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Abstract

We prove that in a certain statistical sense the Cayley graph of almost

every finitely presented group with m ≥ 2 generators contains a subdivision

of the complete graph on l ≤ 2m + 1 vertices. In particular, this Cayley

graph is non planar. We also show that some group constructions preserve

the planarity.

1 Introduction

To any finite presentation of a group in terms of generators and defining relations
there is an associated Cayley graph. This graph depends on the choice of the group
generating set. So, in general, the same group has completely different Cayley
graphs (from the graph theory viewpoint). In particular, it is not hard to find a
group and two different sets of generators such that the Cayley graph with respect
to one generating set is planar and not planar with respect to the other. As an
example, take the cyclic group Z/5Z of order five and two generating sets. The first
one consisting of a single non trivial element and the other one consisting of all non
trivial elements. Then with respect to the first generating set, the Cayley graph
is a cycle, so it is planar, but with respect to the second one it is not, as it is the
complete graph on five vertices.

On the other hand, the existence of planar Cayley graph may give an information
about algebraic structure of a group. In fact, groups having planar Cayley graphs
are rather scarce. In 1896, applying Cayley’s method of the graphical presentation of
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a group, in particular, to rotation groups of the regular three- and four-dimensional
bodies, Maschke classified all finite groups with planar Cayley graphs [15]. These
are the finite subgroups of the special orthogonal group SO(3) (i.e. cyclic, dihedral,
and the rotational symmetry groups of the regular solids) and their direct products
with the group of order 2. It is worth to notice that for finite graphs the way given
in [15] to define the planarity is very natural and it is not ambiguous. The situation
for infinite graphs is more complicated. In this case there are two nonequivalent
definitions of planarity.

Definition 1.

(I) A graph is planar without accumulation points if there is an embedding of the
graph in R

2 such that there are no accumulation points for its set of vertices.

(II) A graph is planar if there is an embedding of the graph in R
2.

Infinite groups admitting planar Cayley graphs without accumulation points
of vertices were treated by Levinson. In [14], he and Rapaport find all ”special
planar” presentations. ”Special planar” means that the Cayley graph can be chosen
point-symmetric (with the same counterclockwise succession of the edges at each
vertex) and locally finite (without accumulation points of vertices). They gave also
some conditions on the set of defining relations which are necessary to make the
presentation special planar. In [13], Levinson produces moreover an algorithm to
decide whether or not a Cayley graph of a group with solvable word problem is
planar without accumulation points of vertices.

A different geometrical approach of group planarity was initiated by Poincaré [17].
It gave rise to the following question : Which groups have a planar Cayley complex ?
Now there exists a complete classification of such groups. These are Fuchsian groups
and free products of countably many cyclic groups [11, Prop. III.5.4], [20, Ch. 4].
Planarity of the Cayley complex implies planarity of the Cayley graph, but the con-
verse is not true. An example of a planar group without planar Cayley complex is
the free product of Z

2 by Z, see Figure 1.
To allow accumulation points in the definition of planarity gives more freedom, so

we ask ourselves whether or not the planarity with accumulation points of vertices is
frequent. The aim of the present paper is to show that for any m ≥ 2 and l ≤ 2m+1
one can find a subdivision (see Section 2.1 for the definition of subdivision) of the
complete graph Kl (and hence of every finite graph on at most l vertices) in the
Cayley graph of almost every finite presentation of a group with m generators and
long enough defining relations. In particular, the Cayley graph of such a generic
group is non planar (even with the above mentioned relaxation of the notion of
planarity).

More precisely, for any fixed m and n, let N = N(m,n, t) denote the number of
all group presentations

G = 〈x1, . . . , xm | r1 = 1, . . . , rn = 1〉, (1)

where {r1, . . . , rn} are cyclically reduced words in the alphabetXm = {x±1
1 , . . . , x±1

m }
of length |ri| ≤ t. Let Nl = Nl(m,n, t) denote the number of all such group presen-
tations whose Cayley graphs contain a subdivision of the complete graph Kl on l
vertices.
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Figure 1: Part of ball of radius 3 in Z
2 ∗ Z

Theorem 1. For any m ≥ 2, n > 0 and l ≤ 2m+ 1

lim
t→∞

Nl/N = 1.

