The (outer) automorphism group of a group
extension

Wim Malfait *

Abstract

If K — G — @ is a group extension, then any automorphism of G which
sends K into itself, induces automorphisms respectively on K and on Q). This
subgroup of automorphisms of G is denoted by Aut(G, K) and is called the
automorphism group of the extension K — G —» . After establishing an
interesting group action of Aut(K) x Aut(Q) on the set H?(Q, K) of all 2-
cohomology classes of ) with coefficients in K, a full description of Aut(G, K)
and Out(G,K) = Aut(G,K)/Inn(G) is obtained in terms of various com-
mutative diagrams. This picture is as general as possible, hence covering

and further complementing similar ideas developed earlier by C. Wells ([5]),
P. Conner & F. Raymond ([1]), D.J.S. Robinson ([3], [4]) and the author ([2]).

1 Notations and preliminaries

If G is a group and = € G, then pu(x) is the inner automorphism determined by x
(sending y € G to xyz™!), u(G) is known as the inner automorphism group Inn(G)
and Out(G) = Aut(G)/ Inn(G) is called the outer automorphism group of G. Write

p : Aut(G) — Out(G) for the natural projection. For a subset X in G, C¢X denotes
the centralizer and NgX is the normalizer of X in G. Let Z(G) be the center of G.

In the sequel of this paper, aspects of group cohomology (with non-abelian co-
efficients) will be intensively used. Therefore, we review some basic facts of this
theory and meanwhile fix additional notations and terminology.
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Each group extension K — G 2 (@ induces, by choosing a normalized section
s:Q — G (jos=1and s(1) = 1) and via conjugation in GG, a map (not necessarily
a homomorphism!) ¢ : @ — Aut(K) sending z € @ to the K-automorphism
o(z) : k € K — s(z)ks(z)”!. This induces a homomorphism ¢ : @ — Out(K)
which is called an abstract kernel. We say that the extension realizes v or that it is
compatible with .

Two extensions G and G’, both with kernel K and quotient (), are equivalent if
and only there is a homomorphism f : G — G’ such that

K — G — @Q

| Lol
K — G — Q@

commutes. Write Ext, (Q, K) for the set of equivalence classes of group extensions
realizing an abstract kernel ¢ : @ — Out(K).

A 2-cocycle of @) with coefficients in K is a pair (¢, ¢), where ¢ : Q — Aut(K)
and ¢ : @ x () — K are maps satisfying

{ o(x) ¢(y) = plc(z,y)) elay)
(p(SL’)(C(y, z ) ' C(%, yZ) = C(SL’, y) : C(x:% Z)

for all z,y, z in (). We always assume that ¢ and ¢ are normalized, i.e. p(1)=1 and,
for all z € Q, c(z,1) = ¢(1,2) = 1. Each 2-cocycle (¢, c) determines an abstract
kernel 1) = poy : Q — Out(K). For a fixed abstract kernel ¢ : Q@ — Out(K),
we write Z7(Q, K) for the set of all 2-cocycles of @ with coefficients in K and
inducing 1. Two 2-cocycles (i, ¢), (@', ') are cohomologous (write (p, c) ~ (¢, )
if and only if there exists a normalized map (“a cochain”) A : @ — K such that, for
all z,y € Q:

(z,y) = M) - o(x)(Ay)) - c(x,y) - May) ™

Let Hi(@, K) denote the set of all cohomology classes of () with coefficients in K
and inducing the abstract kernel ).

A 2-cocycle (¢, ¢) € Z3(Q, K) gives rise to an extension G = K X(,0) Q of K
by @ realizing 1, with group operation

{ () = p(A(=)) ()

Vk,l € K Vo,y € Q (k,x) (0 (Ly) = (k- p(x)() - c(z,y), y).

Conversely, by choosing a normalized section s : ) — G of an extension K —

G % @ realizing an abstract kernel i), we obtain a 2-cocycle (p,c) € Z?p(Q,K)
given by ¢ : @@ — Aut(K) sending x € Q — p(s(x))|k and, for z,y € Q, c(x,y) =
s(z) s(y) s(zy)~'. This establishes a one-to-one correspondence between Exty,(Q, K)
and H7(Q, K). Moreover, if Exty(Q, K) is not empty, then H;(Q, Z(K)) acts on it
simply transitively. If we take H*(Q, K) = Uy H(Q, K), where ¢ runs through all
abstract kernels Q — Out(K), then H*(Q, K) is in one-to-one correspondence with
£(Q, K) = U, Exty(Q, K), the set of all equivalence classes of group extensions with
kernel K and quotient Q).
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2 Crucial group actions
In this section, we introduce group actions which play a crucial role in the sequel.

