbits define derivable nets. Then, either H1 is H or H1 ∩H = 〈1〉.
Hence, H is characteristic in H+ and is, hence, normal or 〈H1, H〉 has order q2. That
is, either the plane is a dual translation plane or H is normal in the full collineation
group of the affine plane.

If g fixes ` then g fixes two derivable nets, one of which does not contain `. Hence,
the stabilizer of ` may be regarded as a subgroup of PΓL(4, q)N∗ for some line N ∗

as indicated in the embedding. However, if (p, r) = 1 then the group is linear with
respect to this group. In this setting, we have seen that p can only be 2 and the
order of the stabilizer can only be 2. So, we have a group which acts transitively on
the infinite points not equal to (∞) and two-transitive on the derivable nets sharing
(∞). This completes the proof of the theorem. �

Corollary 49. Let π be a finite derivable partially flag-transitive affine plane with
linear group which is a translation plane and assume that the order is even. Then
π is either a (T, EHp,f,pλ,fλ)-plane or a (T ∗, BHp,pλ,f,fλ)-plane.

Proof. We may assume that we have an elation group of order q and that the
plane is a translation plane.

When q is even and we have a group of order divisible by q − 1 acting on the
derivable net then, since (q−1, q+1) = 1, it follows that any element of order dividing
q − 1 must leave at least two Baer subplanes invariant. We now assume that the
groups in question are in the translation complement. Now there is a subgroup of
GL(2, q)GL(2, q) which normalizes the elation group E of order q. Assuming that
E is a subgroup of the first GL(2, q), it follows that we have a subgroup H∗ of the
first GL(2, q) of order (q − 1)2 which normalizes E so that our group is a subgroup
of H∗GL(2, q). We note that an element of H∗ will fix either exactly two or all
Baer subplanes incident with the zero vector of D. Let g be an element of order
dividing q − 1. Let g = g∗g∗ where g∗ is in H∗ and g∗ is in the second GL(2, q)
and which is generated by Baer collineations of the net. It also follows that g∗ also
fixes exactly two or all Baer subplanes of the net. Since g∗ and g∗ commute and
q − 1 is odd, it follows that an element g will fix either exactly two or all Baer
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subplanes incident with the zero vector. Hence, we may assume that there is a
set of at least q − 1 group elements that fix two Baer subplanes incident with the
zero vector. With the appropriate coordinate change, we notice that these group
elements will act as distinct diagonal elements. These group elements will generate
a group of order dividing (q − 1)4 which is the direct sum of four cyclic groups
of order q − 1. Let q − 1 = Πpαi

i be the prime decomposition. Then there is a
p-subgroup of order pβi

i for βi ≥ αi. Hence, there is a subgroup of order pαi

i . Since
the group is Abelian, it follows that there is a subgroup of order q − 1. Since the
group leaves two Baer subplanes invariant, we clearly have a Hp,f,pλ,fλ group which
gives a (T, EHp,f,pλ,fλ)-plane. �

10.1 p-Groups.

Most of what we developed for partially flag-transitive planes could be generalized
assuming only that there is a linear p-group S of order q5 (or 2q5 if q is even) fixing
the derivable net D.

In this case, S must fix an infinite point (∞) of D. Since S acts on the remaining
q2 − q infinite points of π − D, it follows that the S-orbits cannot all has lengths
strictly larger than q. Hence, there exists an orbit Γ of length ≤ q and, for α ∈ Γ,
Sα has order divisible by q4 or 2q4 if q is even. Then, for ` a line of α, Sα,` has order
divisible by q2 or 2q2. Then the spread S(`) admits a linear group of order q2 or 2q2

that fixes the line N using the associated embedding in PG(3, q). Since the group
is linear, we must have an elation group of order divisible by q with axis N of the
translation plane associated with S(`).

When q is odd, this implies that there can be no Baer p-elements which implies
that the group of order q2 acts regularly on the components of S(`) and this is the
largest possible stabilizer. So, when q is odd, S has an orbit of length exactly q, Sα

is transitive on the affine lines of α, and Sα,` is transitive on the points of `. Thus,
Sα acts transitively and regularly on the affine points.

When q is even assume we have a linear group of at least order 2q2 acting on
the translation associated with the spread S(`). In Johnson [9], the action of linear
groups of order q2 acting on spreads in PG(3, q) is analyzed. It is shown that the
group is transitive or non-Abelian and in the latter case, if not transitive, then has
two orbits of components of length q2/2 and there is an elation group E of order q
which is in the center of the group. Each of the orbits of length q2/2 are q/2 orbits
of length q of E. Choose a group of order 2q2 containing a given group of order
q2. Hence, the two orbits of length q2/2 are inverted or both fixed. The center E is
characteristic in the group of order q2 and hence normal in the group of order 2q2.
If the two orbits are not inverted then there is a Baer group B of order 4 which fixes
an E-orbit.