Moreover, there is a real number c > 0 depending on m and n such that

1 −Nl/N < exp(−ct) for all t > 0.

Let Nnp = Nnp(m,n, t) denote the number of all group presentations (1) with
non planar Cayley graphs. The previous theorem together with Theorem 5 below
imply immediately the following result.

Theorem 2. For any m ≥ 2 and n > 0

lim
t→∞

Nnp/N = 1.

Moreover, there is a real number c > 0 depending on m and n such that

1 −Nnp/N < exp(−ct) for all t > 0.

By a result of Levinson [12], the Cayley graph of an infinite finitely generated
group has the genus either 0 (hence the group is planar) or the infinity. Thus the
previous theorem implies that the genus of a generic finitely presented group (that
is the minimum of genus of its Cayley graphs taken over all generating sets, see
Section 2.1) is the infinity.

To prove Theorem 1 we use firstly that the metric small cancellation condition
C ′(λ) with λ > 0 is verified for a generic (in the above defined statistical sense)
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finitely presented group, see, for example, [1, 2]. Then we apply the technique of
small cancellation theory to find the complete graph Kl with l ≤ 2m + 1 in the
Cayley graph of a generic group presentation with m generators.

A probabilistic point of view on the notion of a generic group was first considered
by Gromov [5], see also [6, 7] and [9, Problem 11.75] for an independent definition by
Ol’shanskii. In [5] Gromov announced that word hyperbolicity of a finitely generated
group is a generic property, in a sense slightly stronger than the definition above. A
proof of this result was given by Ol’shanskii [16], see also Champetier [2] for more
results in case of two defining relations. A survey on the “random” viewpoint in
geometric group theory is recently presented by Ghys in [4].

The model of a generic group (via the asymptotic density) defined above is closely
related to the density model developed by Gromov in [6]. This model depends on
a density parameter d with 0 ≤ d ≤ 1. It consists in choosing at random roughly
(2m−1)d` words of a given length ` in the alphabet of m letters (more precisely the
number of chosen words of length ` is between C1(2m−1)d` and C2(2m−1)d` for two
given constants C1 < C2), then defining a group presentation on m generators where
these words are defining relations, and finally letting `→ ∞. Under our model, one
can assume that in a generic presentation all defining relations have almost the same
length t. Indeed, the proportion of reduced words of length at most t(1− ε) among
all reduced words of length at most t decrease exponentially as (2m− 1)−tε. Hence
the share of corresponding group presentations is exponentially small. Thus the
model we are using in the paper is the case of the density model with the density
parameter d = 0. It is worth noticing that our main result, Theorem 1, remains
true for all groups of density d < 1/16 as such groups are known to satisfy the small
cancellation condition C ′(λ) with λ < 2d [6, Ch. 9.B]. Hence our arguments (see our
proof below) work in this case as well.

We also describe some group constructions preserving planarity.

Theorem 3.

(i) Planarity is preserved under free products of groups.

(ii) For j = 1, 2, let Gj be a group generated by a finite set Xj containing a
generator sj of order 2, assume that the Cayley graph C(Gi, Xi) is planar. Let
G be the amalgamated product of G1 and G2 along {1, s1} = {1, s2} ≡ Z/2Z.
Then G is a planar group. More precisely, C(G,X1 ∪X2) is a planar graph.

Acknowledgments. We are grateful to L. Babai and A. Valette for suggesting
the problem. We also thank P. de la Harpe and A. Yu. Ol’shanskii for their useful
comments. We also want to thank Y. Ollivier whose helpful remarks strongly clarify
the first version of the paper.
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Figure 2: A subdivision of K3 in K3,3

2 Preliminary information

2.1 Graphs

A graph Γ consists of two sets E(Γ) and V (Γ); if there is no ambiguity we will write
E and V instead of E(Γ) and V (Γ). The elements of V are all vertices of Γ. The
elements of E are unordered pairs of distinct vertices, called edges. We therefore
assume that there are no multiple edges between two vertices. A graph is finite if
the vertex set V is finite, it is infinite otherwise but we assume that an infinite graph
has only countably many vertices.

