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Abstract

In this paper we investigate the existence of solutions on a compact domain

to an hyperbolic differential inclusion in Banach spaces. We shall rely on a

fixed point theorem for condensing maps due to of Martelli.

1 Introduction

This note deals with the existence of solutions defined on a compact domain for the
following hyperbolic differential inclusion (Darboux problem):

∂2u(x, y)

∂x∂y
∈ F (x, y, u(x, y)), (x, y) ∈ J × J = [0, T ]× [0, T ] (1)

u(x, 0) = f(x), u(0, y) = g(y) (2)

where F : J × J × E −→ 2E is a multivalued map with nonempty compact and
convex values, f, g : J → E and (E, |.|) a separable Banach space.

The single and multivalued finite dimensional versions of the problem (1)-(2) were
considered by DeBlasi and Myjak [2], [3] who established the topological regularity
of the solutions set. Kubiaczyk [6] considers the single-valued infinite dimensional
version of the problem where a Kneser-type theorem is proved for the solutions set.
By using a compactness type condition involving the measure of noncompactness,
Papageorgiou gives in [9] existence results for the problem (1)-(2).
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In this note we shall give an existence result for the problem (1)-(2). The method
we are going to use is to reduce the existence of solutions to problem (1)-(2) to the
search for fixed points of a suitable multivalued map on the Banach space C(J ×
J, E). In order to prove the existence of fixed points, we shall rely on a fixed point
theorem for condensing maps due to Martelli [8]. Our result complements the few
existence results on the problem.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from mul-
tivalued analysis which are used throughout this paper. In the sequel we will note
J = J × J.

C(J , E) is the Banach space of continuous functions from J into E with the
norm

‖z‖∞ := sup{|z(x, y)| : (x, y) ∈ J }, for each z ∈ C(J , E).

A measurable function z : J −→ E is Bochner integrable if and only if |z| is
Lebesgue integrable. (For properties of the Bochner integral see Yosida [10]).
L1(J , E) denotes the Banach space of measurable functions z : J −→ E which are
Bochner integrable.

Let (X, ‖ · ‖) be a Banach space. A multivalued map G : X −→ 2X is convex
(closed) valued if G(x) is convex (closed) for all x ∈ X. G is bounded on bounded sets
if G(B) = ∪x∈BG(x) is bounded in X for any bounded set B of X (i.e. sup

x∈B

{sup{‖y‖ :

y ∈ G(x)}} < ∞).
G is called upper semicontinuous (u.s.c.) on X if for each x∗ ∈ X the set G(x∗)

is a nonempty, closed subset of X, and if for each open set B of X containing G(x∗),
there exists an open neighbourhood V of x∗ such that G(V ) ⊆ B.

G is said to be completely continuous if G(B) is relatively compact for every
bounded subset B ⊆ X.

If the multivalued map G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has a closed graph (i.e. xn −→ x∗, yn −→
y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a fixed point if there is x ∈ X such that
x ∈ G(x).

In the following CC(X) denotes the set of all nonempty compact and convex
subsets of X.

A multivalued map G : J −→ CC(E) is said to be measurable if for each w ∈ E

the function Y : J −→ R defined by

Y (x, y) = d(w, G(x, y)) = inf{|w − v| : v ∈ G(x, y)}

is measurable.

Definition 2.1. A multivalued map F : J × E −→ 2E is said to be an L1-
Carathéodory if

(i) (x, y) 7−→ F (x, y, u) is measurable for each u ∈ E;

(ii) u 7−→ F (x, y, u) is upper semicontinuous for almost all (x, y) ∈ J ;
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(iii) For each k > 0, there exists hk ∈ L1(J , R+) such that

‖F (x, y, u)‖ = sup{‖v‖ : v ∈ F (x, y, u)} ≤ hk(t) for all |u| ≤ k

and for almost all (x, y) ∈ J .

An upper semi-continuous map G : X −→ 2X is said to be condensing if for
any subset B ⊆ X with α(B) 6= 0, we have α(G(B)) < α(B), where α denotes the
Kuratowski measure of noncompactness. For properties of the Kuratowski measure,
we refer to Banas and Goebel [1].

We remark that a completely continuous multivalued map is the easiest example
of a condensing map. For more details on multivalued maps see the books of Deim-
ling [4] and Hu and Papageorgiou [5].

