
On complex extrapolated successive

overrelaxation (esor) : some theoretical results

Nicholas J. Daras

Abstract

In this paper we discuss the complex theory of the extrapolated successive
overrelaxation (ESOR) method for the numerical solution of large sparse linear
systems A ·x = b of complex algebraic equations. Some subsets of convergence
for this method are obtained through an application of conformal mapping
techniques. We also study the choice of the involved complex parameters
giving an arbitrarily “good” convergence behavior for the method. Among
other results, it is shown that in general there is no value of the complex
parameters maximizing the asymptotic rate of convergence and we investigate
the conditions under which the complex extrapolated Gauss-Seidel (EGS)
method converges as soon as possible..

1 General formulation

Let us consider a complex system of linear equations

A · x = b (1.1)

where A is a consistently ordered complex m×m matrix with non-vanishing diagonal
elements and b is a given complex m-vector. By splitting A into A = D−CL −CU ,
where D is a diagonal matrix possessing the same diagonal elements as A and
−CL,−CU are the strictly lower and upper triangular parts of A respectively, we
define the general extrapolated successive overrelaxation (ESOR) by

x(n+1) = (1−τ )·x(n)+ω·Lx(n+1)+(τ−ω)·Lx(n)+τ ·Ux(n)+τ ·c (n = 0, 1, 2, . . .) (1.2)
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where L = D−1 ·CL, U = D−1 ·CU , c = D−1 ·b and ω, τ ( 6= 0) are complex parameters.
By putting

Lτ,ω = (I−ω·L)−1·[(1−τ )·I+(τ−ω)·L+τ ·U ] = I−τ ·(I−ω·L)−1·D−1 ·A = I−τ ·Λω

with
Λω = (I − ω · L)−1 ·D−1 ·A

we can write the ESOR method as

x(n+1) = Lτ,ωx
(n) + τ · (I − ω · L)−1 · c. (1.3)

Obviously, when ω = 0 or ω = 1, (1.2) yields the JOR (:Jacobi overrelaxation) or
EGS method, respectively; if ω = τ , (1.2) or (1.3) gives the SOR method. One may
note, with the exception of the first iteration, the amount of work involved for the
computation of one complete ESOR iteration is equivalent to that of an SOR one.

It is well known that the spectral radius ρ(Lτ,ω) for the Lτ,ω-matrix can be viewed
as an asymptotic measure of how rapidly the sequence of the error vectors tends to
0. In what follows, we will study how to choose the complex numbers ω and τ in
order to get “good convergence”. To put it more precisely, we pose the following
two problems:

PROBLEM 1. Assuming known distribution of the eigenvalues for the Jacobi
iteration matrix

B = L + U,

determine the domain Ω in C2 into which

ρ(Lτ,ω) < 1 for all (ω, τ ) ∈ Ω

(Ω is called the convergence domain for (1.2) or (1.3).)

PROBLEM 2. Determine the values for ω and τ , if they exist, which are optimum,
in the sense of minimising the spectral radius ρ(Lτ,ω).

In the real case, that is when the iteration matrix B possesses only real eigen-
values and the parameters ω and τ are in R, many authors independently presented
interesting results ([1], [2], [3], [4], [7], [8], [9]). However, the detailed analysis was
not presented since a tremendous number of cases had to be examined.

The purpose of this paper is to study the complex case, that is when B possesses
complex eigenvalues and the parameters ω and τ are in C. In Section 2, we follow
step-by-step the analysis in [6] and [5] and we give some answers to the first problem
by showing that if ω ∈ C, τ ∈ C and if |ω − 1| < 1 and

∆ ((1/ω); (1/|ω|)) ⊂ ∆ ((1/τ ); (1/|τ |)) or τ ∈ ω−∆(1; 1)·∆
(

ω2 + 1

ω
;

1

|ω|

)
, (ω 6= 1)

then ρ(Lτ,ω) < 1. In particular, {(ω, τ ) ∈ C2 : 0 < |ω − 1| < 1 and ω = k · τ (k ≥
1)} ⊂ Ω (Corollary 2.3). Here, ∆(a; r) denotes the open planar disk centered at
a ∈ C and with radius r > 0. The case ω = 1 is studied separately. In Section
3, we shall see that in general there is no (ω, τ ) ∈ C2 that minimizes the spectral
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radius ρ(Lτ,ω) and we investigate the conditions under which for ε > 0 there exists
a (ω, τ ) ∈ C2 such that ρ(Lτ,ω) < ε. Among other results, it is shown that if the
spectrum of B is contained in the open interval (−1, 1) and if 0 < ε < 2, then for

ω = 1 and τ = x+ i ·y, with 0 < x < 1 and 0 < y <
√

ε · (2− ε), we have ρ(Lτ,1) < ε

(Corollary 3.8). However, if the Jacobi matrix B has a critical eigenvalue-pair ±µ̃,
that is a pair which corresponds to the dominant absolute value of the eigenvalues
of the Lτ,ω-matrix whenever (ω, τ ) ∈ C2, then for

ω =
2

1∓
√

1− µ̃2
and τ =

1

∓
√

1− µ̃2
(µ̃ 6= 0,±1)

there holds ρ(Lτ,ω) = 0 (see also [7] for the real case). Here,
√

A (with A ∈ C−{0})
denotes the principal value of A

1
2 , that is

√
A = exp

(
1
2
· log A

)
= exp

(
1
2
· [ln |A|+

i · arg A]), where log A is the principal logarithmic value of A and arg A is the
principal argument of A.