If e = {u, v} ∈ E, for u, v ∈ V , we say that u and v are adjacent vertices, and
that vertex u and edge e are incident with each other, as are v and e. The degree
of a vertex v is the number of vertices to which v is adjacent. A graph is regular if
the vertices have the same degree.

We recall that two graphs Γ and Γ′ are isomorphic if there exists a one-to-one
mapping φ from V (Γ) onto V (Γ′) such that for every g1, g2 in V (Γ), {g1, g2} is an
edge of Γ if and only if {φ(g1), φ(g2)} is an edge of Γ′.

An elementary subdivision of a graph Γ is the replacement of one edge by two
edges incident to a vertex of degree 2. Namely, a graph Γ1 is obtained from Γ
by an elementary subdivision if V (Γ1) = V (Γ) ∪ {v} with v 6∈ V (Γ) and E(Γ1) =
(E(Γ) \ {e})∪{e1}∪{e2}, where e = {u1, u2} ∈ E(Γ) and e1 = {u1, v}, e2 = {v, u2}.
A subdivision is a finite sequence of elementary ones.

The complete graph Kn is the graph with n vertices and an edge for every pair
of vertices. The complete bipartite graph Kn,m is the graph such that V (Kn,m) is
the disjoint union of two subsets V1 and V2 of cardinality n and m respectively such
that for every v ∈ V1 and w ∈ V2 there exists one edge joining v and w, and these
are the only edges of Kn,m. It is not hard to see that there exists a subdivision of
Kn which is a subgraph of the bipartite graph Kn,n, see Figure 2 for n = 3.

Let Γ1 and Γ2 be two graphs and let u be a vertex of Γ1 and v be a vertex of Γ2,
we denote by (Γ1, u) ∗ (Γ2, v) the graph consisting of the union of Γ1 and Γ2 where
u and v are identified. We call (Γ1, u) ∗ (Γ2, v) the gluing of (Γ1, u) and (Γ2, v) along
u and v. Similarly, we define the gluing along two edges.

A geometric realization of a finite graph in R
3 is a configuration in R

3, where the
vertices of the graph are represented by distinct points, and each edge e of the graph
is a Jordan arc, i.e. the image of an injective continuous function ψ : [0, 1] → R

3.
Two arcs intersect only at a point representing common terminal vertices of two
corresponding edges. It is clear that any finite graph may be realized in such a way
in R

3. If such a geometric realization of a finite graph exists in R
2 instead of R

3, it
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is natural to say that the graph is planar.
It is easy to see (and well known) that K5 and K3,3 are non planar.

Theorem 4 (Kuratovski [10]). A finite graph Γ is planar if and only if Γ contains
no subdivision of K5 or K3,3 as a subgraph.

Kuratovski’s original proof of this theorem is topological, see [10]. For a readable
combinatorial proof, see [19].

The notion of a geometric realization in R
3 can be extended directly to infinite

graphs. It is well-known that any graph with countably many vertices can be ge-
ometrically realized in R

3. However, as seen in the introduction, the planarity for
infinite graphs can be defined in different ways. If accumulation points of vertices
are accepted, an analogous result to Kuratovski theorem is proved in [3].

Theorem 5 (Dirac and Schuster). A graph Γ is planar if and only if it contains
no subgraph homeomorphic with K5 or K3,3.

Remark 1. In fact they prove that the extension of Kuratowski’s theorem is equiva-
lent to the following: If every finite subgraph of a countable infinite graph is planar,
then the whole graph is planar.

We use the term ”graph” for the abstract mathematical object or for a geometric
realization of this object in R

3. It is also interesting to consider embeddings of
graphs in surfaces of positive genus [18, 12]. The minimum genus among all surfaces
in which a graph can be realized in the above-mentioned way is called the genus of
the graph.

