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Abstract

If K � G � Q is a group extension, then any automorphism of G which
sends K into itself, induces automorphisms respectively on K and on Q. This
subgroup of automorphisms of G is denoted by Aut(G,K) and is called the
automorphism group of the extension K � G � Q. After establishing an
interesting group action of Aut(K)×Aut(Q) on the set H2(Q,K) of all 2-
cohomology classes of Q with coefficients in K, a full description of Aut(G,K)
and Out(G,K) = Aut(G,K)/Inn(G) is obtained in terms of various com-

mutative diagrams. This picture is as general as possible, hence covering
and further complementing similar ideas developed earlier by C. Wells ([5]),
P. Conner & F. Raymond ([1]), D.J.S. Robinson ([3], [4]) and the author ([2]).

1 Notations and preliminaries

If G is a group and x ∈ G, then µ(x) is the inner automorphism determined by x
(sending y ∈ G to xyx−1), µ(G) is known as the inner automorphism group Inn(G)
and Out(G) = Aut(G)/Inn(G) is called the outer automorphism group of G. Write

p : Aut(G) � Out(G) for the natural projection. For a subset X in G, CGX denotes
the centralizer and NGX is the normalizer of X in G. Let Z(G) be the center of G.

In the sequel of this paper, aspects of group cohomology (with non-abelian co-
efficients) will be intensively used. Therefore, we review some basic facts of this
theory and meanwhile fix additional notations and terminology.
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Each group extension K � G
j

� Q induces, by choosing a normalized section
s : Q→ G (j ◦ s = 1 and s(1) = 1) and via conjugation in G, a map (not necessarily
a homomorphism!) ϕ : Q → Aut(K) sending x ∈ Q to the K-automorphism
ϕ(x) : k ∈ K 7→ s(x) k s(x)−1. This induces a homomorphism ψ : Q → Out(K)
which is called an abstract kernel. We say that the extension realizes ψ or that it is
compatible with ψ.

Two extensions G and G′, both with kernel K and quotient Q, are equivalent if
and only there is a homomorphism f : G→ G′ such that

K � G � Q
|| ↓ f ||
K � G′

� Q

commutes. Write Extψ(Q,K) for the set of equivalence classes of group extensions
realizing an abstract kernel ψ : Q→ Out(K).

A 2-cocycle of Q with coefficients in K is a pair (ϕ, c), where ϕ : Q → Aut(K)
and c : Q×Q→ K are maps satisfying

{

ϕ(x) ϕ(y) = µ(c(x, y)) ϕ(xy)
ϕ(x)(c(y, z)) · c(x, yz) = c(x, y) · c(xy, z)

for all x, y, z in Q. We always assume that ϕ and c are normalized, i.e. ϕ(1)=1 and,
for all x ∈ Q, c(x, 1) = c(1, x) = 1. Each 2-cocycle (ϕ, c) determines an abstract
kernel ψ = p ◦ ϕ : Q → Out(K). For a fixed abstract kernel ψ : Q → Out(K),
we write Z2

ψ(Q,K) for the set of all 2-cocycles of Q with coefficients in K and
inducing ψ. Two 2-cocycles (ϕ, c), (ϕ′, c′) are cohomologous (write (ϕ, c) ∼ (ϕ′, c′))
if and only if there exists a normalized map (“a cochain”) λ : Q→ K such that, for
all x, y ∈ Q:

{

ϕ′(x) = µ(λ(x)) ϕ(x)
c′(x, y) = λ(x) · ϕ(x)(λ(y)) · c(x, y) · λ(xy)−1

Let H2
ψ(Q,K) denote the set of all cohomology classes of Q with coefficients in K

and inducing the abstract kernel ψ.

A 2-cocycle (ϕ, c) ∈ Z2
ψ(Q,K) gives rise to an extension G = K ×(ϕ,c) Q of K

by Q realizing ψ, with group operation

∀k, l ∈ K ∀x, y ∈ Q (k, x) ·(ϕ,c) (l, y) = (k · ϕ(x)(l) · c(x, y), xy).

