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Abstract

For irrational β > 1 we consider the set Fin(β) of real numbers for which
|x| has a finite number of non-zero digits in its expansion in base β. In
particular, we consider the set of β-integers, i.e. numbers whose β-expansion
is of the form

∑n
i=0 xiβ

i, n ≥ 0. We discuss some necessary and some sufficient
conditions for Fin(β) to be a ring. We also describe methods to estimate the
number of fractional digits that appear by addition or multiplication of β-
integers. We apply these methods among others to the real solution β of
x3 = x2 + x + 1, the so-called Tribonacci number. In this case we show that
multiplication of arbitrary β-integers has a fractional part of length at most
5. We show an example of a β-integer x such that x ·x has the fractional part
of length 4. By that we improve the bound provided by Messaoudi [12] from
value 9 to 5; in the same time we refute the conjecture of Arnoux that 3 is the
maximal number of fractional digits appearing in Tribonacci multiplication.

1 Introduction

Let β be a fixed real number greater than 1 and let x be a positive real number. A
convergent series

∑n
k=−∞ xkβ

k is called a β-representation of x if

x =
n∑

k=−∞

xkβ
k
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and for all k the coefficient xk is a non-negative integer. If moreover for every
−∞ < N < n we have

N∑

k=−∞

xkβ
k < βN+1

the series
∑n

k=−∞ xkβ
k is called the β-expansion of x. The β-expansion is an ana-

logue of the decimal or binary expansion of reals and we sometimes use the natural
notation

(x)β = xnxn−1 · · ·x0 • x−1 · · ·
Every x ≥ 0 has a unique β-expansion which is found by the greedy algorithm [14].

We can introduce lexicographic ordering on β-representations in the following
way. The β-representation xnβn + xn−1β

n−1 + · · · is lexicographically greater than
xkβ

k + xk−1β
k−1 + · · · , if k ≤ n and for the corresponding infinite words we have

xnxn−1 · · · � 00 · · ·0
︸ ︷︷ ︸

(n−k)times

xkxk−1 · · · , where the symbol ≺ means the common lexico-

graphic ordering on words in an ordered alphabet.
Since the β-expansion is constructed by the greedy algorithm, it is the lexico-

graphically greatest among all β-representations of x.
The set of those x ∈ R, for which the β-expansion of |x| has only finitely many

non-zero coefficients - digits, is denoted by Fin(β). Real numbers x with β-expansion
of |x| of the form

∑n
k=0 xkβ

k are called β-integers and the set of β-integers is denoted
by Zβ.

Let x ∈ Fin(β), x > 0 and let
∑n

k=−N xkβ
k be its β-expansion with x−N 6= 0. If

N > 0 then r =
∑−1

k=−N xkβ
k is called the β-fractional part of x. If N ≤ 0 we set

fp(x) = 0, for N > 0 we define fp(x) = N , i.e. fp(x) is the number of fractional
digits in the β-expansion of x. Note that x is in Zβ if and only if fp(x) = 0.

If β ∈ Z, β > 1, then Fin(β) is closed under the operations of addition, sub-
traction and multiplication, i.e. Fin(β) is a ring. It is also easy to determine the
β-expansion of x + y, x− y, and x× y with the knowledge of the β-expansions of x
and y.

In case that β > 1 is not a rational integer, the situation is more complicated and
generally we don’t know any criterion which would decide whether Fin(β) is a ring
or not. Known results for β satisfying specific conditions will be mentioned below.
Fin(β) being closed under addition implies it is closed under multiplication as well.
Besides the question whether results of these arithmetic operations are always finite
or not, we are also interested to describe the length of the resulting β-fractional
part. It is possible to convert the sum x + y and the product x · y of two numbers
x, y ∈ Fin(β) by multiplication by a suitable factor βk into a sum or product of two
β-integers. Therefore we define:

L⊕ = L⊕(β) := max {fp(x + y) | x, y ∈ Zβ, x + y ∈ Fin(β)} ,

L⊗ = L⊗(β) := max {fp(x · y) | x, y ∈ Zβ , x · y ∈ Fin(β)} .

The article is organized as follows. In Preliminaries we state some number the-
oretical facts and properties of Zβ used below. The paper contains results of two
types. Section 3 provides some necessary and some sufficient conditions on β in
order that Fin(β) has a ring structure. The proofs of the sufficient conditions are
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constructive and thus provide an algorithm for addition of finite β-expansions. The
second type of results gives estimates on the constants L⊕(β), L⊗(β). In Section 4
we explain a simple and effective method for determining these bounds. In Section 5
we apply this method to the case of the Tribonacci number, β the real solution of
x3 = x2 + x + 1. We show

5 ≤ L⊕(β) ≤ 6 and 4 ≤ L⊗(β) ≤ 5

which improves the bound on L⊗(β) = 9 given by Messaoudi [12] and refute the
conjecture of Arnoux. The next Section 6 shows that the above method cannot
be used for every β and therefore in Section 7 we introduce a different method
that provides estimates for all Pisot numbers β. We illustrate its application on an
example in Section 8. In Section 9 we mention some open problems related to the
arithmetics on finite and infinite β-expansions.

2 Preliminaries

The definitions recalled below and related results can be found in the survey [11,
Chap. 7].

