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Abstract

The theory of infinite jet bundles provides the very foundation for the
geometric theory of nonlinear partial differential equations, but it is hard
to say that orthodox differential geometry is an appropriate vehicle of the
former theory, as has been exhorted by Vinogradov and his Russian school.
We contend that synthetic differential geometry initiated by Lawvere is the
veriest framework for the theory of infinite jet bundles. Kock (1980) gave
a synthetic treatment of the theory of jet bundles, but his approach was
restricted to formal manifolds and inherited clumsiness from the standard
theory. This paper gives an alternative synthetic treatment of infinite jet
bundles, in which the pinpointed notion of (nonlinear) connection will play
a predominant role and no remainders of coordinates can be seen. Contact
vector fields of finite type are completely determined in this new context.

0 Introduction

The notion of jet is a far-reaching generalization of that of tangent vector. The
theory of jet bundles provides a good framework for the general theory of nonlinear
partial different equations as well as the calculus of variations, for which the reader is
referred to Bocharov et al. (1999), Gamkrelidze (1991, Chapter 5) and Krasil’shchik,
Lychagin and Vinogradov (1986) as well as Saunders (1989). All the same the
standard theory of jet bundles appears clumsy mainly because of its heavy use
of coordinate manipulations. Although the coordinate representation of jets bears
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some resemblance to the traditional coordinate representation in tensor calculus,
the transformation rules are no longer linear in the former case while they are in the
latter.

Synthetic differential geometry is an avant-garde branch of differential geometry
as logical anathema, in which nilpotent infinitesimals, once ostracized from orthodox
differential geometry, are abundantly and coherently available. We believe firmly
that synthetic differential geometry can contribute much towards making the theory
more neat and noble. In one of our previous papers [Nishimura (1999)] we have
outdated Bunge and Heggie’s (1984) synthetic treatment of the calculus of variations
by making use of the synthetic notion of (pointwise) connection. Our approach there
is completely coordinate-free and applicable to a wider class of microlinear spaces
possibly without a stitch of coordinates. Kock (1980) gave a synthetic treatment
of jet bundles, but his approach is restricted to formal manifolds, remaining on the
periphery of its standard counterpart just as Bunge and Heggie (1984) did. The
principal objective of this paper is to give an alternative synthetic approach to the
theory of jet bundles, which is applicable to a wider class of microlinear spaces than
that of formal manifolds. As in our synthetic treatment of the calculus of variations,
our synthetic theory of jet bundles is completely coordinate-free and makes essential
use of a synthetic sort of connection. The technical end of the paper is Theorem
3.5, which is a synthetic version of Theorem 2.5 of Bocharov et al. (1999, Chapter
4).

The basic idea of this paper is simple enough. We are much more interested
in how jets function than how they are constructed, just as category theorists are
interested in how the direct product of two sets functions in the category of sets
and mappings while set theorists are more interested in how to construct the direct
product of two sets. We prefer to approach the matter from a functional viewpoint.
Kock (1980) began his synthetic treatment of jets by transcribing the standard con-
struction of jets into his favorite machinery of monads with a synthetic flavor, which
has limited the applicability of his theory to a considerable extent. We begin our
consideration by remarking that a first-order jet at a point of a space gives a de-
composition of the tangent space to the space at the point, for which the reader is
referred to Theorem 4.3.2 of Saunders (1989) as well as Theorem 6.3.2 and Theorem
7.3.2 there. Since we know well that such a decomposition can be identified with a
sort of (nonlinear) connection [cf. Nishimura (1998, Theorem 2.1)], we are naturally
inclined to identify a first-order jet with something like a pinpointed connection.
The idea can be repeated to higher-order jets for free, finally resulting in our syn-
thetic theory of infinite jet bundles. The exact relationship between Kock’s (1980)
synthetic approach to jet bundles and ours will be discussed elsewhere.