Conversely, by choosing a normalized section s : Q → G of an extension K �

G
j

� Q realizing an abstract kernel ψ, we obtain a 2-cocycle (ϕ, c) ∈ Z2
ψ(Q,K)

given by ϕ : Q → Aut(K) sending x ∈ Q 7→ µ(s(x))|K and, for x, y ∈ Q, c(x, y) =
s(x) s(y) s(xy)−1. This establishes a one-to-one correspondence between Extψ(Q,K)
and H2

ψ(Q,K). Moreover, if Extψ(Q,K) is not empty, then H2
ψ(Q,Z(K)) acts on it

simply transitively. If we take H2(Q,K) =
⋃

ψH
2
ψ(Q,K), where ψ runs through all

abstract kernels Q→ Out(K), then H2(Q,K) is in one-to-one correspondence with
E(Q,K) =

⋃

ψ Extψ(Q,K), the set of all equivalence classes of group extensions with
kernel K and quotient Q.
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2 Crucial group actions

In this section, we introduce group actions which play a crucial role in the sequel.

Proposition 2.1. Assume an abstract kernel Q→ Out(K). There is a group action

of Aut(K) on H2(Q,K) defined as follows:

Aut(K)×H2(Q,K) →H2(Q,K) : (ν,< ϕ, c >) 7→ < µ(ν) ◦ ϕ, ν ◦ c >

Proof. Assume (ϕ, c) ∈ Z2
ψ(Q,K) and ν ∈ Aut(K). We claim that (µ(ν)◦ϕ, ν◦c)

∈ Z2
µ(p(ν))◦ψ(Q,K). Take x, y, z in Q. First there is

µ[ν(c(x, y))] = ν ◦ µ(c(x, y)) ◦ ν−1 = ν[ϕ(x)ϕ(y)ϕ(xy)−1]ν−1

= (νϕ(x)ν−1)(νϕ(y)ν−1)(νϕ(xy)ν−1)−1

and secondly we verify,

ν(c(x, y)) · ν(c(xy, z)) = ν[c(x, y) · c(xy, z)] = ν[ϕ(x)(c(y, z)) · c(x, yz)]

= (νϕ(x)ν−1)(ν(c(y, z))) · ν(c(x, yz)).

If now (ϕ, c)∼(ϕ′, c′), then (µ(ν) ◦ϕ, ν ◦ c)∼(µ(ν) ◦ϕ′, ν ◦ c′). Indeed, let λ : Q→K
be the cochain such that ϕ′ = µ(λ)ϕ. Then µ(ν) ◦ ϕ′ =µ(ν ◦ λ)(µ(ν) ◦ ϕ) and, for
each x, y ∈ Q:

ν(c′(x, y)) = ν[λ(x) · ϕ(x)(λ(y)) · c(x, y) · λ(xy)−1]

= (ν ◦ λ)(x) · (νϕ(x)ν−1)((ν ◦ λ)(y)) · ν(c(x, y)) · ((ν ◦ λ)(xy))−1.

We now easily conclude that we have a group action. �

Proposition 2.2. Assume an abstract kernel Q→ Out(K). There is a group action

of Aut(Q) on H2(Q,K) defined as follows:

Aut(Q)×H2(Q,K) → H2(Q,K) : (Φ, < ϕ, c >) 7→ < ϕ ◦ Φ−1, c ◦ (Φ−1 × Φ−1) >

Proof. Take (ϕ, c) ∈ Z2
ψ(Q,K) and Φ ∈ Aut(Q). Obviously (ϕ ◦ Φ−1, c ◦ (Φ−1 ×

Φ−1)) ∈ Z2
ψ◦Φ−1(Q,K). Moreover, if (ϕ, c) ∼ (ϕ′, c′) and λ : Q → K is the corre-

sponding cochain, then (ϕ ◦ Φ−1, c ◦ (Φ−1 × Φ−1)) ∼ (ϕ′ ◦Φ−1, c′ ◦ (Φ−1 ×Φ−1)) via
the cochain λ ◦ Φ−1 : Q→ K. Thus we have a group action. �

Combining the above results, one easily obtains that

Proposition 2.3. Assume an abstract kernel Q→ Out(K). There is a group action

of Aut(K)× Aut(Q) on H2(Q,K) defined as follows:

(Aut(K)× Aut(Q))×H2(Q,K) →H2(Q,K) : ((ν,Φ), < ϕ, c >) 7→ (ν,Φ)< ϕ, c >

where (ν,Φ)< ϕ, c >=< µ(ν) ◦ ϕ ◦ Φ−1, ν ◦ c ◦ (Φ−1 × Φ−1) >.
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3 A fundamental automorphism diagram

Fix a group extension K � G � Q. An automorphism σ in Aut(G,K) restricts
to an automorphism of K and consequently induces an automorphism of Q. Write
A : Aut(G,K) → Aut(K) for the restriction to K and B : Aut(G,K) → Aut(Q) for
the corresponding homomorphism. So, each σ gives rise to a commutative diagram:

K � G � Q
↓ A(σ) ↓ σ ↓B(σ)
K � G � Q

Let Θ : Aut(G,K) → Aut(K) × Aut(Q) denote the homomorphism sending σ 7→
(A(σ), B(σ)). A pair (ν,Φ)∈Aut(K)×Aut(Q) is called inducible ([5]) if there is an
automorphism σ ∈Aut(G,K) inducing ν on K and Φ on Q. The set of inducible
pairs is hence precisely Im(Θ).

An important observation, using the group action introduced in Proposition 2.3,
is

Proposition 3.1. Assume K � G � Q is an extension determing a cohomology

class a = < ϕ, c > ∈ H2(Q,K). Then, for all σ ∈ Aut(G,K), (A(σ),B(σ)) < ϕ, c >=
< ϕ, c >.

Proof. Take G = K ×(ϕ,c) Q and consider σ ∈ Aut(G,K). Construct the map
ξσ : Q→ K defined by σ(1, x) = (ξσ(x), B(σ)(x)) (x ∈ Q). For every (k, x) ∈ G,

(k, x) = (k, 1) ·(ϕ,c) (1, x) = (1, x) ·(ϕ,c) (ϕ(x)−1(k), 1).

Therefore we find that

σ(k, 1) ·(ϕ,c) σ(1, x) = (A(σ)(k), 1) ·(ϕ,c) (ξσ(x), B(σ)(x)) = (A(σ)(k) · ξσ(x), B(σ)(x))

while

σ(1, x) ·(ϕ,c) σ(ϕ(x)−1(k), 1)= (ξσ(x), B(σ)(x)) ·(ϕ,c) (A(σ)(ϕ(x)−1(k)), 1)

= (ξσ(x) · ϕ(B(σ)(x))[A(σ)(ϕ(x)−1(k))], B(σ)(x)).

So ξσ must satisfy

∀x ∈ Q µ(ξσ(x)
−1) ◦ A(σ) = ϕ(B(σ)(x)) ◦ A(σ) ◦ ϕ(x)−1 (1)

and because B(σ) ∈ Aut(Q), this is equivalent to

µ(A(σ)) ◦ ϕ ◦B(σ)−1 = µ(ξσ ◦B(σ)−1) ◦ ϕ.

Now, take x, y ∈ Q and obtain that

σ[(1, x) ·(ϕ,c) (1, y)] = σ[(c(x, y), 1) ·(ϕ,c) (1, xy)] = (A(σ)(c(x, y)) · ξσ(xy), B(σ)(xy))

which must be equal to

σ(1, x) ·(ϕ,c) σ(1, y)= (ξσ(x), B(σ)(x)).(ϕ,c)(ξσ(y), B(σ)(y))

= (ξσ(x) · ϕ(B(σ)(x))(ξσ(y)) · c(B(σ)(x), B(σ)(y)), B(σ)(xy))
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So we have that

A(σ)(c(x, y)) = ξσ(x) · ϕ(B(σ)(x))(ξσ(y)) · c(B(σ)(x), B(σ)(y)) · ξσ(xy)
−1 (2)

and this translates into

(A(σ) ◦ c ◦ (B(σ)−1 ×B(σ)−1))(x, y)

= (ξσ◦B(σ)−1)(x) · ϕ(x)[(ξσ◦B(σ)−1)(y)] · c(x, y) · ((ξσ◦B(σ)−1)(xy))−1.