Proposition 2.1. Assume an abstract kernel @ — Out(K). There is a group action
of Aut(K) on H*(Q, K) defined as follows:

Aut(K) x H*(Q,K) — H*(Q,K) : (v,< p,c>) < p(v)op,voc >

Proof. Assume (¢, c) € Z;(Q, K) and v € Aut(K). We claim that (u(v)op,voc)
€ 2} py)ou (@, K). Take z,y,z in Q. First there is

ulv(c(z, y)] = voulc(z,y)) ov™" = vjp(@)e(y)p(zy) v
= (vo(x)v ) (vely)r Hve(zy)r )~

and secondly we verify,

v(c(z,y)) - viclzy, 2)) = vle(z,y) - clay, 2)] = vip()(cly, 2)) - c(z,yz)]
= (vp(@)v ) (v(cly, 2))) - vic(x, y2)).
If now (@, c)~(¢', ), then (u(v)op,voc)~(u(v)op' vod). Indeed, let A: Q— K

be the cochain such that ¢' = u(X)p. Then p(v) o ¢’ =pu(v o A)(u(v) o ¢) and, for
each z,y € Q:

v(d(2,y)) = v[A=) - o(2)(A\(Y)) - e, ) - May) ]
= (o A)(@) - (vp(z)v ) (v o N)(y)) - v(c(z,y)) - (v o M) (zy)) "

We now easily conclude that we have a group action. ]

Proposition 2.2. Assume an abstract kernel Q — Out(K). There is a group action
of Aut(Q) on H*(Q, K) defined as follows:

Aut(Q) x HA(Q, K) — HA(Q,K) - (8,< ¢ >) 1o < po & co (07 x @71) >
Proof. Take (¢,¢) € Z3(Q, K) and ® € Aut(Q). Obviously (¢ o &', co (7! x
1)) € Z7 51 (Q, K). Moreover, if (¢,c) ~ (¢,¢) and A : Q — K is the corre-

sponding cochain, then (po @7 co (P x d71))~ (Y0P o (Pt x ®71)) via
the cochain Ao ®~!: () — K. Thus we have a group action. [

Combining the above results, one easily obtains that

Proposition 2.3. Assume an abstract kernel @ — Out(K). There is a group action
of Aut(K) x Aut(Q) on H*(Q, K) defined as follows:

(Aut(K) x Aut(Q)) x H}(Q, K) — H}(Q. K) : (. ), < p.c >) = "< 0>

where W®) < @ ¢ >=< p(r)opod ' voco (d x 1) >.
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3 A fundamental automorphism diagram

Fix a group extension K — G — ). An automorphism o in Aut(G, K) restricts
to an automorphism of K and consequently induces an automorphism of ). Write

A Aut(G, K) — Aut(K) for the restriction to K and B : Aut(G, K) — Aut(Q) for
the corresponding homomorphism. So, each o gives rise to a commutative diagram:

LA(e) Lo | B(o)

Let © : Aut(G, K) — Aut(K) x Aut(Q)) denote the homomorphism sending o —
(A(o), B(0)). A pair (v, ®) € Aut(K)xAut(Q) is called inducible ([5]) if there is an
automorphism ¢ € Aut(G, K) inducing v on K and ® on ). The set of inducible
pairs is hence precisely Im(©).

An important observation, using the group action introduced in Proposition 2.3,
is

Proposition 3.1. Assume K — G — @ is an extension determing a cohomology
class a = < ¢,c > € H*(Q, K). Then, for all 0 € Aut(G, K), A@-BO) < o ¢ >=
<, c>.