First of all, we must pinpoint the notion of connection, which results in our
notion of preconnection. Our notion of preconnection is essentially nonlinear, and
the notion of (nonlinear) connection in our previous paper [Nishimura (1998)] is
simply an assignment of a preconnection to each point of the space at issue. In
Section 1 we will present our synthetic theory of infinite jet bundles based on the
notion of preconnection. In Section 2 an important class of contact transformations
of infinite jet bundles is determined completely, while in Section 3 contact vector
fields of finite type of infinite jet bundles are determined. Our standard reference
on synthetic differential geometry is Lavendhomme (1996) and those on jet bundles
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are Saunders (1989) and Bocharov et al. (1999).
Now we fix our notation and terminology. We denote by R the extended set

of real numbers with cornucopia of infinitesimals, which is expected to satisfy the
so-called general Kock axiom [cf. Lavendhomme (1996, §2.1)]. We denote by D the
totality of elements of R whose squares vanish. Given a microlinear space M , its
tangent space at x ∈M is denoted by Tx(M) and its tangent bundle is denoted by
τM : T (M) → M . A mapping π : E → M of microlinear spaces is called a bundle
over M , in which E is called the total space of π, M is called the base space of π, and
Ex = π−1(x) is called the fiber over x ∈ M . The totality of sections of π is denoted
by Γ(π). Given x ∈ E, we denote by Vx(π) the R-submodule of the R-module
Tx(E) consisting of all vertical tangent vectors to E at x. The vertical bundle of
π is denoted by υπ : V (π) → E. If all the fibers of the bundle π : E → M are
Euclidean R-modules, then the bundle is called a vector bundle over M . Given two
bundles π : E → M and π′ : P → M over the same microlinear space M , a mapping
η : E → P is said to be over M if it induces the identity mapping of M . In this
case η is called a morphism of bundles over M from π to π′. In synthetic differential
geometry a vector field X on a microlinear space M can be viewed equally in three
different ways, namely, as mappings M → MD, M × D → M and D → MM ,
for which the reader is referred to Lavendhomme (1996, §3.2). Given a mapping
θ : M → N of microlinear spaces, a vector field along θ is a mapping X from M to
T (N) with θ = τN ◦X.

A bundle π : E → M shall be chosen and fixed once and for all. It will be
assumed to be a vector bundle in Section 3.

1 Cartan Connection

Let us begin by pinpointing the notion of connection. A preconnection over the
bundle π : E →M at x ∈ E is a mapping ∇x : Tπ(x)(M)→ Tx(E) such that for any
t ∈ Tπ(x)(M) and any α ∈ R, we have the following:

(1.1) ∇x(αt) = α∇x(t)

(1.2) π ◦ ∇x(t) = t.

A connection ∇ over π is simply an assignment of a preconnection ∇x over π
at x to each point x of E, in which we will often write ∇(t, x) in place of ∇x(t).
Our present definition of connection is essentially that of nonlinear connection in
our previous paper (Nishimura, 1998, §2) simply tailored to our present bundle
formalism. More specifically, our notion of nonlinear connection in that paper is
no other than a connection over the vector bundle τM : T (M) → M in our present
nomenclature.

As in Theorem 2.1 of Nishimura (1998) we have

Proposition 1.1. Given a preconnection ∇x over the bundle π : E → M at a
point x of E, the set Hx(π,∇x) = {∇x(t) | t ∈ Tπ(x)(M)} is an R-submodule of
the R-module Tx(E), and the R-module Tx(E) is the direct sum of R-submodules
Hx(π,∇x) and Vx(π) of Tx(E). Conversely, given an R-submodule H of Tx(E) with
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Tx(E) = H ⊕ Vx(π), there exists a unique preconnection ∇x with Hx(π,∇x) = H
provided that there exists a preconnection over π at x at all. In short, providing that
there exists a preconnection over π at x at all, the assignment ∇x 7→ Hx(π,∇x) gives
a bijective correspondence between preconnections over π at x and R-submodules of
Tx(E) complementary to Vx(π).

Proof: Essentially the same as in the proof of Theorem 2.1 of Nishimura (1998). �

Vectors in Hx(π,∇x) in the above proposition are called horizontal. The canoni-
cal projections of Tx(E) into Hx(π,∇x) and Vx(π) with respect to the decomposition
Tx(E) = Hx(π,∇x) ⊕ Vx(π) in the above proposition are denoted respectively by
h∇x and v∇x. Note that h∇x(t) = ∇x(π ◦ t) for any t ∈ Tx(E).