We conclude that (A(σ),B(σ))< ϕ, c >=< ϕ, c >. �

As to the converse, one has

Proposition 3.2. Let K � G � Q be a group extension determing a cohomology

class a = < ϕ, c > ∈ H2(Q,K). Assume ν ∈ Aut(K) and Φ ∈ Aut(Q) such that
(ν,Φ)< ϕ, c >= < ϕ, c >. Then there exists σ ∈ Aut(G,K) such that Θ(σ) = (ν,Φ).

Proof. Write a =< ϕ, c > and consider G as K ×(ϕ,c) Q. Let ν ∈ Aut(K) and
Φ ∈ Aut(Q). If (ν,Φ)< ϕ, c > = < ϕ, c >, then there is a cochain λ : Q → K such
that

η : K ×(µ(ν) ◦ϕ ◦Φ−1,ν ◦ c ◦ (Φ−1
◦Φ−1)) Q→ K ×(ϕ,c) Q : (k, x) 7→ (k · λ(x), x)

is a group isomorphism. Moreover, one can introduce another isomorphism ς as
follows:

ς : K ×(ϕ,c) Q→ K ×(µ(ν) ◦ϕ ◦Φ−1,ν ◦ c ◦ (Φ−1
◦Φ−1)) Q : (k, x) 7→ (ν(k),Φ(x)).

Indeed, let k, k′ ∈ K and x, x′ ∈ Q, then

ς(k, x) ·(µ(ν) ◦ϕ ◦Φ−1,ν ◦ c ◦ (Φ−1
◦Φ−1)) ς(k

′, x′)

= (ν(k),Φ(x)) ·(µ(ν) ◦ϕ ◦Φ−1,ν ◦ c ◦ (Φ−1
◦Φ−1)) (ν(k′),Φ(x′))

= (ν(k) · ν(ϕ(x)(k′)) · ν(c(x, y)),Φ(xx′)) = ς[(k, x) ·(ϕ,c) (k′, x′)].

Consequently, σ = η ◦ ς ∈ Aut(G,K) and A(σ) = ν, B(σ) = Φ. �

This leads to an explicit description of the inducible pairs of a group extension.

Theorem 3.3. If K � G � Q is an extension compatible with ψ : Q → Out(K)
and a ∈ H2

ψ(Q,K) is the corresponding cohomology class, then

Im(Θ) = StabAut(K)×Aut(Q)a.

Now recall the following definition (introduced in [5]):

Definition 3.4. Let ψ : Q → Out(K) be an abstract kernel. A pair (ν,Φ) in

Aut(K) × Aut(Q) is called compatible with respect to ψ if and only if ψ ◦ Φ =
µ(p(ν))◦ψ. The set of all compatible pairs with respect to ψ is denoted by Comp(ψ).

Note that

Proposition 3.5. Assume K � G � Q is an extension compatible with ψ : Q →
Out(K). Then Im(Θ) ⊆ Comp(ψ) ⊆ p−1(NOut(K)ψ(Q))× Aut(Q).

Proof. If (ν,Φ) ∈ Aut(K)×Aut(Q) stabilizes the cohomology class a ∈ H 2
ψ(Q,K)

corresponding to the given extension, then µ(p(ν)) ◦ ψ = ψ ◦ Φ. This also implies
that p(ν) belongs to the normalizer of ψ(Q) in Out(K). �



366 W. Malfait

For an abstract kernel ψ : Q → Out(K), the restriction map Aut(K) →
Aut(Z(K)) induces a map Out(K) → Aut(Z(K)), which defines a Q-module struc-
ture on Z(K) (also write ψ for this map). It is well known ([5]) that

Theorem 3.6. Let K � G � Q be a group extension realizing an abstract kernel

ψ : Q→ Out(K). Then

Ker(Θ) = Ker(A) ∩Ker(B) ∼= Z1
ψ(Q,Z(K)).