2.2 Cayley graphs.

Let G = 〈X | R〉 be a finitely presented group, that is with a finite set of generators
X and a finite set of defining relations R. We assume that x 6=G 1 for every x ∈ X.
Given such a group presentation, there is associated the Cayley graph. This is a
graph C(G,X) whose set of vertices is G and the set of edges is {{g1, g2} | g1, g2 ∈ G
and ∃s ∈ X such that g2 = g1s}. With that definition, there exists two edges
between g1 and g2 if the generator x is of order 2 or if x and x−1 are both contained
in X. However we can glue these two edges together and this process does not
change the planarity. We denote the Cayley graph by C(G) whenever there is no
ambiguity for the generating set.

Any non-directed edge e = {g1, g2} can be viewed as two directed ones, one
e+ = (g1, g2) and the other e− = (g2, g1). There exists a labelling function ϕ on
the set of directed edges onto X±1 defined by ϕ(e+) = s for s such that g2 =
g1s, and ϕ(e−) = s−1. The label ϕ(p) of a path p = e1e2 . . . en in C(G) is the
word ϕ(e1)ϕ(e2) . . . ϕ(en) where ϕ(ei) is the label of the edge ei according to the
orientation. We regard ϕ(p) as an element of G. It is clear that an element g equal
to 1 in G if and only if any path labelled by g is closed in C(G).

We endow C(G) with a metric by assigning to each edge the metric of the unit
segment [0, 1] and defining the distance |x − y| to be the length of a shortest path
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between x and y. Thus C(G) becomes a geodesic metric space, that is, any two
points can be connected by a geodesic.

Obviously, a Cayley graph is regular and connected. The converse is not true,
for example the Petersen graph is not a Cayley graph, see [8, exercise IV.11, p.82].
It is clear that the Cayley graph depends on the choice of the group generating set.
In particular, the planarity of the Cayley graph does depend on such a choice (as
shown in the introduction).

A group G is said to be planar if there exists a generating set X such that the
Cayley graph of G with respect to X is planar in sense (II) of Definition 1.

2.3 Small cancellation groups

Given a finite presentation G = 〈X |R〉, let R∗ denote the set containing all cyclic
permutations of words ri ∈ R and their inverses. Recall that a piece is a nontrivial
word u in the alphabet X±1 such that there are two different defining relations
r1, r2 ∈ R∗ such that r1 = uv1 and r2 = uv2.

A group presentation satisfies the C ′(λ)-condition with λ > 0 (so-called metric
small cancellation condition) if for each piece u occurring in the relator r, |u| < λ|r|.

Example. The surface group of genus g > 1 has a presentation

Sg = 〈a1, . . . , ag, b1, . . . , bg | a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g = 1〉

The set R∗ contains 4g elements. A maximal piece consists of a single letter. So
this presentation satisfies the condition C ′( 1

4g−1
).

The following lemma is due to Greendlinger [11, Th. V.4.4].

Lemma 1. Let a finite presentation G = 〈X |R〉 satisfy the C ′(λ)-condition with
λ ≤ 1

6
. Suppose that w is a reduced word in the alphabet X±1 representing the

identity in G. Then w contains a subword v that is also a subword of a cyclic shift
of some r ∈ R∗ and satisfies |v| > (1 − 3λ)|r|.

In fact, group presentations satisfying the C ′(λ)-condition for λ > 0 are very
frequent.

Lemma 2 ([1, 2]). Let R = {r1, . . . , rn} be an n-tuple of cyclically reduced words
in the alphabet X±1 of length |ri| ≤ t. Then the share of all n-tuples {r1, . . . , rn}
such that R∗ = R∗(r1, . . . , rn) does not satisfy the small cancellation condition C ′(λ)
with λ > 0 decreases exponentially as t→ ∞.

For more details and information about small cancellation groups we refer to [11].
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3 Proof of Theorem 1

Let w be a reduced word in the alphabet Xm = {x±1
1 , . . . , x±1

m }, that is, it does not
contain xx−1 with x ∈ Xm as a subword. Recall that N = N(m,n, t) is the number
of all n-tuples {r1, . . . , rn} of cyclically reduced words in the alphabet Xm of length
|ri| ≤ t. We denote by Nw = Nw(m,n, t) the number of all n-tuples {r1, . . . , rn}
such that a cyclic shift of some ri or of its inverse r−1

i contains w as a subword.
The following lemma is a technical tool in our proof of Theorem 1. It is intuitively

clear.