Proof. Take G = K X(, ) @ and consider o € Aut(G, K). Construct the map
&, 1 QQ — K defined by o(1,z) = (&,(x), B(o)(z)) (x € Q). For every (k,z) € G,

(]{Z,l‘) = (k7 1) “(p,c) (1,1’) = (1,1’) “(p,c) (‘p(x>71<k)> 1)'
Therefore we find that
o(k,1) (pe) (1, 2) = (A(0)(k), 1) (4,0) (& (), B(0)(2)) = (A(0)(k) - & (), B(o)(2))
while

0(1,2) (g0 o(0(2) 7 (k), 1) = (&4 (@), B(0)(2)) (o) (A(0) (0(2) 7 (K)), 1)

So &, must satisfy
Vo€ Q u(&(2)™") o A(o) = p(B(o)(x)) 0 A(o) o p(z) ™ (1)
and because B(o) € Aut(Q), this is equivalent to
1(A(o)) o po Bo)™! = u(& o Bla) ™) o p.
Now, take x,y € () and obtain that
ol(1,2) (o) (Ly)] = ollc(z,9),1) (o0 (L 2y)] = (Alo)(c(2,y)) - &6 (ay), B(o)(xy))

which must be equal to

(L, 2) () 0(1,y) = (& (), B(0)())-(p.0) (€ (y), B(o)(y))
= (& (2) - @(B(0)(2)) (s (y)) - c(B(o)(x), B(o)(y)), B(o)(xy))
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So we have that

A(o)(c(2,y)) = & (x) - p(B(0)(2)) (& (y) - c(B(o)(x), B(o)(y)) - &(zy) ™ (2)
and this translates into
(A(o)oco(B(o)™" x B(o)™))(2,y)
= (§0B(0) 7 !)(2) - p(2)[(&,0B(a) ) (y)] - ez, y) - (§,0B(o) ™) (zy)) "

We conclude that (A@)B0) < v c>=< ¢, ¢ >. [

As to the converse, one has

Proposition 3.2. Let K — G — Q be a group extension determing a cohomology
class a = < p,c> € H*(Q,K). Assume v € Aut(K) and ® € Aut(Q) such that
W) < c>= < ¢,c>. Then there exists 0 € Aut(G, K) such that ©(c) = (v, ®).

Proof. Write a =< ¢,c > and consider G as K X(,) Q. Let v € Aut(K) and
d c Aut(Q). If »®) < ¢ > = < p,c >, then there is a cochain \ : Q — K such
that
n: K X(u)opo®=1 voco(®—lod—1)) Q — K X(p,c) Q : (k?,ﬂ?) = (k ’ /\(ZE),Q?)

is a group isomorphism. Moreover, one can introduce another isomorphism ¢ as
follows:

St K X(po) @ = K X(uw)opod—tyoco@ton-1)) Q 1 (k,x) — (v(k), ®(x)).
Indeed, let k, k' € K and z,2’ € (), then
S(ky ) (uw)opod—1poco@-1oa-1)) S(K, @)
= (V(k), 2(2)) () o po d-1woco (d-10a-1)) (V(K'), ("))
= (k) - v(e(@)(K)) - v(c(z,y)), ®(z2')) = <[(k, %) (o) (K, 2")].
Consequently, 0 =n o ¢ € Aut(G, K) and A(o) = v, B(o) = o. ]

This leads to an explicit description of the inducible pairs of a group extension.

Theorem 3.3. If K — G — @ is an extension compatible with ¢ : Q — Out(K)
and a € Hi(Q, K) is the corresponding cohomology class, then

Im(@) = StabAut(K)xAut(Q)a'
Now recall the following definition (introduced in [5]):

Definition 3.4. Let ¢ : Q@ — Out(K) be an abstract kernel. A pair (v, ®) in
Aut(K) x Aut(Q) is called compatible with respect to v if and only if ¥ o & =
w(p(v))otp. The set of all compatible pairs with respect to v is denoted by Comp(1)).

Note that
Proposition 3.5. Assume K — G — @ is an extension compatible with ¢ : ) —

Out(K). Then Im(©) C Comp(¢)) C p*I(NOut(K)w(Q)) X Aut(Q).

Proof. If (v, ®) € Aut(K)xAut(Q) stabilizes the cohomology class a € Hj(Q, K)
corresponding to the given extension, then u(p(v)) o) = 1) o ®. This also implies
that p(v) belongs to the normalizer of ¢(Q) in Out(K). [
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For an abstract kernel ¢ : @ — Out(K), the restriction map Aut(K) —
Aut(Z(K)) induces a map Out(K) — Aut(Z(K)), which defines a @-module struc-
ture on Z(K) (also write ¢ for this map). It is well known ([5]) that

Theorem 3.6. Let K — G — Q be a group extension realizing an abstract kernel
Y Q — Out(K). Then

Ker(©) = Ker(A) NKer(B) = Z;(Q, Z(K)).