One can decide whether a particular β-representation of a number is also its β-
expansion according to Parry’s condition [13]. For fixed β > 1 we define a mapping
Tβ : [0, 1] → [0, 1) by the prescription

Tβ(x) = βx − [βx],

where [z] is the greatest integer smaller or equal to z. The sequence

dβ(1) = t1t2t3 · · ·

such that ti = [βT i−1
β (1)] is called the Rényi development of 1. Obviously, the

numbers ti are non-negative integers smaller than β, t1 = [β] and

1 =
∞∑

i=1

tiβ
−i . (1)

In order to state the Parry condition, we introduce the sequence d∗
β(1) in the follow-

ing way: If dβ(1) has infinitely many non-zero digits ti, we set d∗
β(1) = dβ(1). If m

is the greatest index of a non-zero digit in dβ(1), i.e.,

1 =
t1
β

+
t2
β2

+ · · ·+ tm
βm

, tm 6= 0 ,

we set d∗
β(1) =

(

t1t2 · · · tm−1(tm − 1)
)(

t1t2 · · · tm−1(tm − 1)
)

· · · , i.e., d∗
β(1) is an

infinite periodic sequence of period of length m.

Theorem 2.1 (Parry). Let
∑n

k=−∞ xkβ
k be a β-representation of a number x > 0.

Then
∑n

k=−∞ xkβ
k is the β-expansion of x if and only if for all i ≤ n the sequence

xixi−1xi−2 · · · is strictly lexicographically smaller than the sequence d∗
β(1), symboli-

cally
xixi−1xi−2 · · · ≺ d∗

β(1) .
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Notice that a finite string cncn−1 · · · c0 of non-negative integers satisfies the Parry
condition above, if

cici−1 · · · c0 ≺ dβ(1) for all i = 0, 1, . . . , n.

Such strings are called admissible. A finite string of non-negative integers is called
forbidden, if it is not admissible.

Numbers β > 1 with eventually periodic Rényi development of 1 are called beta-
numbers [13]. It is easy to see that every beta-number is a solution of an equation

xn − an−1x
n−1 − · · · − a1x − a0 = 0 , an−1, . . . , a1, a0 ∈ Z . (2)

Therefore β is an algebraic integer. If d is the minimal degree of a polynomial of the
form (2), with root β, we say that d is the degree of β. The other roots β(2), . . . , β(d)

of the polynomial are called the algebraic conjugates of β. As usually, we denote by
Q(γ) the minimal subfield of complex numbers C which contains γ and the rationals
Q. For an algebraic number β it is known that

Q(β) = {g(β) | g is a polynomial with coefficients in Q} .

For 2 ≤ i ≤ d the mapping Q(β) 7→ Q(β(i)) given by prescription

z = g(β) 7→ z(i) = g(β(i))

is an isomorphism of fields Q(β) and Q(β(i)). In case that we consider only one resp.
two conjugates of β we use instead of β(2), resp. β(3) the notation β ′, resp. β ′′, and
similarly we use z′, resp. z′′ for z(2), resp. z(3).

Besides the eventually periodic Rényi development of 1, beta-numbers have an-
other nice property: the set of distances between neighbors in Zβ is finite and can
be determined with the knowledge of dβ(1). The distances have the values

∆i =
∞∑

k=0

tk+i

βk+1
, for some i = 1, 2, . . . ,

see [17]. From the definition of dβ(1) it is obvious that the largest distance between
neighboring β-integers is

∆1 =
∞∑

k=0

tk+1

βk+1
= 1 .

It is not simple to give an algebraic description of the set of beta-numbers [16],
however, it is known that every Pisot number is a beta-number [5]. Recall that Pisot
numbers are those algebraic integers β > 1 whose all conjugates are in modulus less
than 1. Other results about beta-numbers can be found in [6, 7].
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3 Algorithm for addition of positive β-integers

In this section we shall investigate some necessary and some sufficient conditions
on β in order that Fin(β) is a ring. In [9] it is shown that if Fin(β) is a ring, then
necessarily β is a Pisot number.

According to our definition from the previous section, Fin(β) contains both pos-
itive and negative numbers. Therefore we first justify why, in order to decide about
Fin(β) being a ring, we shall study only the question of addition of positive numbers,
as indicated in the title of the section.

Proposition 3.1. Let β > 1 and dβ(1) be its development of unit.

(i) If dβ(1) is infinite, then Fin(β) is not a ring.

(ii) If dβ(1) is finite, then Fin(β) is a ring if and only if Fin(β) is closed under
addition of positive elements.

Proof. (i) Let dβ(1) = t1t2t3 · · · be infinite. Then (1) implies

1 − 1

β
=

t1 − 1

β
+

t2
β2

+
t3
β3

+ · · · (3)

Since (t1 − 1)t2t3 · · · ≺ dβ(1), the expression on the right hand side of (3) is the
β-expansion of 1 − β−1 which therefore does not belong to Fin(β).

(ii) Let

1 =
t1
β

+
t2
β2

+ · · · + tm
βm

, (4)

and let Fin(β) be closed under addition of positive numbers. Consider arbitrary
x ∈ Fin(β) and arbitrary ` ∈ Z such that x > β`. Then the β-expansion of x has
the form x =

∑n
i=−N xiβ

i, where n ≥ `. Repeated applications of (4) allows us to
create a representation of x, say x =

∑`
i=−M x̃iβ

i such that x̃` ≥ 1. Then

(x̃` − 1)β` +
`−1∑

i=−M

x̃iβ
i

is a finite β-representation of x − β`. Such representation can be interpreted as a
sum of a finite number of positive elements of Fin(β), which is, according to the
assumption, again in Fin(β).

It suffices to realize that subtraction x−y of arbitrary x, y ∈ Fin(β), x > y > 0 is
a finite number of subtractions of some powers of β. Therefore Fin(β) being closed
under addition of positive elements implies being closed under addition of arbitrary
x, y ∈ Fin(β).

Since multiplication of numbers x, y ∈ Fin(β) is by the distributive law addition
of a finite number of summands from Fin(β), the proposition is proved. �

Let us mention that dβ(1) infinite does not exclude Fin(β) to be closed under
addition of positive elements, see Remark 3.9.