Let η : E → P be a morphism of bundles over M from the bundle π : E →
M to anotherbundle π′ : P → M over the same base space M . We say that a
preconnection ∇x over π at a point x of E is η-related to a preconnection ∇y over
π′ at the point y = η(x) of P provided that

(1.3) η ◦ ∇x(t) = ∇y(t)

for any t ∈ Ta(M) with a = π(x) = π′(y). Then we have

Proposition 1.2. The preconnection ∇x over π at x is η-related to the preconnection
∇y over π′ at y = η(x) iff h∇y(η ◦ t) = η ◦h∇x(t) for any t ∈ Tx(E), or equivalently,
iff v∇y(η ◦ t) = η ◦ v∇x(t) for any t ∈ Tx(E).

Proof: It is easy to see that for any t ∈ Tx(E),

(1.4) v∇y(η ◦ t) = η ◦ t− h∇y (η ◦ t) and

(1.5) η ◦ (v∇x(t)) = η ◦ t− η ◦ h∇x(t),

from which it follows directly that h∇y(η ◦ t) = η ◦ h∇x(t) iff v∇y(η ◦ t) = η ◦ v∇x(t).
Now suppose that∇x is η-related to∇y. Then it is easy to see that for any t ∈ Tx(E),

η ◦ (h∇x(t)) = η ◦ (∇x(π ◦ t))(1.6)

= ∇y(π
′ ◦ t)

= ∇y(π ◦ η ◦ t)
= h∇y(η ◦ t).

Conversely suppose that h∇y(η ◦ t) = η ◦ h∇x(t) for any t ∈ Tx(E). Then it is easy
to see that for any t ∈ Tπ(x)(M),

η ◦ ∇x(t) = η ◦ h∇x(∇x(t))(1.7)

= h∇y(η ◦ ∇x(t))

= ∇y(π
′ ◦ η ◦ ∇x(t))

= ∇y(π ◦ ∇x(t))

= ∇y(t).

Therefore we are now certain that ∇x is η-related to ∇y iff h∇y (η ◦ t) = η ◦ h∇x(t)
for any t ∈ Tx(E), which completes the proof. �
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We are now going to define jet bundles πi : J i(π)→M of the bundle π : E →M
inductively (i ≥ 0). The zeroth-order jet bundle π0 : J0(π) → M of π : E → M
shall be π : E → M itself with J0(π) = E. For each x ∈ E, let J1(π)x be the
totality of preconnections over π at x. The total space J1(π) of the first-order jet
bundle π1 : J1(π) → M of the bundle π : E → M shall be the set-theoretic union
of J1(π)x for all x ∈ E. We define a mapping π1,0 : J1(π)→ E to be

(1.8) π1,0(∇1) = x

for ∇1 ∈ J1(π)x together with π1 = π ◦π1,0. Now we proceed inductively. Given the
i-th order jet bundle πi : J i(π)→ M of the bundle π : E →M with ∇i ∈ J i(π), let
J i+1(π)∇i be the totality of preconnections over π1 at ∇i that are πi,i−1-related to∇i

(i ≥ 2). The total space J i+1(π) of the (i+1)-th-order jet bundle πi+1 : J i+1(π)→M
of π : E → M shall be the set-theoretic union of J i+1(π)∇i for all ∇i ∈ J i(π). We
define a mapping πi+1,i : J i+1(π)→ J i(π) to be

(1.9) πi+1,i(∇i+1) = ∇i

for ∇i+1 ∈ J i+1(π)∇i together with πi+1 = πi ◦ πi+1,i. Given i ≤ j, we define πj,i to
be the composition πi+1,i ◦ ... ◦ πj,j−1.

Now we present one of our two basic assumptions.

Assumption [J∞I]: The mapping πi+1,i is surjective for all i ≥ 0.

Now we define the infinite jet bundle J∞(π) of the bundle π : E → M as the
inverse limit of the sequence

(1.10) J0(π)
π1,0←− J1(π)

π2,1←− J2(π)
π3,2←− J3(π)...

or equivalently as the inverse limit of the sequence

(1.11) J1(π)
π2,1←− J2(π)

π3,2←− J3(π)...

Therefore a point x of J∞(π) is represented by a sequence {xi}i≥0 with πi+1,i(xi+1) =
xi or by a sequence {∇i}i≥1 with πi+1,i(∇i+1) = ∇i. We define a mapping π∞,k :
J∞(π) → Jk(π) to be π∞,k({xi}i≥0) = xk. We define π∞ : J∞(π) → M to be
π∞({xi}i≥0) = π(x0).