Proof. To fix notations, we sketch the proof of this result. Let a = < ϕ, c >,
G = K ×(ϕ,c) Q and σ ∈ Ker(Θ). Then the map ξσ : Q→ K, defined by σ(1, x) =
(ξσ(x), x), takes its values in Z(K) (because of (1)) and, translating (2), it satisfies
ξσ(xy) = ξσ(x) ·ϕ(x)(ξσ(y)) (for all x, y ∈ Q), which means that ξσ ∈ Z

1
ψ(Q,Z(K)).

It is now an easy exercise to show that ξ : Ker(Θ) → Z1
ψ(Q,Z(K)) sending σ 7→ ξσ

is an isomorphism. �

Definition 3.7. For each extension K � G
j
� Q, realizing an abstract kernel

ψ : Q→ Out(K), we define B
1
ψ(Q,Z(K)) = {ξµ(g) ‖ g ∈ CGK, j(g) ∈ Z(Q)}.

At first sight, this notion might look rather peculiar but in the following propo-
sition, we exhibit its importance in this context.

Proposition 3.8. Assume K � G � Q is a group extension compatible with

ψ : Q→ Out(K). Then

1. B1
ψ(Q,Z(K)) is a subgroup of B

1
ψ(Q,Z(K)).

2. B
1
ψ(Q,Z(K)) is a subgroup of Z1

ψ(Q,Z(K)).

3. Ker(Θ) ∩ Inn(G) ∼= B
1
ψ(Q,Z(K)) ∼= (j−1(Z(Q)) ∩ CGK)/Z(G).

Proof. Let G = K ×(ϕ,c) Q. Take γ ∈ B1
ψ(Q,Z(K)) sending x ∈ Q 7→

k0 · ϕ(x)(k−1
0 ), for some k0 ∈ Z(K). Then λ = ξµ(k0,1) ∈ B

1
ψ(Q,Z(K)). Now take

k0 ∈ K and x0 ∈ Q. Then µ(k0, x0) ∈ Ker(Θ) if and only if (k0, x0) ∈ CG(K) and
x0 ∈ Z(Q). Therefore, by definition and because of the proof of Proposition 3.6,

B
1
ψ(Q,Z(K)) is exactly the subgroup of Z1

ψ(Q,Z(K)) ∼= Ker(Θ) corresponding to
Ker(Θ) ∩ Inn(G). �

Now define

Definition 3.9. Let K � G � Q be a group extension compatible with ψ : Q →

Out(K). Write H
1
ψ(Q,Z(K)) = Z1

ψ(Q,Z(K))/
B

1

ψ(Q,Z(K))
.

Obviously, B
1
ψ(Q,Z(K))/B1

ψ(Q,Z(K)) � H1
ψ(Q,Z(K)) � H

1
ψ(Q,Z(K)) is ex-

act.
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We are now ready to summarize the above results in the following

Theorem 3.10. If ψ : Q → Out(K) is an abstract kernel and K � G
j

� Q is

an extension compatible with ψ determining a cohomology class a ∈ H 2
ψ(Q,K), then

there is a commutative diagram of groups and group homomorphisms such that both

the rows and the columns are exact sequences:

B
1

ψ(Q,Z(K)) � Inn(G)
Θ
�

G/(j−1(Z(Q)) ∩ CGK)

� � �
Z1
ψ(Q,Z(K)) � Aut(G,K)

Θ
� StabAut(K)×Aut(Q)a

� � �

H
1
ψ(Q,Z(K)) � Out(G,K) � Q0

(3)

Proof. Most of the proof of this theorem is already finished by combining The-
orems 3.3, 3.6 and Proposition 3.8. To understand the upper-right corner of the
diagram, it is sufficient to realize that Inn(G) ∼= G/Z(G). �

Remark 3.11. The middle row in (3) is the main component in the diagram and
is conceptually the exact sequence originally due to C. Wells ([5]) although he did
not describe the image of Θ concretely (as being a stabilizer). Additionally, here we
also obtain information on the outer automorphisms of the group extension.