2 On the convergence properties of the ESOR method

A sufficient and necessary condition for ESOR to converge is ρ(Lτ,ω) < 1. To
determine a large subset D of C2, so that ρ(Lτ,ω) < 1 for any (ω, τ ) ∈ D, we shall
consider a geometric interpretation of the relations between the eigenvalues of B, Λω

and Lτ,ω.
Let us introduce the following notations:

σ(B) = {µ : eigenvalue of B} ,
σ(Λω) =

{
λ : eigenvalue of Λω = (I − ω · L)−1 ·D−1 · A

}
,

σ(Lτ,ω) =
{
ζ : eigenvalue of Lτ,ω = I − τ · (I − ω · L)−1 ·D−1 · A

}
.

First, observe that the identity Lτ,ω = I − τ · Λω implies a linear relation between
σ(Λω) and σ(Lτ,ω) : if ζ is an eigenvalue of Lτ,ω, then

ζ = 1− τ · λ (2.1)

where λ is an eigenvalue of Λω. Next, a Young-type result is well known. Its proof
is analogous to that of Theorem 5-2.2 in [12] and is therefore omitted.

Theorem 2.1. If µ ∈ σ(B) and λ satisfies

(1− λ)2 = µ2 · (1− λ · ω) (2.2)

then λ ∈ σ(Λω); conversely, if λ ∈ σ(Λω) and µ satisfies (2.2) then µ ∈ σ(B).

Due to this Theorem, the B-matrix has always eigenvalues in pairs: if µ is an
eigenvalue of B, then −µ is also an eigenvalue of B.

Suppose now

ω ∈ C− {0, 1}.
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The above Theorem describes a mapping between the complex µ- and λ-planes and
is studied by means of successive elementary transformations. Evidently, (2.2) is
equivalent to

µ · ω√
ω − 1

=

√
ω − 1

1− λ · ω +

√
1− λ · ω
ω − 1

.

With

2 · z =
ω√

ω − 1
· µ and ξ =

√
ω − 1

1− λ · ω (2.3)

this becomes

z =
1

2
·
(
ξ +

1

ξ

)
and ξ = z +

√
z2 − 1. (2.4)

The map defined by (2.4) is the well known Joukowski function. Putting a :=√
ω − 1 (2.4) gives

z =
1

2
·
(
a +

1

a

)
· µ. (2.5)

Now, let ±µ be an eigenvalue-pair for the B-matrix. By (2.5), these correspond
to the points z+ and z− in Figure 1 below. There is now an ellipse E|α| such that z+

and z− are two points interior to E|α|. By (2.4), this ellipse is mapped on two circles
|ξ| = |a| and |ξ| = 1

|a| in the ξ-plane and its interior is mapped on to the annulus

|a| < |ξ| < 1
|a| in the ξ-plane.

Figure 1

Since (2.3) is equivalent to ξ2 − ξ2 · λ · ω = ω − 1, it follows that

λ =
1

ω
− ω − 1

ω
· 1

ξ2
(2.6)

and thus

|a| ≤ |ξ| ≤ 1

|a|
(2.6)⇐⇒ |ω − 1|2

|ω| ≤
∣∣∣∣λ− 1

ω

∣∣∣∣ ≤ 1

|ω|
which means that the two circles |ξ| = |a| and |ξ| = 1

|a| in the ξ-plane are mapped

on the two circles
∣∣∣λ− 1

ω

∣∣∣ = 1
|ω| and

∣∣∣λ− 1
ω

∣∣∣ = |ω−1|2
|ω| in the λ-plane respectively, and

that the annulus |a| < |ξ| < 1
|a| in the ξ-plane is mapped on to the annulus

|ω − 1|2
|ω| <

∣∣∣∣λ− 1

ω

∣∣∣∣ < 1

|ω| (2.7)
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in the λ-plane.
We may now formulate the main results of this Section.