Now we are going to define a connection on the bundle π∞ : J∞(π)→ M to be
called the Cartan connection and to be denoted by ∇∞:

(1.12) ∇∞(t,x)(d) = {∇i+1(t, xi)(d)}i≥0

for any tangent vector t to M , any d ∈ D and any x = {xi}i≥0 = {∇i}i≥1 ∈ J∞(π).
The assignment x ∈ J∞(π) 7→ Hx(π,∇∞x ) is called the Cartan distribution. The
existence of the Cartan connection ∇∞ on J∞(π) makes the infinite jet bundle
J∞(π) absolutely predominant over higher-order jet bundles J i(π)’s in theory and
applications.

Now we present the remaining one of our two basic assumptions, which claims
flatness of the Cartan connection ∇∞:
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Assumption [J∞II]: For any microsquare γ on M , any d1, d2 ∈ D and any
x ∈ J∞(π) with π∞(x) = γ(0, 0), we have

∇∞(γ(·, d2),∇∞(γ(0, ·),x)(d2))(d1)(1.13)

= ∇∞(γ(d1, ·),∇∞(γ(·, 0),x)(d1))(d2).

Given a vector field X along π∞ : J∞(π)→ M , we define its horizontal lift X̂ to
be the following vector field on J∞(π):

(1.14) X̂(x) = ∇∞(X(π∞(x)),x)

for any x ∈ J∞(π).
A mapping F : J∞(π) → J∞(π) is called a contact transformation of J∞(π)

provided that the differential of F maps horizontal vectors to horizontal ones with
respect to the Cartan connection ∇∞. A vector field X on J∞(π) is called contact
provided that Xd : J∞(π) → J∞(π) is a contact transformation of J∞(π) for any
d ∈ D.

We denote by F fM(π∞, π) the totality of morphisms of bundles over M from π∞
to π that decompose into the projection π∞,i : J∞(π) → J i(π) and a morphism

of bundles over M from πi to π for some i ≥ 0. We denote by F fE(π∞,0, υπ) the
totality of morphisms of bundles over E from π∞,0 to υπ that decompose into the
projection π∞,i : J∞(π)→ J i(π) and a morphism of bundles over E from πi,0 to υπ
for some i ≥ 0. Note that if the bundle π : E → M happens to be a vector bundle
over M , then we can naturally identify πfE(π∞,0, υπ) and πfM (π∞, π), since for any

ϕ ∈ πfE(π∞,0, υπ) there exists a unique ϕ̂ ∈ πfM(π∞, π) such that

(1.15) ϕ(x)(d) = π∞,0(x) + dϕ̂(x)

for any x ∈ J∞(π) and any d ∈ D.
A transformation F of J∞(π) is said to be of finite type if there exists a natural

number k such that π∞,i ◦ F decomposes into the projection π∞,k+i : J∞(π) →
Jk+i(π) and a mapping from Jk+i(π) to J i(π) for any i ≥ 0. In this case we say
that F is of degree k at most. A vector field X on J∞(π) is said to be of finite type
provided that there exists a natural number k such that the transformation Xd is of
degree k at most for any d ∈ D.

Any ψ ∈ Γ(π) determines a series ψ(i) ∈ Γ(πi) of its i-th prolongations (i ≥ 0)
together with its infinite prolongation ψ(∞) ∈ Γ(π∞). We proceed inductively. Let
ψ(0) = ψ. For any x ∈ M , ψ(i+1)(x) shall be the preconnection over πi at ψ(i)(x) as
follows:

(1.16) ψ(i+1)(x)(t, ψ(i)(x))(d) = ψ(i)(t(d))

for any t ∈ Tx(M) and any d ∈ D.

Lemma 1.3. For any x ∈ M , the preconnection ψ(i+2)(x) over πi+1 at
ψ(i+1)(x) is πi+1,i-related to the preconnection over ψ(i+1)(x) over πi at ψ(i)(x).