We may choose the elements of B to have the following general form:




1 a 0 0
0 1 0 0
0 0 1 a
0 0 0 1




[
I 0
0 T

]
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where T is a 2×2 matrix over GF (q). At the same time, we may choose the elements
of group E to have the following form:




1 0 u m(u)
0 1 0 u
0 0 1 0
0 0 0 1


 ∀u ∈ GF (q) and m is a function on GF (q).

Furthermore, the lines of a net defined by the E orbit of y = 0 and incident with
the zero vector are of the form:

y = x

[
u m(u)
0 u

]
∀u ∈ GF (q).

Note that B leaves invariant x = 0 and y = 0 and must leave the orbit of E
containing y = 0 invariant. Since B has order 2s ≥ 4, it follows that B must fix
another component of this E-orbit which we may take as y = x without loss of
generality. This implies that T = 0 so that B commutes with E. But, by the
incompatibility results of Jha and Johnson [6], B has order less than or equal 2.
Hence, the group of order divisible by 2q2 is transitive on the components of S(`)
and the stabilizer of a second component other than N has order exactly 2. Thus,
when q is even and there is a 2-group of order 2q5, there is a subgroup which is
transitive on the affine points.

Hence, in both cases, we obtain a group of order q4 or 2q4 which acts transitive
on the affine points of the derivable affine plane. The argument given in the section
on partially flag-transitive affine planes applies directly to show:

Theorem 50. (1) If a derivable affine plane π of order q2 admits a linear p-group of
order q5 if q is odd or 2q5 if q is even then π contains a group which acts transitively
on the affine points.

(2) Furthermore, the group contains either an elation group of order q or a Baer
group of order q with axis a subplane of D . If the order of the stabilizer of a point
H is at least 2q then the order is 2q and H is generated by an elation group of order
q and a Baer involution with axis in D or by a Baer group of order q and an elation.

(3) π is a nonstrict semi-translation plane of order q2 admitting a translation
group of order q3pγ. Furthermore, either π is a translation plane or there is a unique
((∞), `∞)-transitivity and the remaining infinite points are centers for translation
group of orders qpγ .

(4) If π is non-Desarguesian in the elation case above then π admits a set of q
derivable nets sharing the axis of the elation group of order q.

Proof. Consider part (4). By Johnson [7], every infinite point not in D must
be the center for a translation group of order exactly qpγ. The union of the groups
with centers in D has cardinality q2 + q(qpγ) − q. On the elation side (either the
plane or the derived plane), we have an orbit of length q. Hence,

(qpα − 1) + q(qpβ − 1) + 1 = q2 + q2pγ − q

so that
pα + qpβ = q + qpγ.
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Thus, it follows that pα = q and pβ = pγ . So, this establishes the structure of
the translation groups on the elation side. Moreover, we have that the elation side
plane certainly is a nonstrict semi-translation plane of the required type. But, there
is a ((∞), l∞)-transitivity so the derived plane becomes a nonstrict semitranslation
plane with exactly the same properties since the translations fix the derivable net and
induce translations in the derived plane. In the derived plane, the natural coordinate
structure induced from the original plane shows that there is a (0), `∞)-transitivity
in the Baer side. Hence, the derived plane is also a non-strict semi-translation plane
with the same properties on translation subgroups.

In case (4), we have an elation group H of order q and the argument given
previously in the partially flag-transitive case shows that there is a set of derivable
nets defined by the orbits of H. �

Corollary 51. Let π be a derivable affine plane of order q2 that admits a p-group
of order q6 if q is odd or 2q6 if q is even containing a linear subgroup of order q5 or
2q5 leaving invariant the derivable net D invariant. Assume that when q = pr then
(r, p) = 1 and assume that π admits an elation group H of order q.

(1) Then either the plane is Desarguesian or the center of H is invariant.
(2) Then π admits a collineation group fixing an affine point of order q2 or 2q2

that fixes an infinite point (∞) of D and acts transitively on the remaining infinite
points.

(3) Either the plane is a dual translation plane or the group acts transitively on
a set of q derivable nets sharing (∞).

Proof. Reread the proof of the corresponding proof in the partially flag-transitive
case to realize that the proof provides the proofs to the statements listed. �

11 Subplane Covered Nets.

All of these ideas can be generalized by replacing the word ‘derivable net’ by ‘sub-
plane covered net’ in any of the definitions. Given a subplane covered net S, there
is a projective geometry Σ and a codimension two subspace N of Σ such that the
points, lines, parallel classes, subplanes of S are, respectively, the lines skew to N ,
points of Σ − N , hyperplanes of Σ containing N and planes of Σ each of which
intersects N in a point (see Johnson [15]).

Theorem 52. Let S be a subplane covered net and let T be a transversal to S. Then,
using the embedding of S into the projective space Σ with distinguished codimension
two subspace N , it follows that T , as a set of lines of Σ, is a partial line spread of
Σ which covers Σ−N .

We consider the generalization of the problem on partially flag-transitive affine
planes, this time with respect to a subplane covered net. We leave the following as
an open problem.

Problem: Let π be a finite affine plane containing a subplane covered

net S. If there exists a collineation group G which leaves S invariant and

acts flag-transitively on the flags on lines not in S, can π be determined?
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