4 Alternative automorphism diagrams

Using the terminology and notations introduced above, what can be done to reach
alternative diagrams which provide extra information on the (outer) automorphism
group of a group extension K � G � Q, is concentrating on the homomorphisms
A : Aut(G,K) → Aut(K) and B : Aut(G,K) → Aut(Q) respectively, rather than
on Θ : Aut(G,K) → Aut(K)× Aut(Q) as we did above.

For example, it is natural to define the following subgroup of Aut(K):

Definition 4.1. Assume K and Q are groups such that H2(Q,K) is non-empty.

For each element a =< ϕ, c >∈ H2(Q,K), we define the subgroup MK,a of Aut(K)
as

MK,a = {ν ∈ Aut(K) ‖ ∃Φ ∈ Aut(Q) such that (ν,Φ)< ϕ, c >=< ϕ, c >}.

Of course,

Proposition 4.2. Assume K � G � Q an extension determing a cohomology

class a ∈ H2(Q,K). Then,

Im(A) = MK,a ⊆ p−1(NOut(K)ψ(Q)).

Proof. Because of Proposition 3.1, we immediately have that for each σ ∈
Aut(G,K), A(σ) ∈ MK,a. Conversely, if ν ∈ MK,a with a =< ϕ, c >, then there
exists Φ ∈ Aut(Q) such that (ν,Φ)< ϕ, c > =< ϕ, c > and because of Proposition
3.2, there is an automorphism σ of G such that A(σ) = ν. �
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Analogously, we introduce the following subgroup of Aut(Q):

Definition 4.3. Let K and Q be groups such that H2(Q,K) is non-empty. For each

element a =< ϕ, c >∈ H2(Q,K), we define the subgroup MQ,a of Aut(Q) as

MQ,a = {Φ ∈ Aut(Q) ‖ ∃ν ∈ Aut(K) such that (ν,Φ)< ϕ, c >=< ϕ, c >}.

Then

Proposition 4.4. If K � G � Q is a group extension determing a cohomology

class a ∈ H2(Q,K), then Im(B) = MQ,a.

Proof. Proposition 3.1 implies that for each σ ∈ Aut(G,K), B(σ) ∈ MQ,a.
Conversely, for any Φ ∈ MQ,a, with a =< ϕ, c >, there exists ν ∈ Aut(K) such
that (ν,Φ)< ϕ, c > =< ϕ, c > and it follows from Proposition 3.2 that there exists
σ ∈ Aut(G,K) such that B(σ) = Φ. �

Referring to the action of Aut(K) on H2(Q,K) (as introduced in Proposi-
tion 2.1), it is now also easy to conclude that

Proposition 4.5. Let K � G � Q be an extension. Write ψ : Q → Aut(K)
for the induced abstract kernel and a ∈ H2

ψ(Q,K) for the corresponding cohomology

class. Then

A(Ker(B)) = StabAut(K)a ⊆ p−1(COut(K)ψ(Q)).

Proof. Assume σ ∈ Aut(G,K) such that B(σ) = 1Q, the identity on Q. Because
of Proposition 3.1, (A(σ), 1Q) stabilizes a. It immediately follows that A(σ) ∈
StabAut(K)a. Conversely, let ν ∈ StabAut(K)a. Then (ν, 1Q) stabilizes a and the

desired result now follows from Proposition 3.2. Finally, note that if ν ∈ Aut(K)
belongs to the stabilizer of a∈H2

ψ(Q,K), then µ(p(ν)) ◦ψ = ψ. So StabAut(K)a is

contained in the inverse image in Aut(K) of the centralizer of ψ(Q) in Out(K). �

Using the action of Aut(Q) on H2(Q,K) (as introduced in Proposition 2.2), we
have

Proposition 4.6. Assume K � G � Q is a group extension compatible with an

abstract kernel ψ : Q→ Out(K) and with cohomology class a ∈ H 2
ψ(Q,K). Then

B(Ker(A)) = StabAut(Q)a ⊆ {Φ ∈ Aut(Q) ‖ ψ ◦ Φ = ψ}.