Proof: For any t ∈ Tx(M) and any d ∈ D, we have

πi+1,i ◦ ψ(i+2)(x)(t, ψ(i+1)(x))(d)(1.17)
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= πi+1,i ◦ ψ(i+1)(t(d))

= ψ(i)(t(d))

= ψ(i+1)(x)(t, ψ(i)(x))(d). �

The above lemma enables us to define ψ(∞) ∈ Γ(π∞) as follows:

(1.18) ψ(∞)(x) = {ψ(i)(x)}i≥0 for any x ∈M .

2 Contact Transformations

The principal objective of this section is to determine contact transformations of
finite type of J∞(π) over M . Let us begin with

Proposition 2.1. For any morphism f : Jk(π)→ E of bundles over M from πk to
π, there exists a unique morphism f (1) : Jk+1(π) → J1(π) of bundles over M from
πk+1 to π1 satisfying the following two conditions:

(2.1) The square Jk+1(π)

πk+1,k

��

f (1)
// J (1)(π)

π1,0

��
Jk(π)

f
// E

is commutative.

(2.2) For any x ∈ Jk(π) and any ∇x ∈ Jk+1(π)x, the preconnection ∇x over πk at
x is f-related to the preconnection f (1)(∇x) over π at f(x).

Proof: For any x ∈ Jk(π) and any ∇x ∈ Jk+1(π)x, it is easy to see that the
assignment ∇f(x) : t ∈ Tπk(x)(M) 7→ f ◦ ∇x(t) is a preconnection over π at f(x), so
that ∇f(x) ∈ J1(π)f(x). Therefore the desired unique morphism f (1) : Jk+1(π) →
J1(π) of bundles over M from πk+1 to π1 can and should be determined by the
requirement that f (1)(∇x) = ∇f(x) for any x ∈ Jk(π) and any ∇x ∈ Jk+1(π)x. �

The above proposition can be generalized to higher orders with a bit more effort.

Proposition 2.2. Let i ≥ 0. Let f (i) : Jk+1(π)→ J i(π) be a morphism of bundles
over M from πk+i to πi and f (i+1) : Jk+i+1(π) → J i+1(π) a morphism of bundles
over M from πk+i+1 to πi+1 subject to the following two conditions:

(2.3) The square Jk+i+1(π)

πk+i+1,k+i

��

f (i+1)
// J i+1(π)

πi+1,i

��
Jk+i(π)

f (i)
// J i(π)

is commutative.

(2.4) For any x ∈ Jk+i(π) and any ∇x ∈ Jk+i+1(π)x, the preconnection ∇x over
πk+i at x is f (i)-related to the preconnection f (i+1)(∇x) over πi at f (i)(x).

Then there exists a unique morphism f (i+2) : Jk+i+2(π) → J i+2(π) of bundles over
M from πk+i+2 to πi+2 satisfying the following two conditions:
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(2.5) The square Jk+i+2(π)

πk+i+2,k+i+1

��

f (i+2)
// J i+2(π)

πi+2,i+1

��
Jk+i+1(π)

f (i+1)
// J i+1(π)

is commutative.

(2.6) For any x ∈ Jk+i+1(π) and any ∇x ∈ Jk+i+2(π)x, the preconnection ∇x

over πk+i+1 at x is f (i+1)-related to the preconnection f (i+2)(∇x) over πi+1 at
f (i+1)(x).

Proof: For any x ∈ Jk+i+1(π) and any ∇x ∈ Jk+i+2(π)x, it is easy to see that the
assignment ∇f(i + 1)(x) : t ∈ Tπk+1(x)(M) 7→ f (i+1) ◦ ∇x(t) is a preconnection over
πi+1 at f (i+1)(x). Let ∇πk+i+1,k+i(x) = πk+i+2,k+i+1(∇x) = x and ∇f (i) ◦πk+i+1,k+i(x) =

∇πi+1,i ◦f (i+1)(x) = f (i+1)(x). Since ∇x is πk+i+1,k+i-related to ∇πk+i+1,k+i(x) and

∇πk+i+1,k+i(x) is in turn f (i)-related to ∇f(i) ◦πk+i+1,k+i(x), we have that for any
t ∈ Tπk+i+1(x)(M),

πi+1,i ◦ ∇f (i+ 1)(x)(t) = πi+1,i ◦ f (i+1) ◦ ∇x(t)(2.7)

= f (i) ◦ πk+i+1,k+i ◦ ∇x(t)

= f (i) ◦ ∇πk+i+1,k+i(x)(t)