Proof. To fix notations, we sketch the proof of this result. Let a = < ¢, ¢ >,
G = K X450 Q and 0 € Ker(0©). Then the map &, : Q — K, defined by o(1,z) =
(&5(x), x), takes its values in Z(K') (because of (1)) and, translating (2), it satisfies

£(1y) = £,(x) - 9() (€(y)) (for all 2,y € Q), which means that &, € Z.(Q, Z(K).
It is now an easy exercise to show that £ : Ker(©) — Zj(Q, Z(K)) sending o +— &,

is an isomorphism. m

Definition 3.7. For each extension K — G - Q, realizing an abstract kernel

Y Q — Out(K), we define By(Q, Z(K)) = {&uy) || 9 € CaK,j(g) € Z(Q)}.

At first sight, this notion might look rather peculiar but in the following propo-
sition, we exhibit its importance in this context.

Proposition 3.8. Assume K — G — @ is a group extension compatible with
Y Q — Out(K). Then

1. By(Q,Z(K)) is a subgroup of Bw(
2. E;(Q, Z(K)) is a subgroup of Zj(Q,

3. Ker(©) NInn(G) = B (Q, Z(K)) = (j JIH2@)NCeK)/ 7).

Proof. Let G = K X, Q. Take v € Bi(Q,Z(K)) sending z € @ —
ko - p(x)(kg"), for some kg € Z(K). Then A = &,o1) € F;(Q,Z(K)). Now take
ko € K and zy € Q. Then u(ko, z9) € Ker(©) if and only if (kg,zo) € Cq(K) and
o € Z(Q). Therefore, by definition and because of the proof of Proposition 3.6,
E;(Q, Z(K)) is exactly the subgroup of Z}(Q, Z(K)) = Ker(0) corresponding to
Ker(©) N Inn(G). ]

Now define
Definition 3.9. Let K — G — Q be a group extension compatible with ¢ : () —
Out(K). Write T, (Q, Z(K)) = Z1(Q, Z(K))/— .

Obviously, B, (Q, Z(K))/ BL(Q, Z(K)) HYQ, Z(K)) — Hy(Q, Z(K)) is ex-

act.
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We are now ready to summarize the above results in the following

Theorem 3.10. If ¢ : Q — Out(K) is an abstract kernel and K — G 2 Q is
an extension compatible with v determining a cohomology class a € Hi(@, K), then
there is a commutative diagram of groups and group homomorphisms such that both
the rows and the columns are exact sequences:

BL(Q.Z(K) — Im@) 5 9G2@Q)nceK)

[ [ [

ZHQZ(K) = Aut(G,K) > Staba (k). Aur(Q)0 (3)
4 ¢ ¢

H,(Q Z(K)) — Out(G,K) — Qo

Proof. Most of the proof of this theorem is already finished by combining The-
orems 3.3, 3.6 and Proposition 3.8. To understand the upper-right corner of the
diagram, it is sufficient to realize that Inn(G) = G/Z(G)' [

Remark 3.11. The middle row in (3) is the main component in the diagram and
is conceptually the exact sequence originally due to C. Wells ([5]) although he did
not describe the image of © concretely (as being a stabilizer). Additionally, here we
also obtain information on the outer automorphisms of the group extension.

4 Alternative automorphism diagrams

Using the terminology and notations introduced above, what can be done to reach
alternative diagrams which provide extra information on the (outer) automorphism
group of a group extension K — G — (), is concentrating on the homomorphisms
A Aut(G,K) — Aut(K) and B : Aut(G, K) — Aut(Q) respectively, rather than
on O : Aut(G, K) — Aut(K) x Aut(Q) as we did above.