From now on, we focus on addition x + y for x, y ∈ Fin(β), x, y ≥ 0. As we have
already explained above, it suffices to consider x, y ∈ Zβ. Let x, y ∈ Zβ, x, y ≥ 0
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with β-expansions x =
∑n

k=0 akβ
k, y =

∑n
k=0 bkβ

k. Then
∑n

k=0(ak + bk)β
k is a β-

representation of the sum x + y. If the sequence of coefficients (an + bn)(an−1 +
bn−1) · · · (a0 + b0) verifies the Parry condition (Theorem 2.1), we have directly the
β-expansion of x + y. In the opposite case, the sequence must contain a forbidden
string.

The so-called minimal forbidden strings defined below play a special role in our
considerations.

Definition 3.2. Let β > 1. A forbidden string ukuk−1 · · ·u0 of non-negative integers
is called minimal, if

(i) uk−1 · · ·u0 and uk · · ·u1 are admissible, and

(ii) ui ≥ 1 implies uk · · ·ui+1(ui − 1)ui−1 · · ·u0 is admissible, for all i = 0, 1, . . . , k.

Obviously, a minimal forbidden string ukuk−1 · · ·u0 contains at least one non-zero
digit, say ui ≥ 1. The forbidden string ukuk−1 · · ·u0 with ui ≥ 1 is a β-representation
of the addition of the two β-integers w = ukβ

k+· · ·+ui+1β
i+1+(ui−1)βi+ui−1β

i−1+
· · ·+ u0 and w̃ = βi. The β-expansion of a number is lexicographically the greatest
among all its β-representations, and thus if the sum w + w̃ belongs to Fin(β), then
there exists a finite β-representation of w + w̃ lexicographically strictly greater than
ukuk−1 · · ·u0 (the β-expansion of w + w̃).

We have thus shown a necessary condition on β in order that Fin(β) is closed
under addition of two positive elements. The condition will be formulated as Propo-
sition 3.4. For that we need the following definition.

Definition 3.3. Let k, p ∈ Z, k ≥ p and z = zkβ
k + zk−1β

k−1 + · · · + zpβ
p, where

zi ∈ N0 for p ≤ i ≤ k. A finite β-representation of z of the form vnβn + vn−1β
n−1 +

· · · + v`β
`, ` ≤ n, is called a transcription of zkβ

k + zk−1β
k−1 + · · ·+ zpβ

p if

k ≤ n and vnvn−1 · · · v` � 00 · · ·0
︸ ︷︷ ︸

(n−k) times

zk · · · zp .

Proposition 3.4 (Property T). Let β > 1. If Fin(β) is closed under addition of
positive elements, then β satisfies Property T:

For every minimal forbidden string ukuk−1 · · ·u0 there exists a transcription of ukβ
k+

uk−1β
k−1 + · · · + u1β + u0.

If Property T is satisfied, the transcription of a β-representation of a number z
can be obtained in the following way. Every β-representation of z which contains a
forbidden string can be written as a sum of a minimal forbidden string βj(ukβ

k +
· · · + u1β + u0) and a β-representation of some number z̃. The new transcribed β-
representation of z is obtained by digit-wise addition of the transcription βj(vnβn +
· · · + v`β

`) of the minimal forbidden string and the β-representation of z̃.

Example 3.5. Let us illustrate the notions we have introduced sofar on the simple
example of the numeration system based on the golden ratio τ = 1

2
(1 +

√
5). Since

τ satisfies x2 = x+1, its Rényi development of 1 is dτ (1) = 11. The Parry condition
implies that every finite word lexicographically greater or equal to 11 is forbidden.
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Thus admissible are only those finite words xk · · ·x` for which xi ∈ {0, 1} and
xixi−1 = 0, for ` < i ≤ k. According to the definition, minimal forbidden words
are 2 and 11. The golden ratio τ satisfies Property T, since 2 = τ + τ−2 and
τ + 1 = τ 2, where 02 ≺ 1001 and 011 ≺ 100. The rules we have derived can be used
for obtaining the τ -expansion starting from any τ -representation of a given number
x. For example

3 = 1 + 2 = 1 + τ +
1

τ 2
= τ 2 +

1

τ 2
.

The τ -representations τ + 1 + τ−2 and τ 2 + τ−2 are transcriptions of 3. In the same
time 100 • 01 is the τ -expansion of the number x = 3, since it does not contain any
forbidden string.

Let zkβ
k + zk−1β

k−1 + · · ·+ zpβ
p be a β-representation of z such that the string

zkzk−1 · · · zp is not admissible. Repeating the above described process we obtain
a lexicographically increasing sequence of transcriptions. In general, it can happen
that the procedure may be repeated infinitely many times without obtaining the lex-
icographically greatest β-representation of z, i.e. the β-expansion of z. The following
theorems provide sufficient conditions in order that such situation is avoided.

Theorem 3.6. Let β > 1. Suppose that for every minimal forbidden string ukuk−1 · · ·
u0 there exists a transcription vnβn + vn−1β

n−1 + · · ·+ v`β
` of ukβ

k + uk−1β
k−1 +

· · ·+ u1β + u0 such that

vn + vn−1 + · · · + v` ≤ uk + uk−1 + · · · + u0 .

Then Fin(β) is closed under addition of positive elements. Moreover, for every posi-
tive x, y ∈ Fin(β), the β-expansion of x+y can be obtained from any β-representation
of x + y using finitely many transcriptions.

Proof. Without loss of generality, it suffices to decide about finiteness of the sum
x + y where x =

∑n
k=0 akβ

k and y =
∑n

k=0 bkβ
k are the β-expansions of x and y,

respectively. We prove the theorem by contradiction, i.e., suppose that we can apply
a transcription to the β-representation

∑n
k=0(ak + bk)β

k infinitely many times.
We find M ∈ N such that x + y < βM+1. Then the β-representation of x + y

obtained after the k-th transcription is of the form

x + y =
M∑

i=`k

c
(k)
i βi ,

where `k is the smallest index of non-zero coefficient in the β-representation in the
k-th step.

