Lusternik-Schnirelmann category of classifying spaces.

J.-B. Gatsinzi *

Abstract

Let X be a finite simply connected CW-complex. In this paper, we show that the Lusternik-Schnirelmann category of the classifying space B and X is infinite if $X = S^n \vee Y$.

1 Introduction

In this paper X will denote a simply connected CW-complex of finite type, that is, $H^n(X, \mathbb{Q})$ is a finite dimensional \mathbb{Q} -vector space, for each n. Recall that the Lusternik-Schnirelmann category of a topological space, cat(X), is the least integer n such that X can be covered by (n + 1) open subsets contractible in X, and is infinite if no such n exists. If H^* denotes the cohomology with any coefficient ring, we have

$$cat(X) \ge nil \tilde{H}^*(X),$$
 (1)

where *nil* denotes the index of nilpotency of a given ring.

Let $f: X \to Y$ be a continuous map. The category of f, denoted by cat(f), is the least integer n such that X is covered by n + 1 open subsets U_1, U_2, \dots, U_{n+1} such $f_{|U_i|}$ is nullhomotopic. Note that cat(X) is equal to the category of the identity map, and

$$cat(f) \le \min \{ cat(X), \, cat(Y) \}.$$
⁽²⁾

Bull. Belg. Math. Soc. 8 (2001), 405–409

^{*}Supported by the Max-Planck Institut für Mathematik, Bonn

Received by the editors July 2000.

Communicated by Y. Félix.

¹⁹⁹¹ Mathematics Subject Classification : $55\,\mathrm{P}\,62,\,55\,\mathrm{M}\,30.$

 $Key \ words \ and \ phrases$: Lusternik-Schnirelmann category, rational homotopy, classifying space.

Denote by X_0 the localization of X at zero, the rational Lusternik-Schnirelmann category, $cat_0(X)$, is defined by $cat_0(X) = cat(X_0)$. It verifies $cat_0(X) \leq cat(X)$ [5].

An approximation of the category of a space is given by the "mapping theorem", which states that, if $f : X \to Y$ is such that $\pi_*(f) \otimes \mathbb{Q}$ is injective, then $cat_0(X) \leq cat_0(Y)$ [5].

In this paper we will use the theory of minimal models. The Sullivan minimal model of X is a free commutative cochain algebra $(\Lambda Z, d)$ such that $dZ \subset \Lambda^{\geq 2}Z$. Moreover $Z^n \cong Hom_{\mathbb{Z}}(\pi_n(X), \mathbb{Q})$ [12, 9]. The Quillen minimal model of X is a free chain Lie algebra $(\mathbb{L}(V), \delta)$ satisfying $\delta V \subset \mathbb{L}^{\geq 2}V$ and the graded vector space V is related to the cohomology of X by $V_n \cong H^{n+1}(X, \mathbb{Q})$ [10, 1].

Fibrations of fibre in the homotopy type of X are obtained, up to fibre homotopy equivalence, as pull back of the universal fibration $X \longrightarrow B aut^{\bullet} X \longrightarrow B aut X$ [3, 4]; here aut X denotes the topological monoid of all self-homotopy equivalences of X, $aut^{\bullet}X$ is the submonoid of aut X consisting of pointed self-homotopy equivalences of X, and B is the Dold-Lashof functor [2]. Let $\tilde{B} aut X \xrightarrow{f} B aut X$ be the universal covering, the induced fibration $X \longrightarrow \tilde{B} aut^{\bullet}X \longrightarrow \tilde{B} aut X$ is universal for fibrations with simply connected base spaces [4, Proposition 4.2].

This work deals with the calculation of the Lusternik-Schnirelmann category of Baut X under restrictions on X. The computation of cat(Baut X) is of great interest as shown by the following results.

Proposition 1. Let X be a 1-connected CW-complex and G a connected compact Lie group acting on X. If $cat_0(\tilde{B} aut X)$ is finite, then the Borel fibration $X \longrightarrow EG \times_G X \longrightarrow BG$ is rationally trivial.