= ∇f (i) ◦πk+i+1,k+i(x)(t)

= ∇πi+1,i◦f (i+1)(x)(t),

so that ∇f (i+1)(x) ∈ J i+2(π)f (i+1)(x). Therefore the desired unique morphism f (i+2) :

Jk+i+2(π) → J i+2(π) of bundles over M from πk+i+2 to πi+2 can and should be
determined by the requirement that f (i+2)(∇x) = ∇f(i+ 1)(x) for any x ∈ Jk+i+1(π)
and any ∇x ∈ Jk+i+2(π)x. �

A c-family of degree k (“c” for “contact”) is a family {f (i) : Jk+i(π)→ J i(π)}i≥0

of morphisms of bundles over M from πk+i to πi subject to the following conditions
(i ≥ 0):

(2.8) The square Jk+i+1(π)

πk+i+1,k+i

��

f (i+1)
// J i+1(π)

πi+1,i

��
Jk+i(π)

f (i)
// J i(π)

is commutative.

(2.9) For any x ∈ Jk+i(π) and any ∇x ∈ Jk+i+1(π)x, the preconnection ∇x over
πk+i at x is f (i)-related to the preconnection f (i+1)(∇x) over πi at f (i)(x).

Now we introduce an equivalence relation among c-families. Two c-families f =
{f (i) : Jk+i(π) → J i(π)}i≥0 and g = {g(i) : Jm+i(π) → J i(π)}i≥0 of degrees k and
m are said to be c-equivalent if, assuming without loss of generality that k ≤ m, we
have g(i) = f (i) ◦ πm+i,k+i for any i ≥ 0.
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Each c-family f = {f (i) : Jk+i(π)→ J i(π)}i≥0 determines its associated contact
transformation Ff : J∞(π)→ J∞(π) of finite type over M by the requirement that
for any x = {x(i)}i≥0 ∈ J∞(π),

(2.10) Ff (x) = {f (i)(x(k+i))}i≥0,

which gives, under the assumption [J∞I], a bijective correspondence between c-
families up to c-equivalence and contact transformations of finite type of J∞(π) over
M . Given two c-families f = {f (i) : Jk+i(π)→ J i(π)}i≥0 and g = {g(i) : Jm+i(π)→
J i(π)}i≥0, the composition Fg◦Ff of their associated contact transformations of finite
type of J∞(π) over M is represented by the c-family {g(i) ◦ f (m+i) : Jk+m+i(π) →
J i(π)}i≥0.

A c0-function of degree k is a morphism f : Jk(π)→ E of bundles over M from
πk to π, which, owing to Propositions 2.1 and 2.2, determines its associated c-family
ff = {f (i) : Jk+i(π)→ J i(π)}i≥0 by the requirement that f (0) = f .

Now we introduce an equivalence relation among c0-functions. Two c0-functions
f : Jk(π)→ E and g : Jm(π)→ E are said to be c0-equivalent if, assuming without
loss of generality that k ≤ m, we have g = f ◦πm,k. Evidently there exists a bijective

correspondence between F fM(π∞, π) and c0-functions up to c0-equivalence under the
assumption [J∞I].

Proposition 2.3. The above assignment f 7→ ff gives a bijective correspondence
between c0-functions up to c0-equivalence and c-families up to c-equivalence.

Proof: It suffices to show that, given two c-families f = {f (i) : Jk+i(π)→ J i(π)}i≥0

and g = {g(i) : Jm+i(π) → J i(π)}i≥0, if c0-functions f (0) and g(0) are c0-equivalent,
then c-families f and g are c-equivalent. For simplicity we assume that m = k + 1.
We will show that the family {f (i) ◦ πk+i+1,k+i : Jk+i+1(π) → J i(π)}i≥0 is indeed a
c-family. We note that

(2.11) πi+1,i ◦ f (i+1) ◦ πk+i+2,k+i+1 = f (i) ◦ πk+i+1,k+i ◦ πk+i+2,k+i+1,

so that the family satisfies condition (2.5). Let x ∈ Jk+i+1(π) and ∇x ∈ Jk+i+2(π)x.
Let ∇πk+i+1,k+i(x) = πk+i+2,k+i+1(∇x) and ∇f (i)◦πk+i+1,k+i(x) = f (i+1)(∇πk+i+1,k+i(x)).
We note that for any t ∈ Tπk+i+1(x)(M),

f (i) ◦ πk+i+1,k+i ◦ ∇x(t) = f (i) ◦ ∇πk+i+1,k+i(x)(t)(2.12)