Since for every exponent i ∈ Z there exists a non-negative integer fi such that
x + y ≤ fiβ

i, we have that c
(k)
i ≤ fi for every step k.

Realize that for every index p ∈ Z, p ≤ M , there are only finitely many sequences
cMcM−1 · · · cp satisfying 0 ≤ ci ≤ fi for all i = M, M − 1, . . . , p. Since in every step

k the sequence c
(k)
M c

(k)
M−1 · · · lexicographically increases, we can find for every index

p the step κ, so that the digits c
(k)
M , c

(k)
M−1, . . . , c(k)

p are constant for k ≥ κ. Formally,
we have

(∀p ∈ Z, p ≤ M)(∃κ ∈ N)(∀k ∈ N, k ≥ κ)(∀i ∈ Z, M ≥ i ≥ p)(c
(k)
i = c

(κ)
i ) (5)
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Since by assumption of the proof, the transcription can be performed infinitely many
times, it is not possible that the digits c

(κ)
i for i < p are all equal to 0. Let us denote

by t the maximal index t < p with non-zero digit, i.e., cκ
t ≥ 1.

In order to obtain the contradiction, we use the above idea (5) repeatedly. For
p = 0 we find κ1 and t1 satisfying

x + y =
M∑

i=0

c
(κ1)
i βi + c

(κ1)
t1 βt1 +

t1−1∑

i=`κ1

c
(κ1)
i βi .

In further steps k ≥ κ1 the digit sum
∑M

i=0 c
(k)
i remains constant, since the digits

c
(k)
i remain constant. The digit sum

∑(−1)
i=t1

c
(k)
i ≥ 1, because the sequence of digits

lexicographically increases. For every k ≥ κ1 we therefore have

M∑

i=t1

c
(k)
i ≥ 1 +

M∑

i=0

c
(k)
i .

We repeat the same considerations for p = t1. Again, we find the step κ2 > κ1

and the position t2 < t1, so that for every k ≥ κ2

M∑

i=t2

c
(k)
i ≥ 1 +

M∑

i=t1

c
(k)
i .

In the same way we apply (5) and find steps κ3 < κ4 < κ5 < . . . and positions

t3 > t4 > t5 · · · such that the digit sum
∑M

i=ts
c
(κs)
i increases with s at least by

1. Since there are infinitely many steps, the digit sum increases with s to infinity,
which contradicts the fact that we started with the digit sum

∑n
k=0(ak + bk) and the

transcription we use do not increase the digit sum. �

Let us comment on the consequences of the proof for β satisfying the assumptions
of the theorem. The β-expansion of the sum of two β-integers can be obtained by
finitely many transcriptions where the order in which we transcribe the forbidden
strings in the β-representation of x + y is not important. However, the proof does
not provide an estimate on the number of steps needed. Recall that for rational
integers the number of steps depends only on the number of digits of the summated
numbers. It is an interesting open problem to determine the complexity of the
summation algorithm for β-integers.

In order to check whether β satisfies Property T we have to know all the minimal
forbidden strings. Let the Rényi development of 1 be finite, i.e., dβ(1) = t1t2 · · · tm.
Then a minimal forbidden string has one of the forms

(t1 + 1), t1(t2 + 1), t1t2(t3 + 1), . . . , t1t2 · · · tm−2(tm−1 + 1), t1t2 · · · tm−1tm.

Note that not all the above forbidden strings must be minimal. For example if β
has the Rényi development dβ(1) = 111, the above list of strings is equal to 2, 12,
111. However, 12 is not minimal.

In [9] it is shown that if β has a finite development of 1 with decreasing digits,
then Fin(β) is closed under addition. The proof includes an algorithm for addition.
Let us show that the result of [9] is a consequence of our Theorem 3.6.
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Corollary 3.7. Let dβ(1) = t1 · · · tm, t1 ≥ t2 ≥ · · · ≥ tm ≥ 1. Then Fin(β) is closed
under addition of positive elements.

Proof. We shall verify the assumptions of Theorem 3.6. Consider the forbidden
string t1t2 · · · ti−1(ti + 1), for 1 ≤ i ≤ m − 1. Clearly, the following equality is
verified

t1β
i−1 + · · ·+ ti−2β

2 + ti−1β + (ti + 1) =

= βi + (t1 − ti+1)β
−1 + · · ·+ (tm−i − tm)β−m+i + tm−i+1β

−m+i−1 + · · ·+ tmβ−m.

The assumption of the corollary assure that the coefficients on the right hand side
are non-negative. The digit sum on the left and on the right is the same. Thus

1 0 0 · · ·0
︸ ︷︷ ︸

i times

(t1 − ti+1) (t2 − ti+2) · · · (tm−i − tm)

is the desired finite string lexicographically strictly greater than 0 t1t2 · · · ti−1(ti +1).
It remains to transcribe the string t1t2 · · · tm−1tm into the lexicographically greater

string 1 0 0 · · ·0
︸ ︷︷ ︸

m times

. �

The conditions of Theorem 3.6 are however satisfied also for other irrationals
that do not fulfil assumptions of Corollary 3.7. As an example we may consider
the minimal Pisot number. It is known that the smallest among all Pisot numbers
is the real solution β of the equation x3 = x + 1. The Rényi development of 1 is
dβ(1) = 10001. The number β thus satisfies relations

β3 = β + 1 and β5 = β4 + 1 .