Theorem 2.2. If the relaxation factors ω and τ fulfill

0 < |ω − 1| < 1 and ∆ ((1/ω); (1/|ω|)) ⊂ ∆ ((1/τ ); (1/|τ |)) ,

then the ESOR method converges (under the assumptions that all eigenvalues of the
B-matrix belong to the interior of the ellipse E(

√
ω − 1) which has the semi-axes

(
1

|
√

ω − 1|
± |
√

ω − 1|
)
·
(∣∣∣∣∣ 1√

ω − 1
±
√

ω − 1

∣∣∣∣∣
)−1

and the larger semi-axis of which forms an angle

φ = arg tg

{
1− |
√

ω − 1|2
1 + |
√

ω − 1|2
· tg(arg

√
ω − 1)

}

with the real axis in the µ-plane).

Proof. By (2.5), every point interior to the ellipse E(
√

ω − 1) in the µ-plane is
mapped on the interior of the ellipse E|√ω−1| in the z-plane which has the semi axes
1
2
·
∣∣∣|√ω − 1| ± |

√
ω − 1|−1

∣∣∣. By (2.4), every point interior to E|√ω−1| in the z-plane

is mapped on two points in the annulus (|ω−1|2/|ω|) < |λ− (1/ω)| < (1/|ω|) in the
λ-plane. Thus, if σ(B) ⊆ E(

√
ω − 1), the inequalities (2.7) hold for all λ ∈ σ(Λω).

In particular, there holds σ(Λω) ⊆ ∆ ((1/ω); (1/|ω|)) ⊂ ∆ ((1/τ ); (1/|τ |)), which
implies |1− τ · λ| < 1, for all λ ∈ σ(Λω). From (2.1), if follows that |ζ| < 1 for any
ζ ∈ σ(Lτ,ω), that is ρ(Lτ,ω) < 1.

Since the relationship ω = k · τ (k ≥ 1) can also be regarded as an inclusion
∆ ((1/ω); (1/|ω|)) ⊂ ∆ ((1/τ ); (1/|τ |)), we immediately get the

Corollary 2.3. If the relaxation factor ω is as in the above Theorem, and if τ = ω
k

for some k ∈ [1, +∞], then ρ(Lτ,ω) < 1.

In what follows, for any subset U of C − {0}, we will denote by U−1 the set
{z ∈ C − {0} : z−1 ∈ U}. Further, if A and B are two subsets of C, then we will
denote by A · B the set {a · b : a ∈ A and b ∈ B}.

Theorem 2.4. If the relaxation factors ω and τ fulfill

0 < |ω − 1| < 1 and τ ∈ ω ·∆(2; 1)−∆(1; 1) ·∆−1 ((1/ω); (1/|ω|)) ,

the ESOR method converges (under the assumption that all eigenvalues of B belong
to the interior of the ellipse E(

√
ω − 1)). In particular, if

0 < |ω − 1| < 1 and |τ − 2ω| ≤ |ω|

then ρ(Lτ,ω) < 1.
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Proof. As in the proof of Theorem 2.2, one can show that

|1− ω · λ| < 1 for all λ ∈ σ(Λω). (2.8)

Choose any point (ζ, u−1) ∈ ∆(1, 1)×∆−1
(

1
ω
; 1
|ω|

)
. Setting τ = ω·(1+ζ)−ζ ·u−1, it is

easily seen that if ζ = 0 then τ = ω, otherwise the point s := 1+(ω−τ ) ·(u−1−ω)−1

lies in ∆(0; 1), which implies that s = (1− τ ·u) · (1−ω ·u) ∈ ∆(0; 1). In particular,
there holds

|1− τ · λ| ≤ |1− ω · λ| for all λ ∈ σ(Λω).

Combination with (2.8) shows that |ζ| < 1 for any ζ = (1− τ · λ) ∈ σ(Lτ,ω), which
completes the proof.

Next, we shall see how the investigation for the domain of convergence Ω can be
cleared of its dependence on the theory of conformal mappings and reconnected to
an elementary algebraic treatment so that a suitable determination for Ω is obtained.

Theorem 2.5. For any ω ∈ C, put λω := max {|λ|−2 · (−|λ| − Imλ) : λ ∈ σ(Λω)}
and λ̃ω := min {|λ|−2 · (|λ| − Imλ) : λ ∈ σ(Λω)} and consider the open set

Sω :=
{
y ∈ R : λω < y < λ̃ω

}
and its subset

Fω :=

y ∈ Sω : max
λ∈σ(Λω)

Reλ−
√
|λ|2 − (|λ|2 · y + Imλ)2

|λ|2 <

min
λ∈σ(Λω)

Reλ +
√
|λ|2 − (|λ|2 · y + Imλ)2

|λ|2

 .

If G := {ω ∈ C : Fω 6= ∅}, the domain of convergence ω for the ESOR method is

Ω = G× {x + iy ∈ C : y ∈ Fω, ω ∈ G and

max
λ∈σ(Λω)

Reλ−
√
|λ|2 − (|λ|2 · y + Imλ)2

|λ|2 < x <

min
λ∈σ(Λω)

Reλ +
√
|λ|2 − (|λ|2 · y + Imλ)2

|λ|2

 .