We will need the following hypotheses:

(H1) F : J × E −→ CC(E) is an L1- Carathéodory multivalued map and for each
fixed u ∈ C(J , E) the set

SF,u =
{

v ∈ L1(J , E) : v(x, y) ∈ F (x, y, u(x, y)) for a.e. (x, y) ∈ J
}

is nonempty;

(H2) There exists H ∈ L1(J , R+) such that

‖F (x, y, u)‖ := sup{‖v‖ : v ∈ F (x, y, u)} ≤ H(x, y)

for almost all (x, y) ∈ J and all u ∈ E;

(H3) The functions f, g : J → E are continuous with f(0) = g(0);

(H4) For each bounded set B ⊆ C(J , E) and for each (x, y) ∈ J the set

{f(x) + g(y)− f(0) +
∫ x

0

∫ y

0
v(t, s)dtds : v ∈ SF,B}

is relatively compact in E, where SF,B = ∪{SF,u : u ∈ B}.

Remark 2.2. (i) If dimE < ∞, then for each u ∈ C(J , E) the set SF,u is nonempty
(see Lasota and Opial [7]).
(ii) If dimE = ∞ then SF,u is nonempty if and only if the function Y : J −→ R

+

defined by
Y (x, y) := inf{|v| : v(x, y) ∈ F (x, y, u(x, y))}

is measurable (see Hu and Papageorgiou [5]).

Definition 2.3. By a solution of (1)-(2) we mean a function u(., .) ∈ C(J , E) such
that there exists v ∈ L1(J , E) for with we have

u(x, y) = f(x) + g(y)− f(0) +
∫ x

0

∫ y

0
v(t, s)dtds for each (x, y) ∈ J

and with v(t, s) ∈ F (t, s, u(t, s)) a.e. on J .
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Our considerations are based on the following lemmas.

Lemma 2.4. [7]. Let F be a multivalued map satisfying (H1) and let Γ be a linear
continuous mapping from L1(J , E) to C(J , E), then the operator

Γ ◦ SF : C(J , E) −→ CC(C(J , E)), u 7−→ (Γ ◦ SF )(u) := Γ(SF,u)

is a closed graph operator in C(J , E)× C(J , E).

Lemma 2.5. [8]. Let X be a Banach space and N : X −→ CC(X) be a condensing
map. If the set

Ω := {u ∈ X : λu ∈ N(u) for some λ > 1}

is bounded, then N has a fixed point.

3 Main Result

Now, we are able to state and prove our main theorem.

Theorem 3.1. Assume that hypotheses (H1)-(H4) hold. Then the problem (1)- (2)
has at least one solution on J .

Proof. Let C(J , E) be the Banach space provided with the norm

‖u‖∞ := sup{|u(x, y)| : (x, y) ∈ J }, for u ∈ C(J , E).

Transform the problem into a fixed point problem. Consider the multivalued map,
N : C(J , E) −→ 2C(J ,E) defined by:

N(u) =
{

h ∈ C(J , E) : h(x, y) = f(x) + g(y)− f(0) +
∫ x

0

∫ y

0
v(t, s)dtds

}

where

v ∈ SF,u =
{

v ∈ L1(J , E) : v(t, s) ∈ F (t, s, u(t, s)) for a.e. (t, s) ∈ J
}

.

Remark 3.2. It is clear that the fixed points of N are solutions to (1)-(2).

We shall show that N satisfies the assumptions of Lemma 2.5. The proof will be
given in several steps.

Step 1: N(u) is convex for each u ∈ C(J , E).

Indeed, if h1, h2 belong to N(u), then there exist v1, v2 ∈ SF,u such that for each
(x, y) ∈ J we have

hi(x, y) = f(x) + g(y)− f(0) +
∫ x

0

∫ y

0
vi(t, s)dtds, i = 1, 2.
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Let 0 ≤ α ≤ 1. Then for each (x, y) ∈ J we have

(αh1 + (1− α)h2)(x, y) = f(x) + g(y)− f(0) +
∫ x

0

∫ y

0
[αv1(t, s) + (1− α)v2(t, s)]ds.

Since SF,u is convex (because F has convex values) then

αh1 + (1− α)h2 ∈ N(u).

Step 2: N is bounded on bounded sets of C(J , E).