The minimal forbidden strings are 2, 11, 101, 1001, and 10001. Their transcription
according to Property T is the following:

2 = β2 + β−5

β + 1 = β3

β2 + 1 = β3 + β−3

β3 + 1 = β4 + β−5

β4 + 1 = β5

The digit sum in every transcription is smaller than or equal to the digit sum of
the corresponding minimal forbidden string. Therefore Fin(β) is according to The-
orem 3.6 closed under addition of positive numbers. Since dβ(1) is finite, by Propo-
sition 3.1 Fin(β) is a ring. This was shown already in [2].

In the assumptions of Theorem 3.6 the condition of non-increasing digit sum can
be replaced by another requirement. We state it in the following theorem. Its proof
uses the idea and notation of the proof of Theorem 3.6.

Theorem 3.8. Let β > 1 be an algebraic integer satisfying Property T, and let at
least one of its conjugates, say β ′, belong to (0, 1). Then Fin(β) is closed under
addition of positive elements. Moreover, for every positive x, y ∈ Fin(β), the β-
expansion of x + y can be obtained from any β-representation of x + y using finitely
many transcriptions.
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Proof. If it was possible to apply a transcription on the β-representation of x + y
infinitely many times, then we obtain the sequence of β-representations

x + y =
M∑

i=`k

c
(k)
i βi ,

where the smallest indices of the non-zero digits `k satisfy limk→∞ `k = −∞. Here
we have used the notation of the proof of Theorem 3.6. Now we use the isomorphism
between algebraic fields Q(β) and Q(β ′) to obtain

(x + y)′ = x′ + y′ =
M∑

i=`k

c
(k)
i (β ′)i ≥ (β ′)`k .

The last inequality follows from the fact that β ′ > 0 and c
(k)
i ≥ 0 for all k and i.

Since β ′ < 1 we have limk→∞(β ′)`k = +∞, which is a contradiction. �

Remark 3.9. Let us point out that an algebraic integer β with at least one conjugate
in the interval (0, 1) must have an infinite Rényi development of 1. Such β has
necessarily infinitely many minimal forbidden strings. The only examples known
to the authors of β satisfying Property T and having a conjugate β ′ ∈ (0, 1) have
been treated in [9], namely those which have eventually periodic dβ(1) with period
of length 1,

dβ(1) = t1t2 · · · tm−1tmtmtm · · · , with t1 ≥ t2 ≥ · · · ≥ tm ≥ 1 . (6)

In such a case every minimal forbidden string has a transcription with digit sum
strictly smaller than its own digit sum. Thus closure of Fin(β) under addition of
positive elements follows already by Theorem 3.6. This means that we don’t know
any β for which Theorem 3.8 would be necessary.

From the above remark one could expect that the fact that Fin(β) is closed under
addition forces the digit sum of the transcriptions of minimal forbidden strings to
be smaller than or equal to the digit sum of the corresponding forbidden string. It
is not so. For example let β be the solution of x3 = 2x2 + 1. Then dβ(1) = 201 and
the minimal forbidden string 3 has the β-expansion

3 = β +
1

β
+

1

β2
+

1

β3
+

1

β4
.

The digit sum of this transcription of 3 is equal to 5. If there exists another tran-
scription of 3 with digit sum ≤ 4, it must be lexicographically strictly larger than
03 and strictly smaller than 101111, because the β-expansion of a number is lexico-
graphically the greatest among all its β-representations. It can be shown easily that
a string with the above properties does not exist.

In the same time Fin(β) is closed under addition. This follows from the results
of Akiyama who shows that for a cubic Pisot unit β the set Fin(β) is a ring if and
only if dβ(1) is finite, see [2]. We can also use the result of Hollander [10] who shows
that Fin(β) is a ring for β > 1 root of the equation

xm = am−1x
m−1+ · · ·+a1x+a0 , such that am−1 > am−2 + · · ·+a1+a0 ai ∈ N .
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On the other hand, Property T is not sufficient for Fin(β) to be closed under
addition of positive elements. As an example we can mention β with the Rényi
development of 1 being dβ(1) = 100001. Such β satisfies β6 = β5 + 1. Among the
conjugates of β there is a pair of complex conjugates, say β ′, β ′′ = β ′, with absolute
value |β ′| = |β ′′| ' 1.0328. Thus β is not a Pisot number and according to the
result of [9], Fin(β) cannot be closed under addition of positive elements. However,
Property T is satisfied for β. All minimal forbidden string can be transcribed as
follows:

2 = β + β−6 + β−7 + β−8 + β−9 + β−10

β + 1 = β2 + β−6 + β−7 + β−8 + β−9

β2 + 1 = β3 + β−6 + β−7 + β−8

β3 + 1 = β4 + β−6 + β−7

β4 + 1 = β5 + β−6

β5 + 1 = β6

The expressions on the right hand side are the desired transcriptions, since they are
finite and lexicographically strictly greater than the corresponding minimal forbid-
den string.

4 Upper bounds on L⊕ and L⊗

As we have mentioned in the beginning of the previous section, Fin(β) is a ring
only for β a Pisot number. However, it is meaningful to study upper bounds on the
number of fractional digits that appear as a result of addition and multiplication of
β-integers also in the case that Fin(β) is not a ring. We shall explain two methods
for determining upper estimates on L⊕(β) and L⊗(β). The first method is applicable
even in the case that β is not a Pisot number.

The first method stems from the theorem that we cite from [8]. The idea of the
theorem is quite simple and was in some way used already by other authors [12, 18].
It uses the isomorphism between the fields Q(β) and Q(β ′) which to a β-integer
z =

∑n
i=0 ciβ

i assigns its algebraic conjugate z′ =
∑n

i=0 ciβ
′i.

Theorem 4.1. Let β be an algebraic number, β > 1, with at least one conjugate β ′

satisfying

H := sup{|z′| | z ∈ Zβ} < +∞ ,

K := inf{|z′| | z ∈ Zβ \ βZβ} > 0 .

Then
(

1

|β ′|

)L⊕

<
2H

K
and

(

1

|β ′|

)L⊗

<
H2

K
. (7)

Remark 4.2.