Proof. Let (ω, τ ) ∈ Ω. As mentioned above, this is equivalent to |1− τ · λ| < 1
for λ ∈ σ(Λω). Putting τ = x + iy and λ = a + ib, we have (a2 + b2)x2 − (2a) · x +
(y2 · (a2 + b2) + 2y · b) < 0 or equivalently

a2 − (a2 + b2) ·
[
(a2 + b2)y2 + 2yb

]
> 0 (2.9)

and

a−
√

a2 − (a2 + b2) · [(a2 + b2)y2 + 2yb]

a2 + b2
< x <

a +
√

a2 − (a2 + b2) · [(a2 + b2)y2 + 2yb]

a2 + b2
. (2.10)
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It is easy to verify that (2.9) holds for any (a + ib) ∈ σ(Λω) if and only if y ∈ Sω
and that (2.10) is fulfilled for every (a + ib) ∈ σ(Λω) if and only if y ∈ Fω and

max
λ∈σ(Λω)

Reλ−
√
|λ|2 − (|λ|2 · y + Imλ)2

|λ|2 < x < min
λ∈σ(Λω)

Reλ +
√
|λ|2 − (|λ|2 · y + Imλ)2

|λ|2 .

The assumptions of the above Theorem seem to be very technical, but, on the
other hand, its proof generalizes to the context of the problem of optimum values
(see Theorem 3.4). For instance let us give a direct consequence of this Theorem.

Corollary 2.6. If ω ∈ C is chosen so that Reλ > 0 for any λ ∈ σ(Λω) and if
τ = x + iy satisfies

0 < y < min
λ∈σ(Λω)

|λ|2 − Imλ

|λ|2 and 0 < x < min
λ∈σ(Λω)

Reλ +
√
|λ|2 − (|λ|2 · y + Imλ)2

|λ|2

then (ω, τ ) ∈ Ω.

Let us finally turn to the special cases ω = 0 and ω = 1.
If ω = 0, the (1.2) yields the JOR method:

x(n+1) = Lτ,0x
(n) + τ · c = [I − τ · Λ0] · x(n) + τ · c. (2.11)

From (2.2), it follows that if µ ∈ σ(B) then λ = (1 ± µ) ∈ σ(Λ0), and conversely,
if λ ∈ σ(Λ0) then µ = ±(1 − λ) ∈ σ(B). By (2.1), we therefore have: ρ(Lτ,0) < 1
iff |1− τ · (1 ± µ)|2 < 1 for all µ ∈ σ(B) or iff [1− τ · (1± µ)] · [1− τ · (1 ± µ)] =
1− τ · (1± µ) − τ · (1± µ) + |τ |2 · |1± µ|2 = 1 − 2 · Re[τ · (1 ± µ)] + {Re[τ · (1 ±
µ)]}2 + {Im[τ · (1± µ)]}2 = {Re[τ · (1± µ)] − 1}2 + {Im[τ · (1± µ)]}2 < 1 for all
µ ∈ σ(B). Hence

Theorem 2.7. If ±1 6∈ σ(B), then a necessary and sufficient condition for the JOR
to converge is the validity of the following inequality

{Re[τ · (1± µ)]− 1}2
< 1− {Im[τ · (1± µ)]}2

for any µ ∈ σ(B).

Corollary 2.8. ([11]) Suppose σ(B) ⊂ (−1, 1). If

0 < τ <
2

1± µ
for any µ ∈ σ(B),

the JOR method converges.

If ω = 1, the (1.2) gives the EGS method:

x(n+1) = Lτ,1x
(n) + τ · (I − L)−1 · c = [I − τ · Λ1] · x(n) + τ · (I − L)−1 · c. (2.12)

If µ is any eigenvalue of B, then λ = (1−µ2) ∈ σ(Λ1), because of (2.2). Conversely,
if λ ∈ σ(Λ1), then, by Theorem 2.1, there exists a µ ∈ σ(B) such that λ = 1− µ2.
From (2.1), it follows that the inequality ρ(Lτ,1) < 1 holds iff |1− τ · (1− µ2)|2 < 1
for all µ ∈ σ(B). Since∣∣∣1− τ · (1− µ2)

∣∣∣2 =
[
1− τ · (1− µ2)

]
·
[
1− τ · (1− µ2)

]
=

1− 2 · Re
[
τ · (1− µ2)

]
+
{
Re

[
τ · (1− µ2)

]}2
+
{
Im

[
τ · (1− µ2)

]}2
={

Re
[
τ · (1− µ2)

]
− 1

}2
+
{
Im

[
τ · (1− µ2)

]}2
,

we immediately establish the
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Theorem 2.9. A necessary and sufficient condition for EGS to converge is the
validity of the following inequality{

Re[τ · (1− µ2)]− 1
}2

< 1−
{
Im[τ · (1− µ2)]

}2
for any µ ∈ σ(B),

of course under the assumption ±1 6∈ σ(B).