Lemma 3. For any m,n > 0 and any reduced word w in Xm

lim
t→∞

Nw/N = 1.

Moreover, there is a real number c > 0 depending on m, n and the length |w| of w
such that 1 −Nw/N < exp(−ct) for all t > 0.

Sketch of proof. Let w be a fixed word of length s. We will prove that the number
of words of length t which do not contain w±1 is exponentially small compared to
the number of words of length t as t tends to infinity. In particular this allows us to
extend this result to n-tuples of cyclically reduced words of length t.

Let x in Xm be the first generator appearing in the writing of w and let y be
another generating element distinct from x and x−1.

Let r be much longer than w and denote by t its length. We divide r into
t/(s + 1) blocks of length s + 1. For each of these blocks (except the first one), we
have (2m − 1)s+1 choices (as we have to avoid the inverse of the last letter of the
preceding block). As xw and yw do not have the same first letter, at least one of
the two words xw and yw belongs to these choices. If w is excluded, the number of
choices drops to (2m− 1)s+1 − 1 for each block of length s+ 1. Thus the number of
choices is less than

(2m)s+1((2m− 1)s+1 − 1)(t/(s+1))−1.

The first term (2m)s+1 is there for the choice of the first block. This number of
choices is exponentially small compared to (2m− 1)t when t tends to infinity. �

Lemma 4. Let a finite presentation G = 〈X |R〉 satisfy the C ′(λ)-condition with
λ ≤ 1

8
. Then the intersection of two cycles in the Cayley graph of G is either empty

or connected whenever labels of cycles are some words ri1 and ri2 from R∗.

Proof of Lemma 4. Given two cycles in the Cayley graph of G satisfying the hy-
pothesis above, assume that they have a non empty intersection. By contradiction,
suppose that there are two connected components of this intersection. We denote
labels of these paths by u and w, see Figure 3. Note that they can be empty words
if the intersection is reduced to disjoint union of vertices. Then a cyclic shift of ri1

is of the form (r′i1)ur
′′

i1
w. As r′i1 and r′′i1 are disjoint subwords of ri1 , the length of
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u u

r′i1

r′i2

r′i1

α

β

r′′i1
r′′i1

r′′i2
r′′i2

ww

r′i2

γ

Figure 3:

one of them is less than or equal to |ri1|/2. Similarly, a cyclic shift of ri2 is of the
form r′i2u

−1r′′i2w and either r′i2 or r′′i2 is of length less than or equal to |ri2|/2.
Among the four closed paths labelled by r′i1u(r

′

i2
)−1, r′i1r

′′

i2
w, r′i2r

′′

i1
w,

(r′′i1)
−1u−1r′′i2 let us take one whose label contains two “short” subwords of r±1

i1 and
r±1
i2 (by short, we mean “of length less than or equal to |ri1|/2 and |ri2|/2 respec-

tively”).
Without loss of generality we assume that this path is labelled by r′i1u(r

′

i2
)−1.

Thus, r′i1u(r
′

i2
)−1 = 1 in G with |r′i1 | ≤ |ri1|/2 and |r′i2| ≤ |ri2|/2.

By the assumption and the Greendlinger lemma for C ′(λ)-groups with λ ≤ 1
6
,

see Lemma 1, the word r′i1u(r
′

i2
)−1 contains a subword v that is also a subword of a

cyclic shift of some r±1
k ∈ R and satisfies |v| > (1 − 3λ)|rk|.

Let us show that k 6= i1, i2. By contradiction, suppose that k = i1. Hence,
(1 − 3λ)|ri1| < |v| ≤ |r′i1| + |u| ≤ |ri1|/2 + λ|ri1|. The second inequality holds as u
is chosen to be maximal as connected component. The preceding inequality implies
λ > 1/8 which contradicts the assumption of the lemma. Thus we have k 6= i1. The
case k = i2 is similar. Thus from now on k 6= i1, i2.