Indeed, it is enough to show that there exists a positive constant c such that for
each h ∈ N(u), u ∈ Br = {u ∈ C(J , E) : ‖u‖∞ ≤ r} one has ‖h‖∞ ≤ c.

If h ∈ N(u), then there exists v ∈ SF,u such that for each (x, y) ∈ J we have

h(x, y) = f(x) + g(y)− f(0) +
∫ x

0

∫ y

0
v(t, s)dtds.

By (H1) we have for each (x, y) ∈ J that

‖h(x, y)‖ ≤ |f(x)|+ |g(y)|+ |f(0)|+
∫ x

0

∫ y

0
hr(t, s)dtds.

Then

‖h‖∞ ≤ ‖f‖∞ + ‖g‖∞ + |f(0)|+
∫ T

0

∫ T

0
hr(t, s)dtds = c.

Step 3: N sends bounded sets of C(J , E) into equicontinuous sets.

Let (x1, y1), (x2, y2) ∈ J , x1 < x2, y1 < y2 and Br be a bounded set of C(J , E).
For each u ∈ Br and h ∈ N(u), there exists v ∈ SF,u such that

h(x, y) = f(x) + g(y)− f(0) +
∫ x

0

∫ y

0
v(t, s)dtds.

Thus we obtain

‖h(x2, y2)− h(x1, y1)‖ ≤ |f(x2)− f(x1)|+ |g(y2)− g(y1)|+
∫ x2

x1

∫ y2

y1

|v(t, s)|dtds

≤ |f(x2)− f(x1)|+ |g(y2)− g(y1)|+
∫ x2

x1

∫ y2

y1

hr(t, s)dtds.

As (x2, y2) −→ (x1, y1) the right-hand side of the above inequality tends to zero.
As a consequence of Step 2, Step 3 and (H4) together with the Arzela-Ascoli

theorem we can conclude that N is completely continuous and therefore a condensing
map.

Step 4: N has a closed graph.

Let un −→ u∗, hn ∈ N(un), and hn −→ h∗. We shall prove that h∗ ∈ N(u∗).
hn ∈ N(un) means that there exists vn ∈ SF,un

such that

hn(x, y) = f(x) + g(y)− f(0) +
∫ x

0

∫ y

0
vn(t, s)dtds, (x, y) ∈ J .
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We must prove that there exists g∗ ∈ SF,u∗ such that

h∗(x, y) = f(x) + g(y)− f(0) +
∫ x

0

∫ y

0
v∗(t, s)dtds, (x, y) ∈ J .

Now, we consider the linear continuous operator

Γ : L1(J , E) −→ C(J , E)

v 7−→ Γ(v)(x, y) =
∫ x

0

∫ y

0
v(t, s)dtds, (x, y) ∈ J .

From Lemma 2.4, it follows that Γ ◦ SF is a closed graph operator.

Clearly we have

‖(hn(x, y)− f(x)− g(y)+ f(0))− (h∗(x, y)− f(x)− g(y)+ f(0))‖∞→ 0 as n →∞.

Moreover from the definition of Γ we have

(hn(x, y)− f(x)− g(y) + f(0)) ∈ Γ(SF,un
).

Since un −→ u∗, it follows from Lemma 2.4 that

h∗(x, y)− f(x)− g(y) + f(0) =
∫ x

0

∫ y

0
v∗(t, s)dtds, (x, y) ∈ J

for some v∗ ∈ SF,u∗.

Step 5: The set

Ω := {u ∈ C(J , E) : λu ∈ N(u) for some λ > 1}

is bounded.

Let u ∈ Ω. Then λu ∈ N(u) for some λ > 1. Thus there exists v ∈ SF,u such
that

u(x, y) = λ−1f(x) + λ−1g(y)− λ−1f(0) + λ−1
∫ x

0

∫ y

0
v(t, s)dtds, (x, y) ∈ J .

This implies by (H2) that for each (x, y) ∈ J we have

‖u(x, y)‖ ≤ |f(x)|+ |g(y)|+ |f(0)|+
∫ x

0

∫ y

0
H(t, s)dtds.

Thus

‖u‖∞ ≤ ‖f‖∞ + ‖g‖∞ + |f(0)|+
∫ T

0

∫ T

0
H(t, s)dtds = K.

This shows that Ω is bounded.

Set X := C(J , E). As a consequence of Lemma 2.5 we deduce that N has a
fixed point which is a solution of (1)-(2) on J .
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