= ∇f (i)◦πk+i+1,k+i(x)(t),

so that the family satisfies the condition (2.6). Therefore the family {f (i)◦πk+i+1,k+i :
Jk+i+1(π)→ J i(π)}i≥0 is indeed a c-family. Since g = {g(i) : Jm+i(π)→ J i(π)}i≥0 is
also a c-family with f (0) ◦πk+1,k = g(0) by assumption, we have g(i) = f (i) ◦πk+i+1,k+i

for any i ≥ 0, which completes the proof. �

The above proposition finally yields the following characterization of contact
transformations of finite type of J∞(π) over M as its direct consequence.

Theorem 2.4. There exists a bijective correspondence between F fM(π∞, π) and con-
tact transformations of finite type of J∞(π) over M .
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3 Contact Vector Fields

The principal objective of this section is to determine contact vector fields of finite
type on J∞(π). We assume that the bundle π : E → M is a vector bundle, i.e., that
the fiber Ex over each x ∈M is a Euclidean R-module. Let us begin with complete
integrability of the Cartan distribution.

Proposition 3.1. For any horizontal vector field X on J∞(π) and any d ∈ D, Xd

is a contact transformation of J∞(π). In other words, X is a contact vector field on
J∞(π).

Proof: Let t be a tangent vector to J∞(π) with x = t(0). We define a microsquare
γ on M as follows:

(3.1) γ(d, d′) = π∞ ◦Xd ◦ t(d′)
for any d, d′ ∈ D. By assumption [J∞II], we have

Xd ◦ t(d′) = ∇∞(γ(·, d′),∇∞(γ(0, ·),x)(d′))(d)(3.2)

= ∇∞(γ(d, ·),∇∞(γ(·, 0),x)(d))(d′),

so that the tangent vector Xd ◦ t to J∞(π) is horizontal. This completes the proof.�

The following proposition shows that the class of contact vector fields on J∞(π)
is an R-submodule of the R-module of vector fields on J∞(π).

Proposition 3.2. The class of contact vector fields is closed under addition and
scalar multiplication.

Proof: The class is clearly closed under scalar multiplication, for we have

(3.3) (αX)d = Xαd

for any vector field X on J∞(π), any α ∈ R and any d ∈ D. The closedness of the
class under addition follows from the formula

(3.4) (X + Y )d = Xd ◦ Yd
for any vector fields X, Y on J∞(π) and any d ∈ D, for which the reader is referred
to Lavendhomme [1996, §3.2, Proposition 6]. �

Now we will determine vertical contact vector fields of finite type on J∞(π). It
is easy to see that

Proposition 3.3. A vector field X on J∞(π) is vertical iff the transformation Xd :
J∞(π)→ J∞(π) is over M for any d ∈ D.

Now we are ready to present our fundamental theorem on vertical contact vector
fields of finite type on J∞(π).

Theorem 3.4. There is a bijective correspondence between vertical contact vector
fields of finite type on J∞(π) and F fM(π∞, π).

Proof: By Theorem 2.4 and Proposition 3.3 there is a bijective correspondence
between vertical contact vector fields of finite type on J∞(π) and F fE(π∞,0, υπ). Since

we can naturally identify F fE(π∞,0, υπ) and F fM(π∞, π), the proof is complete. �
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Given ϕ ∈ F fM(π∞, π), we will denote by �ϕ the vertical contact vector field of
finite type on J∞(π) corresponding to ϕ under Theorem 3.4.

Now we are ready to present the fundamental theorem on contact vector fields
of finite type on J∞(π).

Theorem 3.5. A contact vector field X of finite type on J∞(π) can be written
uniquely as

(3.5) X = Ŷ + �ϕ

for a vector field Y along π∞ : J∞(π) → M and ϕ ∈ F fM(π∞, π), in which Yd =
π∞ ◦Xd for any d ∈ D and X − Ŷ = �ϕ.

Proof: This follows from Propositions 3.1 and 3.2 and Theorem 3.4. �
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