Suppose that v is a subword of r′i1 , i.e. the face with the label rk is in the position
α, Figure 3. Then, v is a piece and by the C ′(λ)-condition, |v| ≤ λmin{|ri1|, |rk|}
contradicting |v| > (1 − 3λ)|rk| as λ ≤ 1

6
. So, v is not a subword of r′i1 . The same

argument shows that v is not a subword of r′i2 .
Another case is v = v1v2 with v1 and v2 are subwords of r′i1u and (r′i2)

−1 respec-
tively (v2 can be the empty word), position β, Figure 3. As above, vl is a piece
and hence |vl| ≤ λmin{|ril|, |rk|}, l = 1, 2. So, |v| ≤ 2λ|rk| contradicting again
|v| > (1 − 3λ)|rk| as λ ≤ 1

6
.

The remaining case is v = v1v2v3, where v1, v2, and v3 are subwords of r′i1u,
(r′i2)

−1, and r′i1 respectively. Since they are pieces, |vl| ≤ λ|rk|, l = 1, 2, 3. This
contradicts again |v| > (1 − 3λ)|rk|. �
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Proof of Theorem 1. Let G = 〈x1, . . . , xm | R〉, where R = {r1, . . . , rn} is an n-
tuple of cyclically reduced words in the alphabet Xm of length |ri| ≤ t. We have to
prove that generically the Cayley graph contains a subgraph which is a subdivision
of a complete graph K2m+1 on 2m+1 vertices. Let B(e, 1) the closed ball of radius 1
centered at the identity vertex e in the Cayley graph of G. It contains exactly 2m+1
vertices, because, as the relations are generically long, it is a tree (see Figure 4 in
case m = 2). We take these 2m + 1 vertices as candidates for the vertices of the
complete graph K2m+1 that we are looking for. The identity element e is already
joined to all others. It remains to show that two arbitrary vertices on the sphere
of radius 1 centered at e are joined by a path that is outside of the ball and that
all these paths are disjoined except maybe at their endpoints. The elements of the

w1,2 = x2x
−1
1 x2x

−1
1 subword of r1,2

e

•

•

•
x1

x
−1

2

x2

e

r1,2

•

••

•

•

•

•

•

•

x
−1

1

••

x−1
2

x1

x2

x−1
1

Figure 4:

sphere of radius 1 centered at e are indexed by Xm and for every pair of two distinct
points xi and xj on this sphere with xi, xj ∈ Xm there exists a geodesic path of
length 2 in the ball joining xi to xj . The labelling of this path is x−1

i xj (once we
have chosen one directed path joining xi to xj , we don’t take another joining xj

to xi). For such a pair {xi, xj} and the chosen path x−1
i xj , let define the word

wi,j = xjx
−1
i xjx

−1
i . By Lemma 3, we can assume that all the wi,j are subwords of

cyclic shifts of defining relations ri,j ∈ R∗ (which are not necessarily distinct). Each
of these ri,j defines a cycle in the Cayley graph containing the vertices xi, e and
xj . All these cycles have the vertex e in common. The intersection of any two of
these cycles is contained in the ball of radius 1, by definition of the wi,j’s, Lemma 2
and Lemma 4. Then the different cycles defined by ri,j and rl,k are disjoint outside
of the ball of radius 1. Thus the subgraph consisting of the union of all ri,j’s is a
subdivision of K2m+1 (see Figure 4 in case m = 2 and K5). �
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Remark 2. In Theorem 1 it seems possible to drop the assumption on the number
of vertices of the finite graph and replace it only by one on the maximal valency of
the vertices.

4 Two constructions preserving planarity.

In this section we prove our third theorem. First we need the following result.

Lemma 5. If Γ1 and Γ2 are two finite planar graphs, then for every v in Γ1 and w
in Γ2, the gluing (Γ1, v) ∗ (Γ2, w) of Γ1 and Γ2 along v and w is planar.