Proof. Let $f: BG \longrightarrow \tilde{B}$ aut X be the classifying map of the Borel fibration $X \longrightarrow EG \times_G X \longrightarrow BG$. Consider the map $H^*(f, \mathbb{Q}) : H^*(\tilde{B} \text{ aut } X, \mathbb{Q}) \longrightarrow H^*(BG, \mathbb{Q}) = \Lambda V$, where V is concentrated in even degrees. Suppose now that $cat_0(\tilde{B} \text{ aut } X)$ is finite. Then $H^*(f, \mathbb{Q})$ is trivial, otherwise the nilpotency index of $\tilde{H}^*(\tilde{B} \text{ aut } X, \mathbb{Q})$ is infinite.

Suppose that $f : BG \longrightarrow \tilde{B}$ aut X is not rationally trivial. Denote by $\phi : (\Lambda W, d) \to (\Lambda V, 0)$ the Sullivan minimal model of f. Let n be the least positive integer such that $\phi(x) \neq 0$, for some $x \in W^n$. But ϕ factors through $(\Lambda W/\Lambda W^{< n}, \bar{d})$ as $(\Lambda W, d) \xrightarrow{p} (\Lambda W/\Lambda W^{< n}, \bar{d}) \xrightarrow{\bar{\phi}} (\Lambda V, 0)$, where p is the natural projection. But $H(\bar{\phi})$ is not trivial as $H(\bar{\phi})([x]) \neq 0$.

By the mapping theorem $cat_0(\Lambda W/\Lambda W^{< n}, \bar{d})$ is finite. Hence $\tilde{H}^*(\bar{\phi}) = 0$, which leads to a contradiction. Therefore ϕ is the trivial map, that is, $f : BG \longrightarrow \tilde{B} aut X$ is rationally trivial.

Let $X \to E \xrightarrow{p} B$ be a fibration. The genus of p, genus(p), is the least integer n such that B can be covered by n + 1 open subsets over each of which p is a trivial fibration. The genus of p is equal to the category of the classifying map $B \to B$ aut X. Hence cat(B aut X) is an upper bound for the genus of any fibration of fibre X. If we put $X = K(\mathbb{Z}, 2n)$, we get that \tilde{B} aut X has the rational homotopy type of $S^{2n+1}_{\mathbb{Q}}$, which is of LS category 1 (see for instance [6]). Hence we get the following

Proposition 2. If B is simply connected, then every non trivial fibration $K(\mathbb{Z}, 2n) \rightarrow E \rightarrow B$ is of genus 1.

Although interesting applications arise when $cat(\tilde{B} aut X)$ is finite, we do not know if such can happen when X has the rational homotopy type of a finite CWcomplex. On the contrary, $cat(\tilde{B} aut X)$ is infinite in many cases (see [6, 7, 8]). Our goal is to prove that $cat(\tilde{B} aut X)$ is infinite if $X = Y \vee S^n$.

2 Models of the classifying space

A model for the classifying space \tilde{B} aut X was first given by Sullivan in [12] and later by Schlessinger-Stasheff [11] and Tanré [13].

We briefly recall the construction of the model of Schlessinger-Stasheff.

Define the Lie algebra of derivations $(Der\mathbb{L}(V), D)$ as follows: $Der\mathbb{L}(V) = \bigoplus_{k\geq 1} Der_k(\mathbb{L}(V))$, where $Der_k(\mathbb{L}(V))$ is the vector space of derivations which increase the degree by k, with the restriction that $Der_1(\mathbb{L}(V))$ is the vector space of derivations of degree one which commute with the differential δ .

Given two derivations θ and θ' , the Lie bracket is defined by $[\theta, \theta'] = \theta \theta' - (-1)^{|\theta||\theta'|} \theta' \theta$ and the differential D is defined by $D\theta = [\delta, \theta]$.