Proof. If for σ ∈ Aut(G,K), A(σ) = 1K, the identity on K, then (1K, B(σ))
belongs to the stabilizer of a (Proposition 3.1). Thus B(σ) ∈ StabAut(Q)a. Con-

versely, if Φ ∈ StabAut(Q)a, then (1K,Φ) stabilizes a ∈ H2
ψ(Q,K) (observe that

ψ ◦ Φ = ψ) and applying Proposition 3.2 finishes the proof. �
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Combining these properties, we conclude with

Theorem 4.7. Let ψ : Q → Out(K) be an injective abstract kernel and K �

G
j

� Q is an extension realizing ψ and determining a cohomology class a ∈ H 2
ψ(Q,K).

Then there are two commutative diagrams built with exact rows and columns:

Γ0
A=Ker(A) ∩ Inn(G) � Inn(G)

A
� G/CGK� � �

Γ1
A=Ker(A) � Aut(G,K)

A
� MK,a

� � �

Γ2
A=Ker(A)/(Ker(A)∩Inn(G)) � Out(G,K) � Q1

(4)

and

B
1
ψ(Q,Z(K)) � Γ0

A

B
� Ker(ψ)/(Ker(ψ) ∩ Z(Q))

� � �

Z1
ψ(Q,Z(K)) � Γ1

A

B
� StabAut(Q)a

� � �

H
1
ψ(Q,Z(K)) � Γ2

A � Q3

(5)

where

Q1 = MK,a/A(Inn(G))
∼= MK,a/ψ(Q)

with MK,a = MK,a/Inn(K) ⊆ Out(K) and Q1 � NOut(K)ψ(Q)/ψ(Q).

Proof. This easily follows from Propositions 4.2 and 4.6. The reader only has to
note that B(Ker(A) ∩ Inn(G)) is isomorphic to

(

CGK/Z(G)

)

/(
(j−1(Z(Q)) ∩ CGK)/Z(G)

) ∼= Ker(ψ)/(Ker(ψ) ∩ Z(Q))

because B
1
ψ(Q,Z(K)) ∼= (j−1(Z(Q)) ∩ CGK)/Z(G) (Proposition 3.8), Γ0

A
∼=

CGK/Z(G) and Ker(ψ) ∼= CGK/Z(K). Inn(K) clearly is normal in MK,a. Since

A(Inn(G)) ∼= G/CGK and Inn(K) ∼= K/Z(K), it follows that A(Inn(G))/Inn(K)
∼=

Q/Ker(ψ)
∼= ψ(Q). Therefore, Q1

∼= MK,a/ψ(Q) and the announced embedding

follows from Proposition 4.2. �

Somehow “dual” to the above is the following:

Theorem 4.8. Assume K � G
j
� Q is a group extension compatible with ψ : Q→

Out(K) and corresponding to a cohomology class a ∈ H 2
ψ(Q,K). Then the following

are commutative diagrams built with exact rows and columns:

Γ0
B=Ker(B) ∩ Inn(G) � Inn(G)

B
� Inn(Q)

� � �

Γ1
B=Ker(B) � Aut(G,K)

B
� MQ,a

� � �

Γ2
B=Ker(B)/(Ker(B)∩Inn(G)) � Out(G,K) � Q2

(6)
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and

B
1
ψ(Q,Z(K)) � Γ0

B

A
� p−1(ψ(Z(Q)))

� � �

Z1
ψ(Q,Z(K)) � Γ1

B

A
� StabAut(K)a

� � �

H
1
ψ(Q,Z(K)) � Γ2

B � Q4

(7)

where

Q4 = StabAut(K)a/A(Ker(B) ∩ Inn(G))
∼= StabAut(K)a/ψ(Z(Q))

with

StabAut(K)a=StabAut(K)a/Inn(K)⊆Out(K)

and

Q4 �COut(K)ψ(Q)/ψ(Z(Q)).