Corollary 2.10. ([11]) Suppose σ(B) ⊂ (−1, 1). If

0 < τ <
2

1− µ2
for any µ ∈ σ(B),

the EGS method converges.

3 On the existence of optimum values for the ESOR method

We first consider a general optimization problem. Let U 6= ∅ be an open connected
subset of Cn and let u1, u2, . . . , um, ν1, ν2, . . . , νm be non constant holomorphic func-
tions in U , such that u2

j(t) 6= 4νj(t) for any t ∈ U (j = 1, 2, . . . , m). If each equation
z2 + uj(t) · z + νj(t) = 0 (t ∈ U , j = 1, 2, . . . , m) has roots zj(uj(t), νj(t)) and
z
′
j(uj(t), νj(t)), we shall prove that the value t0 of t ∈ U (if it exists) for which the

function

f(t) := max
{
|z1(u1(t), ν1(t))| ,

∣∣∣z′1(u1(t), ν1(t))
∣∣∣ , . . . ,

|zm(um(t), νm(t))| ,
∣∣∣z′m(um(t), νm(t))

∣∣∣}
is minimized is characterized by the fact that the absolute values of the roots are
equal.

More precisely, we have the following

Theorem 3.1. If there is a t0 ∈ U fulfilling

f(t0) ≤ f(t)

for any t ∈ U , then there holds

|z1(u1(t0), ν1(t0))| =
∣∣∣z′1(u1(t0), ν1(t0))

∣∣∣ = . . . =

|zm(um(t0), νm(t0))| =
∣∣∣z′m(um(t0), νm(t0))

∣∣∣ .
Proof. Obviously, the functions

h2j−1 (uj(t), νj(t)) = zj (uj(t), νj(t)) and h2j (uj(t), νj(t)) = z
′

j (uj(t), νj(t))

are holomorphic in t ∈ U , for any j. Suppose there is a t0 ∈ U satisfying

f(t0) ≤ f(t) (3.1)

for any t ∈ U . Further, assume that

|hβ (ub(t0), νb(t0))| < |hα (ua(t), νa(t))| (3.2)
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for some α 6= β (α, β = 1, 2, . . . , 2m), b ∈ {(β/2), (β +1)/2}, a ∈ {(α/2), (α+1)/2}.
By continuity, it is clear that there is an open neighborhood Vt0 ⊂ U of t0 into which
we have

|hβ (ub(t), νb(t))| < |hα (ua(t), νa(t))| (3.3)

for every t ∈ Vt0. We shall prove that there exists a t̃ ∈ Vt0 such that
∣∣∣hα (ua(t̃), νa(t̃))∣∣∣

< |hα (ua(t0), νa(t0))|. To do so, suppose

|hα (ua(t0), νa(t0))| < |hα (ua(t), νa(t))| (3.4)

for all t ∈ Vt0. By (3.2), hα(ua(t0), νa(t0)) 6= 0, and, by (3.4), hα(ua(t), νa(t)) 6= 0
for any t ∈ Vt0 . From the minimum principle for holomorphic functions and from
(3.4), it follows that the function hα(ua(t), νa(t)) is constant in Vt0 . By the identity
theorem, the holomorphic function hα(ua(t), νa(t)) must be constant in the open
connected set U . This is an absurdity. Consequently, there exist a point t̃ ∈ Vt0
satisfying ∣∣∣hα (ua(t̃), νa(t̃))∣∣∣ < |hα (ua(t0), νa(t0))| . (3.5)

By (3.3) and (3.5), we thus obtain the inequalities∣∣∣hβ (ub(t̃), νb(t̃))∣∣∣ < ∣∣∣hα (ua(t̃), νa(t̃))∣∣∣ < |hα (ua(t0), νa(t0))| ,

which contradict (3.1). Hence, the point t0 ∈ U must be such that |hβ (ub(t0), νb(t0))|
= |hα (ua(t0) , νa(t0))|, for any α, β = 1, 2, . . . , 2m and b ∈ {(β/2), (β + 1)/2}, a ∈
{(α/2), (α + 1)/2}. The proof is complete.

We shall now study the problem of determination of optimum values for the
parameters ω and τ . Assume that (ω, τ ) is a fixed point in the convergence domain
Ω for (1.2) (or (1.3)), i.e. ρ(Lτ,ω) < 1. Further, suppose

ω 6∈
{
{0, 2} ∪ 1

1− µ2
· (−∞,−4] : µ ∈ σ(B)− {±1}

}
.

This, in particular, implies that (ω · µ2 − 4ω + 4) 6∈ (−∞, 0] for any µ ∈ σ(B) and
therefore the expression√

(2− ω · µ2)2 − 4(1− µ2) =
√

ω · µ2 − 4 · ω + 4 = exp
(

1

2
· log[ω · µ2 − 4ω + 4]

)
is well defined and holomorphic in ω for all µ ∈ σ(B).