For example, it is natural to define the following subgroup of Aut(K):

Definition 4.1. Assume K and Q are groups such that H*(Q, K) is non-empty.
For each element a =< p,c >€ H*(Q, K), we define the subgroup M , of Aut(K)
as

Mo ={v € Aut(K) || 30 € Aut(Q) such that P < ¢, ¢ >=< p,c >}.
Of course,

Proposition 4.2. Assume K — G — @ an extension determing a cohomology
class a € H*(Q, K). Then,

Im(A) = Mg, C p71<NOut(K)w(Q))-

Proof. Because of Proposition 3.1, we immediately have that for each o €
Aut(G, K), A(o) € Mk,. Conversely, if v € Mg, with a =< ¢,c >, then there
exists ® € Aut(Q) such that »® < ¢, ¢ > =< p, ¢ > and because of Proposition
3.2, there is an automorphism o of G such that A(o) = v. [
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Analogously, we introduce the following subgroup of Aut(Q):

Definition 4.3. Let K and Q be groups such that H*(Q, K) is non-empty. For each
element a =< ¢, c >€ H*(Q, K), we define the subgroup Mg, of Aut(Q) as

Moo ={® € Aut(Q) || Iv € Aut(K) such that “* < p,c >=< ¢, ¢ >}.

Then

Proposition 4.4. If K — G — (@) is a group extension determing a cohomology
class a € H*(Q, K), then Im(B) = Mg.,.

Proof. Proposition 3.1 implies that for each 0 € Aut(G, K), B(o) € Mg.,.
Conversely, for any ® € Mg,, with a =< ¢, ¢ >, there exists v € Aut(K) such
that »® < ¢, ¢ > =< ¢, ¢ > and it follows from Proposition 3.2 that there exists
o € Aut(G, K) such that B(o) = ®. ]

Referring to the action of Aut(K) on H%*(Q, K) (as introduced in Proposi-
tion 2.1), it is now also easy to conclude that

Proposition 4.5. Let K — G — Q be an extension. Write ¢ : Q — Aut(K)
for the induced abstract kernel and a € Hi(Q, K) for the corresponding cohomology
class. Then

A(Ker(B)) = StabAut(K)a C p_l(COut(K)@/)(Q)).

Proof. Assume o € Aut(G, K) such that B(o) = 1¢, the identity on (). Because
of Proposition 3.1, (A(c),1g) stabilizes a. It immediately follows that A(o) €
StabAut(K)a' Conversely, let v € StabAut(K)a' Then (v, 1g) stabilizes a and the

desired result now follows from Proposition 3.2. Finally, note that if v € Aut(K)
belongs to the stabilizer of a€ H}(Q, K), then u(p(v)) o4 = 1. So StabAut(K)a is

contained in the inverse image in Aut(K) of the centralizer of /(@) in Out(K). =

Using the action of Aut(Q) on H*(Q, K) (as introduced in Proposition 2.2), we
have

Proposition 4.6. Assume K — G — @Q is a group extension compatible with an
abstract kernel ¢ : ) — Out(K) and with cohomology class a € Hi(@, K). Then

B(Ker(A)) = StabAut(Q)a CH{P € Aut(Q) || Lo ® =}

Proof. If for 0 € Aut(G, K), A(o) = 1k, the identity on K, then (1x, B(0))
belongs to the stabilizer of a (Proposition 3.1). Thus B(o) € StabAut(Q)a‘ Con-

versely, if & € StabAut(Q)a, then (1, ®) stabilizes a € H;(Q, K) (observe that
1 o ® = 1)) and applying Proposition 3.2 finishes the proof. ]
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Combining these properties, we conclude with

Theorem 4.7. Let ¢ : @ — Out(K) be an injective abstract kernel and K —

G Q s an extension realizing ¢ and determining a cohomology class a € Hi(@, K).
Then there are two commutative diagrams built with exact rows and columns:

% =Ker(A4) N Inn(G) —  Inn(G) kit GloyK

l ! l
I =Ker(A) —  Aut(G, K) ket Mk, (4)
! ¢ !
F?“:Ker(A)/(Ker(A)ﬂInn(G)) — Out(G,K) - Ql
and
By(Q,Z(K)) — T9 = Ker(¢)/ (Ker(4) N 2(Q))
l { {
ZHQ,Z(K)) — T4 = Stab g ()4 (5)
o J J
Hw(Q,Z(K)) — Fi - Qs
where

Q1= Mol Atan(G)) = Mrcaly(Q)
with M—K,a = MK,“/IDD(K) C Out(K) and Q1 — N(ﬁm(K)d’(Q)/ﬁ;(Q)