• Since H ≥ sup{|β ′k| | k ∈ N}, the condition H < +∞ implies that |β ′| < 1.
In this case

H ≤
∞∑

i=0

[β]|β ′|i =
[β]

1 − |β ′| .
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• If β ′ ∈ (0, 1), we have for z ∈ Zβ \ βZβ that |z′| =
∑n

i=0 ciβ
′i ≥ c0 ≥ 1. The

value 1 is achieved for z = 1. Therefore K = 1.

If the considered algebraic conjugate β ′ of β is negative or complex, it is com-
plicated to determine the value of K and H . However, for obtaining bounds on L⊕,
L⊗ it suffices to have “reasonable” estimates on K and H . In order to determine
good approximation of K and H we introduce some notation. For n ∈ N we shall
consider the set

En := {z ∈ Zβ | 0 ≤ z < βn} .

In fact this is the set of all a0 + a1β + · · · + an−1β
n−1 where an−1 · · ·a1a0 is an

admissible β-expansion. We denote

minn := min{|z′| | z ∈ En, z /∈ βZβ} ,

maxn := max{|z′| | z ∈ En} .

Lemma 4.3. Let β > 1 be an algebraic number with at least one conjugate |β ′| < 1.
Then

(i) For all n ∈ N we have K ≥ Kn := minn − |β ′|nH.

(ii) K > 0 if and only if there exists n ∈ N such that Kn > 0.

Proof. (i) Let z ∈ Zβ \ βZβ. Then the β-expansion of z is z =
∑N

i=0 biβ
i, b0 6= 0.

The triangle inequality gives

|z′| ≥
∣
∣
∣
∣
∣

n−1∑

i=0

biβ
′i

∣
∣
∣
∣
∣
−
∣
∣
∣
∣
∣

N∑

i=n

biβ
′i

∣
∣
∣
∣
∣
≥ minn − |β ′|n

∣
∣
∣
∣
∣

N∑

i=n

biβ
′i−n

∣
∣
∣
∣
∣
> minn − |β ′|nH = Kn .

Hence taking the infimum on both sides we obtain K ≥ Kn. (ii) From the definition
of minn it follows that minn is a decreasing sequence with limn→∞ minn = K. If
there exists n ∈ N such that minn − |β ′|nH > 0 we have K > 0 from (i). The
opposite implication follows easily from the fact that limn→∞ Kn = K. �

For a fixed β, the determination of minn for small n is relatively easy. It suffices
to find the minimum of a finite set with small number of elements. If for such n
we have Kn = minn − |β ′|nH > 0, we obtain using (7) bounds on L⊕ and L⊗. We
illustrate this procedure on the real solution β of x3 = x2 + x + 1, the so-called
Tribonacci number.

5 L⊕, L⊗ for the Tribonacci number

Let β be the real root of x3 = x2 + x + 1. The arithmetics on β-expansions was
already studied in [12]. Messaoudi [12] finds the upper bound on the number of β-
fractional digits for the Tribonacci multiplication as 9. Arnoux, see [12], conjectures
that L⊗ = 3. We refute the conjecture of Arnoux and find a better bound on L⊗

than 9. Moreover, we find the bound for L⊕, as well.
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It turns out that the best estimates on L⊕, L⊗ are obtained by Theorem 4.1 with
approximation of K by Kn for n = 9. By inspection of the set E9 we obtain

min9 = |1 + β ′2 + β ′4 + β ′7| ' 0.5465

and
max9 = |1 + β ′3 + β ′6| ' 1.5444

Consider y ∈ Zβ, y =
∑N

k=0 akβ
k. Then from the triangle inequality

|y′| ≤
∣
∣
∣
∣
∣

8∑

k=0

akβ
′k

∣
∣
∣
∣
∣
+ |β ′|9

∣
∣
∣
∣
∣

17∑

k=9

akβ
′k−9

∣
∣
∣
∣
∣
+ |β ′|18

∣
∣
∣
∣
∣

26∑

k=18

akβ
′k−18

∣
∣
∣
∣
∣
+ · · ·

< max9

(

1 + |β ′|9 + |β ′|18 + · · ·
)

=
max9

1 − |β ′|9 .

In this way we have obtained an upper estimate on H , i.e., H ≤ max9

1−|β′|9
. This implies

K9 = min9 − |β ′|9H ≥ min9 − |β ′|9 max9

1 − |β ′|9 .

Hence

(

1

|β ′|

)L⊕

<
2H

K
≤ 2

max9

1 − |β ′|9
(

min9 − |β ′|9 max9

1 − |β ′|9
)−1

' 7.5003

(

1

|β ′|

)L⊗

<
H2

K
≤

(

max9

1 − |β ′|9
)2 (

min9 − |β ′|9 max9

1 − |β ′|9
)−1

' 6.1908

Since
(

1

|β ′|

)5

' 4.5880 ,

(

1

|β ′|

)6

' 6.2222 ,

(

1

|β ′|

)7

' 8.4386 ,

we conclude that L⊕ ≤ 6, L⊗ ≤ 5.
In order to determine the lower bounds on L⊕, L⊗ we have used a computer

program [3] to perform additions and multiplications on a large set of β-expansions.
As a result we have obtained examples of a sum with 5 and product with 4 fractional
digits, namely:

1001011010 + 1001011011 = 10100100100 • 10101

110100100101101× 110100100101101 = 110010001000100001001001011011• 0011

We can thus sum up our results as

5 ≤ L⊕ ≤ 6 and 4 ≤ L⊗ ≤ 5 .

Let us mention that Bernat [4] recently improved the result for addition to
L⊕ = 5.
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6 Case K = 0

The above mentioned method cannot be used in case that K = 0. It is however
difficult to prove that K = 0 for a given algebraic β and its conjugate β ′. Particular
situation is solved by the following proposition.