Define the differential Lie algebra $(s\mathbb{L}(V) \oplus Der\mathbb{L}(V), \tilde{D})$ as follows:

- $s\mathbb{L}(V) \oplus Der\mathbb{L}(V)$ is isomorphic to $s\mathbb{L}(V) \oplus Der\mathbb{L}(V)$ as a graded vector space,
- If $\theta, \theta' \in Der \mathbb{L}(V)$ and $sx, sy \in s\mathbb{L}(V)$, then $[\theta, \theta'] = \theta\theta' (-1)^{|\theta||\theta'|}\theta'\theta$, $[\theta, sx] = (-1)^{|\theta|} s\theta(x), [sx, sy] = 0$,
- $\tilde{D}(\theta) = [\delta, \theta], \tilde{D}(sx) = -s\delta x + adx$, where adx is the derivation of $\mathbb{L}(V)$ defined by (adx)(y) = [x, y].

Theorem 3. [11, 13] A model of the universal fibration $X \longrightarrow \tilde{B}$ aut $^{\bullet}X \longrightarrow \tilde{B}$ aut X is given by

$$(\mathbb{L}(V),\delta) \longrightarrow (Der\mathbb{L}(V),D) \longrightarrow (s\mathbb{L}(V) \oplus Der\mathbb{L}(V),\tilde{D}).$$

A model of $\tilde{B}aut X$ from derivations of the Sullivan minimal model of X is described in [12].

We will suppose henceforth that X is a finite simply connected CW-complex. We know that the LS category of B aut X is not finite in various cases, among them when X is an elliptic space (i.e. $\pi_*(X) \otimes \mathbb{Q}$ is finite dimensional), a wedge of spheres or a product space $X = Y \times Z$ [6, 7].

One may expect, by duality, the LS-category of B aut X to be infinite when $X = Y \lor Z$. We show that it is the case if Z is a wedge of spheres.

3 The theorem

Theorem 4. The Lusternik-Schnirelmann category of B aut X is infinite if $X = Y \lor Z$, where Z is a wedge of spheres.

Proof of the theorem

Case 1: $X = Y \vee S^{2n}$.

Let $F \longrightarrow E \longrightarrow B$ be a fibration, then $cat(E) \leq (cat(B) + 1).(cat(F) + 1) - 1$. Applying this to the universal fibration $X \longrightarrow B$ aut[•] $X \longrightarrow B$ aut X, we get $cat(B aut^•X) \leq (cat(B aut X) + 1).(cat(X) + 1) - 1$.

As cat(X) is finite, we deduce that cat(BautX) is infinite whenever $cat(Baut^{\bullet}X)$ is infinite.

The Quillen minimal model of X is $(\mathbb{L}(V), \delta) = (\mathbb{L}(W \oplus \mathbb{Q}.x_{2n-1}), \delta)$ where $\delta(x_{2n-1}) = 0$ and $\delta(W) \subset \mathbb{L}(W)$.

Let θ be the derivation defined by $\theta(x_{2n-1}) = [x_{2n-1}, x_{2n-1}], \theta(W) = 0$. Let us show that θ is a cycle in $(Der\mathbb{L}(V), D)$. Obviously $[\delta, \theta](x_{2n-1}) = 0$ and if $w \in W$, then $[\delta, \theta](w) = \delta\theta(w) + \theta(\delta w) = \theta(\delta w)$. But $\delta(w) \in \mathbb{L}(W)$, therefore $\theta(\delta w) = 0$. Moreover, θ cannot be a boundary. If it is, then there exists a derivation θ' such that $[\delta, \theta'](x_{2n-1}) = \delta\theta'(x_{2n-1}) = \theta(x_{2n-1}) = [x_{2n-1}, x_{2n-1}]$; what should imply that $[x_{2n-1}, x_{2n-1}]$ is a boundary in $(\mathbb{L}(V), \delta)$.

As $[\theta, \theta] = 0$, the injection of the Lie subalgebra generated by θ provides a morphism $K(\mathbb{Q}, 2n) \longrightarrow (\tilde{B} aut^{\bullet} X)_0$ that induces an injective map in homotopy. Therefore, applying the mapping theorem [5], $cat(\tilde{B} aut^{\bullet} X)$ is infinite.