Let ζ ∈ σ(Lτ,ω). Since Lτ,ω = I − τ · Λω, the complex number

λ =
(1− ζ)

τ
(3.6)

is an eigenvalue of Λω, and, by Theorem 2.1, any root µ of the equation

(1− λ)2 = µ2 · (1− λ · ω) (3.7)

is an eigenvalue of B. In view of (3.6), the equation (3.7) becomes

ζ2 −
(
τ · ω · µ2 − 2τ + 2

)
· ζ +

(
τ · ω · µ2 − 2τ + 1 + τ 2 − τ 2 · µ2

)
= 0. (3.8)
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Thus, if {µ1, . . . , µm} is the set σ(B) of all eigenvalues of B, then for any j =
1, 2, . . . , m there holds

ζ2 + uj(ω, τ ) · ζ + νj(ω, τ ) = 0 (3.9)

with

uj(ω, τ ) = −
(
τ · ω · µ2

j − 2τ + 2
)

and νj(ω, τ ) =
(
τ · ω · µ2

j − 2τ + 1 + τ 2 − τ 2 · µ2
j

)
.

The roots of each equation (3.9) are

ζj(uj(ω, τ ), νj(ω, τ )) = 1− τ ·
2− ω · µ2

j − µj
√

ω2 · µ2
j − 4ω + 4

2


and

ζ
′

j(uj(ω, τ ), νj(ω, τ )) = 1− τ ·
2− ω · µ2

j + µj
√

ω2 · µ2
j − 4ω + 4

2

 .

An application of Theorem 3.1 in each open connected component U of

Ω−
{

(ω, τ ) ∈ C2 : ω ∈ {0, 2} ∪
{

1

1− µ2
· (−∞,−4] : µ ∈ σ(B)− {±1}

}}

leads to the following

Theorem 3.2. If the point

(ω0, τ0) ∈ Ω−
{

(ω, τ ) ∈ C2 : ω ∈ {0, 2} ∪
{

1

1− µ2
· (−∞,−4] : µ ∈ σ(B)− {±1}

}}

minimizes the spectral radius ρ(Lτ,ω), then there holds

∣∣∣∣∣∣1− τ0 ·
2− ω0 · µ2

j ±
√

ω2
0 · µ2

j − 4ω0 + 4

2

∣∣∣∣∣∣ =∣∣∣∣∣∣1− τ0 ·
2− ω0 · µ2

i ±
√

ω2
0 · µ2

i − 4ω0 + 4

2

∣∣∣∣∣∣
for any µj , µi ∈ σ(B).

This result is purely theoretic. However, in the sequel, by using this result,
we will study the possibility of existence of an optimum value (ω, τ ) ∈ Ω which
minimizes ρ(Lτ,ω).

Let

λ2j−1(ω) =

2− ω · µ2
j −

√
ω2 · µ2

j − 4ω + 4

2

 ,

λ2j(ω) =

2− ω · µ2
j +

√
ω2 · µ2

j − 4ω + 4

2

 (1 ≤ j ≤ m).
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Suppose (ω, τ ) is an optimum value for the ESOR method. According to Theorem
3.2, it must hold ∣∣∣∣∣1− τ · λα(ω)

1− τ · λβ(ω)

∣∣∣∣∣ = 1⇔
∣∣∣∣∣(1/λα(ω))− τ

(1/λβ(ω))− τ

∣∣∣∣∣ =
∣∣∣∣∣λβ(ω)

λα(ω)

∣∣∣∣∣ (3.10)

for every α, β = 1, 2, . . . , 2m.
Each equation (3.10) represents a circle C(Hα,β(ω); Rα,β(ω)) with

• center Hα,β(ω) =

1

λα(ω)
−
∣∣∣∣∣λβ(ω)

λα(ω)

∣∣∣∣∣
2

· 1

λβ(ω)

1−
∣∣∣∣∣λβ(ω)

λα(ω)

∣∣∣∣∣
2

=
|λα(ω)|2 · λβ(ω)− |λβ(ω)|2 · λα(ω)

|λα(ω)|2 · λβ(ω) · λα(ω)− |λβ(ω)|2 · λα(ω) · λβ(ω)

and

• radius Rα,β(ω) =

∣∣∣∣∣λβ(ω)

λα(ω)

∣∣∣∣∣ ·
∣∣∣∣∣ 1

λα(ω)
− 1

λβ(ω)

∣∣∣∣∣∣∣∣∣∣∣1−
∣∣∣∣∣λβ(ω)

λα(ω)

∣∣∣∣∣
2
∣∣∣∣∣∣

=
|λα(ω)− λβ(ω)|
||λα(ω)|2 − |λβ(ω)|2| .