Proposition 6.1. Let β > 1 be an algebraic number and β ′ ∈ (−1, 0) its conjugate
such that 1

β′2 < [β]. Then K = 0.

Proof. Set γ := β ′−2. Digits in the γ-expansion take values in the set {0, 1, . . . , [γ]}.
Since [γ] ≤ [β] − 1 and the Rényi development of unit dβ(1) is of the form dβ(1) =
[β]t2t3 · · · , every sequence of digits in {0, 1, . . . , [γ]} is lexicographically smaller than
dβ(1) and thus is an admissible β-expansion. Since 1 < −β ′−1 < γ, the γ-expansion
of −β ′−1 has the form

−β ′−1
= c0 + c1γ

−1 + c2γ
−2 + c3γ

−3 + · · · (8)

where all coefficients ci ≤ [β] − 1.
Let us define the sequence zn := 1 + c0β + c1β

3 + c2β
5 + · · ·+ cnβ2n+1. Clearly,

zn ∈ Zβ \ βZβ and z′n := 1 + β ′(c0 + c1β
′2 + c2β

′4 + · · · + cnβ ′2n). According to (8)
we have limn→∞ z′n = 0 = limn→∞ |z′n|. Finally, this implies K = 0. �

An example of an algebraic number satisfying assumptions of Propositions 6.1
is β > 1 solution of the equation x3 = 25x2 + 15x + 2. The algebraic conjugates
of β ' 25.5892 are β ′ ' −0.38758 and β ′′ ' −0.20165, and so K = 0 for both of
them. Hence Theorem 4.1 cannot be used for determining the bounds on L⊕, L⊗.
We thus present another method for finding these bounds and illustrate it further
on the mentioned example.

Note that similar situation happens infinitely many times, for example for a class
of totally real cubic numbers, solutions of x3 = p6x2+p4x+p, for p ≥ 3. Theorem 4.1
cannot be applied to any of them which justifies utility of a new method.

7 Upper bounds on L⊕, L⊗ for β Pisot numbers

The second method of determining upper bounds on L⊕, L⊗ studied in this paper is
applicable to β being a Pisot number, i.e., an algebraic integer β > 1 with conjugates
in modulus less than 1. This method is based on the so-called cut-and-project
scheme.

Let β > 1 be an algebraic integer of degree d, let β(2), . . . , β(s) be its real con-
jugates and let β(s+1), β(s+2) = β(s+1), . . . , β(d−1), β(d) = β(d−1) be its non-real
conjugates. Then there exists a basis ~x1, ~x2, . . . , ~xd of the space Rd such that every
~x = (a0, a1, . . . , ad−1) ∈ Zd has in this basis the form

~x = α1~x1 + α2~x2 + · · ·+ αd~xd ,

where

α1 = a0 + a1β + a2β
2 + · · · + ad−1β

d−1 =: z ∈ Q(β)
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and
αi = z(i) for i = 2, 3, . . . , s,
αj = <(z(j)) for s < j ≤ d, j odd,
αj = =(z(j)) for s < j ≤ d, j even.

Technical details of the construction of the basis ~x1, ~x2, . . . , ~xd can be found in [1,
8, 18]. Let us denote

Z[β] := {a0 + a1β + a2β
2 + · · ·+ ad−1β

d−1 | ai ∈ Z} .

For β an algebraic integer, the set Z[β] is a ring and moreover it can be geometrically
interpreted as a projection of the lattice Zd on a suitable chosen straight line in Rd.
The correspondence (a0, a1, . . . , ad−1) 7→ a0+a1β+a2β

2+· · ·+ad−1β
d−1 is a bijection

of the lattice Zd on the ring Z[β].
In the following, we shall consider β an irrational Pisot number. Important

property that will be used is the inclusion

Zβ ⊂ Z[β] . (9)

Let us recall that Zβ is a proper subset of Z[β], since Z[β] is dense in R as a projection
of the lattice Zd, whereas Zβ has no accumulation points. Since Z[β] is a ring,

Zβ + Zβ ⊂ Z[β] and Zβ · Zβ ⊂ Z[β] .

Consider an x ∈ Zβ with the β-expansion x =
∑n

k=0 akβ
k. Then

|x(i)| =

∣
∣
∣
∣
∣

n∑

k=0

ak(β
(i))k

∣
∣
∣
∣
∣
<

∞∑

k=0

[β]
∣
∣
∣β(i)

∣
∣
∣

k
=

[β]

1 − |β(i)| ,

for every i = 2, 3, . . . , d. Therefore we can define

Hi := sup{|x(i)| | x ∈ Zβ} (10)

The inclusion (9) thus can be precised to

Zβ ⊂ {x ∈ Z[β] | |x(i)| < Hi, i = 2, 3, . . . , d} .

Another important property needed for determining upper bounds of L⊕, L⊗ is the
finiteness of the set

C(l1, l2, . . . , ld) := {x ∈ Z[β] | |x| < l1, |x(i)| < li, i = 2, 3, . . . , d} ,

for every choice of positive l1, l2, . . . , ld. A point a0 + a1β + · · · + ad−1β
d−1 belongs

to C(l1, l2, . . . , ld) only if the point (a0, a1, . . . , ad−1) of the lattice Zd has all coor-
dinates in the basis ~x1, . . . , ~xd in a bounded interval (−li, li), i.e., (a0, a1, . . . , ad−1)
belongs to a centrally symmetric parallelepiped. Every parallelepiped contains only
finitely many lattice points. Let us mention that notation C(l1, l2, . . . , ld) is kept
in accordance with [1], where Akiyama finds some conditions for Fin(β) to be a
ring according to the properties of C(l1, l2, . . . , ld). Our aim here is to use the set
for determining the bounds on the length of the β-fractional part of the results of
additions and multiplications in Zβ .
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Theorem 7.1. Let β be a Pisot number of degree d, and let H2, H3, . . . , Hd be
defined by (10). Then

L⊕ ≤ max{fp(r) | r ∈ Fin(β) ∩ C(1, 3H2, 3H3, . . . , 3Hd)} ,

L⊗ ≤ max{fp(r) | r ∈ Fin(β) ∩ C(1, H2
2 + H2, . . . , H

2
d + Hd)} .