Case 2: $X = Y \lor S^{2n+1}$.

The Quillen minimal model of X is $(\mathbb{L}(V), \delta) \amalg \mathbb{L}(x, 0)$ with |x| = 2n.

1. Suppose that $H_{even}(\mathbb{L}(V), \delta) = 0$ and let $[\alpha] \in H_q(\mathbb{L}(V), \delta)$ where q is odd. Define a sequence of derivations θ_n of $(\mathbb{L}(V), \delta) \amalg \mathbb{L}(x, 0)$ by $\theta_n(V) = 0$, $\theta_n(x) = \underbrace{[\alpha, [\alpha, \cdots, [\alpha, x] \cdots], n \geq 1}_{2n}$. The derivation θ_n is a cycle but cannot be a

boundary. Moreover, $[\theta_m, \theta_n] = 0$. Therefore $\{\theta_n\}_{n \ge 1}$ generate an abelian Lie algebra, which we denote by $Ab(\theta_n, n \ge 1)$. The inclusion $Ab(\theta_n, n \ge 1) \rightarrow Der(\mathbb{L}(V) \amalg \mathbb{L}(x))$ induces an injective map in homology, hence the corresponding mapping

$$\Pi_{n>1}S^{2n|\alpha|+1} \to \tilde{B} aut^{\bullet} X$$

induces an injective map in rational homotopy.

2. Suppose that $H_{even}(\mathbb{L}(V), \delta) \neq 0$. Take $[\beta] \in H_q(\mathbb{L}(V), \delta)$ where q is even. For each $n \geq 1$, define a derivation γ_n of $(\mathbb{L}(V), \delta)$ II $\mathbb{L}(x, 0)$ by $\gamma_n(V) = 0, \quad \gamma_n(x) = \underbrace{[\beta, [\beta, \cdots, [\beta, x] \cdots]}_n$ and argue as in the previous case. 3. If $\hat{H}_*(\mathbb{L}(V), \delta) = 0$, then X has the rational homotopy type of S^{2n+1} . A direct computation shows that $(\tilde{B} aut X)_0$ has the rational homotopy type of $K(\mathbb{Q}, 2n+2)$.

References

- H.J. Baues and J.M. Lemaire, *Minimal models in homotopy theory*, Math. Ann. 225 (1977), 219-242.
- [2] A. Dold and R. Lashoff, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285-305.
- [3] A. Dold, *Halbexakte Homotopiefunktoren*, Lecture notes in mathematics, Vol. 12 (1966), Springer-Verlag.
- [4] E. Dror and A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), 187-197.
- [5] Y. Félix and S. Halperin, Rational LS-category and its applications, Trans. A.M.S. 273 (1982), 1-17.
- [6] J.-B. Gatsinzi, LS category of classifying spaces I, II, Bull. Belg. Math. Soc. 2 (1995), 121-126, 3 (1996), 243-248.
- [7] J.-B. Gatsinzi, The homotopy Lie algebra of classifying spaces, J. Pure and Applied Algebra 120 (1997), 281-289.
- [8] J.-B. Gatsinzi, Products and Lusternik-Schnirelmann category of classifying spaces, Indag. Mathem., N.S. 9(3) (1998), 351-357.
- [9] S. Halperin, *Lectures on minimal models*, Mémoire de la Société Mathématique de France, 9-10, 1983.
- [10] D. Quillen, Rational homotopy theory, Annals of Math. (2) 90 (1969), 205-295.
- [11] M. Schlessinger and J. Stasheff, Deformations theory and rational homotopy type, preprint, 1982.
- [12] D. Sullivan, Infinitesimal computations in topology, Publ. I.H.E.S. 47 (1977), 269-331.
- [13] D. Tanré, Homotopie rationnelle; modèles de Chen, Quillen, Sullivan, Lecture notes in mathematics, Vol. 1025, Springer-Verlag, 1983.

Department of Mathematics, University of Botswana, Private Bag 0022 Gaborone, Botswana. e-mail: gatsinzj@mopipi.ub.bw