In other words, we have the

Theorem 3.3. The point (ω, τ ) ∈ C2 is an optimum value for the ESOR method if
and only if τ lies in the intersection of the circles C (Hα,β(ω); Rα,β(ω)) :

τ ∈
2m⋂

α,β=1

C (Hα,β(ω); Rα,β(ω)) .

Notice that the explicit algebraic form of the equation (3.10) for the circle
C (Hα,β(ω); Rα,β(ω)) is

τ 2
1−2·τ1 {ReHα,β(ω)}+τ 2

2−2·τ2 {ImHα,β(ω)}+|Hα,β(ω)|2 = R2
α,β(ω) (τ = τ1+iτ2).

(3.11)
Following Theorem 3.3, the investigation of the optimum values (ω, τ ) for the ESOR
method requires the knowledge of the conditions on ω which guarantee that the
common intersection of all the circles C(Hα,β(ω); Rα,β(ω)) is not empty.

The last two Theorems allow us to suspect that the existence of an optimum
value depends upon how the eigenvalues in the µ-plane are located and that in case
of a general distribution such a value may not exist: The next Theorem shows how
the complex parameters involved can give an arbitrarily good convergence behavior
for the ESOR method; its proof is completely analogous to that of Theorem 2.5.

Theorem 3.4. Let ε > 0. For any

ω ∈ C−
{

1

1− µ2
· (−∞,−4] : µ ∈ σ(B)− {±}

}
− {0, 2},
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put
λ(ε)
ω := max

{
|λ|−2 · (−|λ| − ε · Imλ) : λ ∈ σ(Λω)

}
and

λ̃(ε)
ω := min

{
|λ|−2 · (−|λ|+ ε · Imλ) : λ ∈ σ(Λω)

}
,

and consider the open set

S(ε)
ω :=

{
y ∈ R : λ(ε)

ω < y < λ̃(ε)
ω

}
and its subset

F (ε)
ω :=

y ∈ S(ε)
ω : max

λ∈σ(Λω)

Reλ−
√
|λ|2 − [|λ|2 · y + Imλ]2 − |λ|2 · (1− ε)2

|λ|2

< min
λ∈σ(Λω)

Reλ +
√
|λ|2 − [|λ|2 · y + Imλ]2 − |λ|2 · (1− ε)2

|λ|2

 .

If

G(ε) :=

{
ω ∈ C−

{
1

1− µ2
· (−∞,−4] : µ ∈ σ(B)− {±1}

}
− {0, 2} : F (ε)

ω 6= ∅
}

then, for any

(ω, τ ) ∈ G(ε) ×
{
x + iy ∈ C : y ∈ F (ε)

ω , ω ∈ G(ε) and

max
λ∈σ(Λω)

Reλ−
√
|λ|2 − [|λ|2 · y + Imλ]2 − |λ|2 · (1− ε)2

|λ|2 < x <

min
λ∈σ(Λω)

Reλ +
√
|λ|2 − [|λ|2 · y + Imλ]2 − |λ|2 · (1− ε)2

|λ|2

 ,

we have
ρ(Lτ,ω) < ε.

Corollary 3.5. Let 0 < ε < 2. If ω ∈ C is chosen so that

σ(Λω) ⊂ R+ ×R+ and

1 +

[
Reλ

Imλ

]2
 · ε · (2− ε) > 1 (λ ∈ σ(Λω))

and if τ = x + iy ∈ C is chosen so that

0 < y < min
λ∈σ(Λω)

−Imλ + |λ| ·
√

ε(2− ε)

|λ|2 and

0 < x < min
λ∈σ(Λω)

Reλ +
√
|λ|2 − [|λ|2 · y + Imλ]2 − |λ|2 · (1− ε)2

|λ|2 ,

then
ρ(Lτ,ω) < ε.
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Corollary 3.6. Let 0 < ε < 2. If ω ∈ C is chosen so that

σ(Λω) ⊂ R+,

and if τ = x + iy ∈ C satisfies

0 < x < min
λ∈σ(Λω)

1

λ
and 0 < y < min

λ∈σ(Λω)

√
ε(2− ε)

λ
,

then
ρ(Lτ,ω) < ε.

If, in particular, ω = 1, then, by (3.7),

σ(Λω) ⊂ R+ ⇔ σ(B) ⊂ (−1, 1)

and

min
λ∈σ(Λω)

1

λ
= min

m∈σ(B)

1

1− µ2
.

Letting
µ = min{µ : µ ∈ σ(B) ⊂ (−1, 1)},

we immediately have the following:

Corollary 3.7. Let 0 < ε < 2. If σ(B) ⊂ (−1, 1) and if τ = x + iy ∈ C satisfies

0 < x <
1

1− µ2
and 0 < y <

√
ε(2− ε)

1− µ2
,

then
ρ(Lτ,1) < ε.