Proof. Consider x, y ∈ Zβ such that x + y > 0, x + y ∈ Fin(β). Set z := max{w ∈
Zβ | w ≤ x + y}. Then r := x + y − z is the β-fractional part of x + y and thus
r ∈ Fin(β) and fp(r) = fp(x+ y), and 0 ≤ r < 1. Numbers x, y, z belong to the ring
Z[β] and hence also r ∈ Z[β]. From the triangle inequality

|r(i)| = |x(i) + y(i) − z(i)| ≤ 3Hi

for all i = 2, 3, . . . , d. Therefore r belongs to the finite set C(1, 3H2, 3H3, . . . , 3Hd),
which together with the definition of L⊕ gives the statement of the theorem for
addition. The upper bound on L⊗ is obtained analogically. �

8 Application to β solution of x3 = 25x2 + 15x + 2.

We apply the above Theorem 7.1 on β > 1 solution of the equation x3 = 25x2+15x+
2. Recall that such β satisfies the conditions of Proposition 6.1 for both conjugates
β ′, β ′′ and thus Theorem 4.1 cannot be used for determining the bounds on L⊕, L⊗.

Since [β] = 25, β-expansions are words in the 26-letter alphabet, say {(0), (1), . . . ,
(25)}. The Rényi development of 1 is dβ(1) = (25)(15)(2). Since the digits of dβ(1)
are decreasing, Corollary 3.7 implies that the set Fin(β) is a ring.

In case that some of the algebraic conjugates of β is a real number, the bounds
from Theorem 7.1 can be refined. In our case β is totally real. Let x ∈ Zβ , x =
∑n

i=0 aiβ
i. Since β ′ < 0, we have

x′ =
n∑

i=0

ai(β
′)i ≤

n∑

i=0,i even
ai(β

′)i <
∞∑

i=0

(25)(β ′)2i =
25

1 − β ′2
= H1 .

The lower bound on x′ is

x′ =
n∑

i=0

ai(β
′)i ≥

n∑

i=0,i odd
ai(β

′)i > β ′H1 .

Similarly for x′′ we obtain

β ′′H2 < x′′ <
25

1 − β ′′2
= H2 .

Consider x, y ∈ Zβ such that x + y > 0. Again, the β-fractional part of x + y has
the form r = x + y − z for some z ∈ Zβ . Thus

(2β ′ − 1)H1 = β ′H1 + β ′H1 − H1 < r′ = x′ + y′ − z′ < H1 + H1 − β ′H1 = (2 − β ′)H1

(2β ′′ − 1)H2 < r′′ = x′′ + y′′ − z′′ < (2 − β ′′)H2
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We have used a computer to calculate explicitly the set of remainders r = A+Bβ +
Cβ2, A, B, C ∈ Z, satisfying

0 < A + Bβ + Cβ2 < 1

(2β ′ − 1)H1 < A + Bβ ′ + Cβ ′2 < (2 − β ′)H1

(2β ′′ − 1)H2 < A + Bβ ′′ + Cβ ′′2 < (2 − β ′′)H2

where for β ′, β ′′ we use numerical values, (see Section 6). The set has 93 elements,
which we shall not list here. For every element of the set we have found the cor-
responding β-expansion. The maximal length of the β-fractional part is 5. Thus
L⊕ ≤ 5.

On the other hand, using the algorithm described in Section 3 we have found a
concrete example of addition of numbers (x)β = (25)(0)(25) and (y)β = (25)(0)(25),
so that x + y has the β-expansion (x + y)β = (1)(24)(12)(11) • (23)(0)(14)(13)(2).
Thus we have found the value

L⊕ = 5 .

In order to obtain bounds on L⊗, we have computed the list of all r = A+Bβ +
Cβ2, A, B, C ∈ Z, satisfying the inequalities

0 < A + Bβ + Cβ2 < 1

β ′H2
1 − H1 < A + Bβ ′ + Cβ ′2 < H2

1 − β ′H1

β ′′H2
2 − H2 < A + Bβ ′′ + Cβ ′′2 < H2

2 − β ′′H2

In this case we have obtained 8451 candidates on the β-fractional part of multiplica-
tion. The longest of them has 7 digits. From the other hand we have for (x)β = (25)
and (y)β = (25), (x · y)β = (24)(10) • (21)(24)(16)(7)(16)(13)(2). Therefore

L⊗ = 7 .

Let us mention that the above method can be applied also to the case of the
Tribonacci number, but the bounds obtained in this way are not better than those
from Theorem 4.1. We get L⊕ ≤ 6, L⊗ ≤ 6.

9 Comments and open problems

1. It is clear from the second method of estimate that for β a Pisot number L⊕,
L⊗ are finite numbers. Does there exist a β non Pisot such that L⊕ = +∞ or
L⊗ = +∞?

2. Whenever β satisfies Property T, it is possible to apply repeatedly the transcription
on the β-representation of x + y, x, y ∈ Fin(β), x, y > 0. If the transcription can be
applied infinitely many times, what is the order of choice of forbidden strings so that
the sequence of β-representations converges rapidly to the β-expansion of x + y?

3. It is known [5, 15] that for β a Pisot number every x ∈ Q(β) has a finite or
eventually periodic β-expansion. It would be interesting to have algorithms working
with periodic expansions.
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