Proof. This is an immediate consequence of Propositions 4.4 and 4.5. Only
observe that if a =< ϕ, c > and (k, x) ∈ G = K ×(ϕ,c) Q, then A(µ(k, x)) = µ(k) ◦
ϕ(x) and B(µ(k, x)) = µ(x). This implies that Ker(B) ∩ Inn(G) ∼= j−1(Z(Q))/Z(G)
and A(Ker(B)∩ Inn(G)) is the preimage in Aut(K) of ψ(Z(Q)). Obviously, Inn(K)
is contained in StabAut(K)a and hence Q4 is isomorphic to StabAut(K)a/ψ(Z(Q)).

And because of Proposition 4.5, Q4 hence embeds into COut(K)ψ(Q)/ψ(Z(Q)). �

The relation between diagram (3) and the alternative automorphism diagrams
established above, is given by:

Proposition 4.9. If K � G
j

� Q is a group extension inducing an abstract kernel

ψ : Q → Out(K) and a cohomology class a ∈ H2
ψ(Q,K), then the following are

commutative diagrams built with exact rows and columns:

Ker(ψ)/(Ker(ψ)∩Z(Q)) � G/(j−1(Z(Q))∩CGK) � G/CGK� � �

StabAut(Q)a � StabAut(K)×Aut(Q)a � MK,a

� � �

Q3 � Q0 � Q1

and
p−1(ψ(Z(Q))) � G/(j−1(Z(Q)) ∩ CGK) � Inn(Q)

� � �

StabAut(K)a � StabAut(K)×Aut(Q)a � MQ,a

� � �

Q4 � Q0 � Q2

Proof. This follows immediately when applying the canonical epimorphisms
Aut(K)× Aut(Q) � Aut(K) and Aut(K)× Aut(Q) � Aut(Q) on Im(Θ). �
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We conclude with a “cube automorphism diagram”, which arises by glueing
together diagrams (4), (5), (6) and (7).

Theorem 4.10. Let K � G � Q be an extension realizing ψ : Q → Out(K) and

with a ∈ H2
ψ(Q,K) as cohomology class. Then the following “cube” is a commutative

diagram built with exact rows and columns:

Ker(ψ)/(Ker(ψ) ∩ Z(Q)) //

��

Inn(Q) //

��

∆1

��

Γ0
A

B
77

o
o

o
o

o
o

o
o

o
o

//

��

Inn(G)

B
77

o
o

o
o

o
o

o
o

o

A //

��

G/CGK

77
o

o
o

o
o

o
o

o
o

o

��

B
1
ψ(Q,Z(K))

77
o

o
o

o
o

o
o

o
o

o

//

��

Γ0
B

77
o

o
o

o
o

o
o

o
o

o
o A //

��

p−1(ψ(Z(Q)))

77
o

o
o

o
o

o
o

o

��

StabAut(Q)a //

��

MQ,a
//

��

∆2

��

Γ1
A

B
77

o
o

o
o

o
o

o
o

o
o

//

��

Aut(G,K)

B
77

o
o

o
o

o
o

o
o

o

A //

��

MK,a

77
o

o
o

o
o

o
o

o
o

o
o

��

Z1
ψ(Q,Z(K))

77
o

o
o

o
o

o
o

o
o

o

//

��

Γ1
B

77
o

o
o

o
o

o
o

o
o

o
o A //

��

StabAut(K)a

77
o

o
o

o
o

o
o

o

��

Q3
// Q2

// ∆3

Γ2
A

77
o

o
o

o
o

o
o

o
o

o
o

o

// Out(G,K)

77
o

o
o

o
o

o
o

o
o

o
o

// Q1

77
o

o
o

o
o

o
o

o
o

o
o

o

H
1
ψ(Q,Z(K))

77
o

o
o

o
o

o
o

o
o

o

// Γ2
B

77
o

o
o

o
o

o
o

o
o

o
o

// Q4

77
o

o
o

o
o

o
o

o
o

o
o

o
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