Corollary 3.8. Let 0 < ε < 2. If σ(B) ⊂ (−1, 1) and if τ = x + iy ∈ C satisfies

0 < x < 1 and 0 < y <
√

ε(2− ε),

then
ρ(Lτ,1) < ε.

According to Corollary 3.8 (or 3.7), the complex EGS method may have an
arbitrarily “good” convergence behavior.

The difficulty of the investigation in practice for the assumptions of Theorem
3.4 and of Corollaries 3.5 and 3.6 forces us to seek for another confronting of the
problem.

In what follows, we will assume that the B-matrix has a critical eigenvalue - pair
±µ̃. By definition, the critical eigenvalue - pair ±µ̃ is that pair which corresponds to
the dominant absolute value of eigenvalue for the Lτ,ω-matrix whenever (ω, τ ) ∈ C2.
Under this strong condition we have

min
(ω,τ )∈C2

ρ(Lτ,ω) = min
(ω,τ )∈C2

{
max

{
|ζ̃|, |ζ̃ ′|

}}
,
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where ζ̃ and ζ̃
′
are the roots of the equation

ζ2 − (τ · ω · µ̃2 − 2τ + 2) · ζ + (τ · ω · µ̃2 − 2τ + 1 + τ 2 − τ 2 · µ̃2) = 0. (3.12)

By Theorem 3.1, the value (ω0, τ0) of (ω, τ ) for which max
{
|ζ̃|, |ζ̃ ′|

}
is minimized is

characterized by the fact that |ζ̃| = |ζ̃ ′ |. Setting

ω0 =
2± 2

√
1− µ2

µ̃2
and τ0 =

1

∓
√

1− µ̃2
,

it is readily seen that (τ0 ·ω0 ·µ̃2−2τ0+2) = (τ0 ·ω0 ·µ̃2−2τ0+1+τ 2
0 −τ 2

0 ·µ̃2) = 0 and
therefore, in such a case ζ̃ = ζ̃

′
= 0, which implies that min

(ω,τ )∈C2
ρ(Lτ,ω) = ρ(Lτ0,ω0) = 0.

We have thus proved the following

Theorem 3.9. Assume that the B-matrix has a critical eigenvalue - pair ±µ̃ 6=
0,±1. The optimum values of (ω, τ ) that minimize the spectral radius for the Lτ,ω-
matrix and therefore maximize the asymptotic rate of convergence for the ESOR
method are

ω0 =
2

1−
√

1− µ̃2
, τ0 =

1

−
√

1− µ̃2

and

ω0 =
2

1 +
√

1− µ̃2
, τ0 =

1√
1− µ̃2

and the minimum of ρ(Lτ,ω) is ρ(Lτ0,ω0) = 0.

Example 3.10. Let us consider the following system of linear equations

2x1 − x2 = i

−x1 + 2x2 − x3 = 0

−x2 + 2x3 = i.

The general successive overrelaxation method is given by
x

(n+1)
1

x
(n+1)
2

x
(n+1)
3

 =


[1− τ ]x

(n)
1 + τ

2
x

(n)
2 + τ

2
i

− τω
4

x
(n)
1 + x

(n)
2 − τω

4
x

(n)
3 + τω

2
i

− τω2

8
x

(n)
1 +

[
1− τω2

8

]
x

(n)
3 + τω2

4
i


and the Jacobi iteration matrix

B =

 0 1
2

0
1
2

0 1
2

0 1
2

0


has the eigenvalues 0, ±

√
2

2
. If we choose

ω0 =
2

1 +

√
1−

(
±
√

2
2

)2
= 1.1715728 and τ0 =

1√
1−

(
±
√

2
2

)2
= 1.4142135
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our method becomes
x

(n+1)
1

x
(n+1)
2

x
(n+1)
3

 =


−0.4142135x

(n)
1 + 0.7071067x

(n)
2 + 0.7071067i

−0.4142135x
(n)
1 + x

(n)
2 − 0.4142135x

(n)
3 + 0.828427i

−0.2426406x
(n)
1 + 0.7573593x

(n)
3 + 0.4852812i


and indicatively we have

x
(0)
1 = 0.2928932i x

(0)
2 = 0.828427i x

(0)
3 = 0.9999993i

x
(1)
1 = 1.1715726i x

(1)
2 = 1.1213202i x

(1)
3 = 1.1715727i

x
(2)
1 = 1.0147186i x

(2)
2 = 1.0624459i x

(2)
3 = 0.9361075i

x
(3)
1 = 1.0380592i x

(3)
2 = 1.0828144i x

(3)
3 = 0.948039i

x
(4)
1 = 1.0427939i x

(4)
2 = 1.0885727i x

(4)
3 = 0.951412i

x
(5)
1 = 1.0449044i x

(5)
2 = 1.0909727i x

(5)
3 = 0.9528178i

x
(6)
1 = 1.0457273i x

(6)
2 = 1.0919162i x

(6)
3 = 0.9533704i
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