Proof. This easily follows from Propositions 4.2 and 4.6. The reader only has to
note that B(Ker(A) N Inn(G)) is isomorphic to

(Caklz1c) ( ) = e ertw)  2(@)

(2@ NCeK)/ ()
because F;(Q, Z(K)) =2 (7 YZ@)n CGK)/Z(G) (Proposition 3.8), I'} =
CGK/Z(G) and Ker(y) = CgK/Z(K>. Inn(K) clearly is normal in Mg ,. Since
A(Inn(G)) = G/CGK and Inn(K) = K/Z(K)’ it follows that A(Inn(G))/Inn(K) >~
Q/Ker(@b) = (Q). Therefore, @ = MK’G/@Z)(Q) and the announced embedding

follows from Proposition 4.2. [
Somehow “dual” to the above is the following:

Theorem 4.8. Assume K — G ~» Q@ is a group extension compatible with ¥ : QQ —
Out(K) and corresponding to a cohomology class a € Hi(@, K). Then the following
are commutative diagrams built with exact rows and columns:

'Y =Ker(B) N Inn(G) —  Inn(G) 5 Inn(Q)

{ l l
'L =Ker(B) — Awt(G,K) 5 Mg (6)
! ! i

FZB:Ker(B>/(Ker(B)ﬂInn(G)) — Out(G,K) —> Qg
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and
BL(Q.2(K) — T% 5 p'((2(Q))
[ [ [
ZHQ, 2(K)) — Th 5 Stab 4 1) (7)
o J }
H¢(Q7Z(K)) — FQB - Q4
where
Qa = Stabp ()¢ A(Ker(B) nTnn(@)) = SPAut(K) ¥/ (2(Q))
with L
StabAut(K>a: StabAut(K)a/Inn(K) g Out(K)
and

Qi Cour(k) V(@ p(2(Q))

Proof. This is an immediate consequence of Propositions 4.4 and 4.5. Only
observe that if a =< p,c > and (k,2) € G = K X, @, then A(u(k,z)) = p(k) o
o(x) and B(u(k,z)) = p(x). This implies that Ker(B) N Inn(G) = j*I(Z(Q))/Z(G)
and A(Ker(B)NInn(G)) is the preimage in Aut(K) of ¢(Z(Q)). Obviously, Inn(K)
is contained in StabAut(K)a and hence ()4 is isomorphic to StabAut(K) a/z/J(Z(Q))'

And because of Proposition 4.5, (0, hence embeds into COut(K)w<Q>/w(Z(Q))' n

The relation between diagram (3) and the alternative automorphism diagrams
established above, is given by:

Proposition 4.9. If K — G 2 Q@ is a group extension inducing an abstract kernel

Y Q — Out(K) and a cohomology class a € HZ(Q,K), then the following are
commutative diagrams built with exact rows and columns:

Ker(@)/(Ker(v)n2(Q)) ™ CHj-1z@Q)ncer) — G/CeK

! ! l
StabAut(Q)a — StabAut(K)xAut(Q)a — MK,a
i i i
Q3 — Qo - 1
and
i (@W(Z(Q) — G/<j_1<Z(Q>> NCeK) Inn(Q)
l !
StabAut(K)a — StabAut(K)xAut(Q)a — MQ,a
i ! i
Q4 — Qo - Q>

Proof. This follows immediately when applying the canonical epimorphisms
Aut(K) x Aut(Q) — Aut(K) and Aut(K) x Aut(Q) — Aut(Q) on Im(0O). [
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We conclude with a “cube automorphism diagram”, which arises by glueing
together diagrams (4), (5), (6) and (7).

Theorem 4.10. Let K — G — @ be an extension realizing ¢ : Q — Out(K) and
with a € Hi(Q, K) as cohomology class. Then the following “cube” is a commutative
diagram built with exact rows and columns:

Ker(¥)/ (Ker(y) n 2(Q)) — Inn(Q) / A
F%/ Inn(G) 4 . G/CGK
/ 7 =
B(Q. Z(K)) Iy 2 (W(Z2(Q)))
Stab Ayt (0)4 Mo, JAV)
5|~ (Q) 5|~ Q /
T Awt(G, K) 2 Mk
/ L 7
Z4(Q, Z(K)) rh A | Staba (1)
/ Qs / Q2 / Ag
2 — Out(G, K) — (O}
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