Proof. A geometric realization in R
2 of Γ1 gives a cellular decomposition of R

2 and
v is in the border of a cell, by an homeomorphism φ of the sphere sending a point
of that cell at infinity, we obtain a geometric realization in R

2 of Γ1 where φ(v) is
in the border of the unbounded cell. This can be done by an homeomorphism ψ for
Γ2 and w too. Then it is clear that the gluing of these two geometric realizations of
Γ1 and Γ2 along φ(v) and ψ(w) is planar. �

Remark 3. The proof of the preceding lemma can be extended to the gluing along
two edges e1 ∈ E(Γ1) and e2 ∈ E(Γ2). The proof is exactly the same because it is
possible to choose the homeomorphisms φ and ψ in such a way that φ(e1) and ψ(e2)
are in the border of the unbounded cell.

Proposition 1. Let G1 and G2 be two planar groups, then the free product G1 ∗G2

is also planar.

Proof. As the Gi is planar, i = 1, 2, there exists some generating set Xi such that
the Cayley graph of Gi with respect to Xi is planar for i = 1, 2. We denote by X
the generating set of G1 ∗ G2 given by X1 ∪ X2. We are going to prove that the
Cayley graph Γ of G1 ∗G2 with respect to X is planar.

First we prove that the ball of radius n centered at the origin in Γ is planar for
every n ≥ 0. We denote by B(Gi, n) the ball of radius n in Gi centered at the origin
of Gi.

Any word of length at most n in G1 ∗ G2 has a normal form α1β1α2β2 · · ·αkβk

where the αi are non trivial elements ofG1 except maybe α1 and the βi are non trivial
elements of G2 except maybe βk. This writing is not necessarily unique because the
writing of the αi (respectively βi) is not necessarily unique in G1 (respectively G2),
but the k is. So the ball of radius n in the Cayley graph Γ of G1∗G2 can be described
inductively by the following process.

First we construct the gluing of the graphs (B(G1, n), e1) ∗ (B(G2, n), e2) and
denote by e the vertex on which the gluing is done. Then on every vertex at distance
0 < j < n of e labelled by a word in G1, we glue (B(Γ2, n− j), e2) and on vertices
labelled in G2 at distance 0 < j < n, we glue (B(Γ1, n − j), e1). The labelling of a
minimal path from e to any vertex gives a word in G1 ∗G2 of the form α1β1 or β1α1.
On every vertex ω at distance j of e which is not yet of degree |X1| + |X2|, we glue
a ball (B(G1, n− j), e1) if ω = α1β1 and we glue a ball (B(G2, n− j), e2) otherwise.
We continue this gluing process until every vertex at distance less than n is of degree
|X1| + |X2|. This process is finite because the gluing of a ball (B(Gi, n − j), e) to
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a vertex at distance j of e only add vertices at distance strictly bigger than j of e.
The resulting graph is exactly the ball of radius n in Γ.

By Lemma 5, this gluing process preserves planarity. Hence by Theorem 5 (in
[3], p.347) this ensures that the whole graph is planar. �

Remark 4. This proof can be extended to amalgamated products G1∗AG2 with cyclic
group A = 〈z〉 of order 2. Let G1 and G2 two planar groups and X1 (respectively
X2) be a generating set of G1 (respectively G2) such that C(Gi, Xi) is planar and Xi

contains the generator z of A for i = 1, 2, by using the extension of Lemma 5 given
in the Remark 3, we prove that the Cayley graph associated to X1 ∪X2 is planar.

Putting together Lemma 5, Proposition 1 and Remarks 3 and 4 gives a proof of
Theorem 3.
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[17] H. Poincaré, Théorie des groupes fuchsiens, Acta Math., 1 (1896), 1–62.

[18] N. Robertson and P.D. Seymour, Graph minors—a survey., London Math. Soc.
Lecture Note Ser., Cambridge Univ. Press, 103 (1985), 153–171.

[19] C. Thomasen, Kuratowski’s theorem, Journal of Graph Theory, 5 (1981), 225–
241.

[20] H. Zieschang E. Vogt and H. Coldewey, Surfaces and planar discontinuous
groups, Lecture Note in Math., 835 (1980), Springer.

Section de Mathématiques
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Switzerland
email : Goulnara.Arjantseva@math.unige.ch
email : Pierre-Alain.Cherix@math.unige.ch


