Infinite-dimensional complex projective varieties

E. Ballico*

Abstract

Let $V_{i}, 0 \leq i \leq s, s \geq 1$, be complex Banach spaces. Assume V_{i} infinitedimensional for $1 \leq i \leq s, V_{0}$ finite-dimensional and $V_{0} \neq 0$. Let $\pi: \mathbf{P}\left(V_{0}\right) \times$ $\cdots \times \mathbf{P}\left(V_{s}\right) \rightarrow \mathbf{P}\left(V_{0}\right)$ be the projection. Let X be a closed analytic subset of finite codimension of $\mathbf{P}\left(V_{0}\right) \times \cdots \times \mathbf{P}\left(V_{s}\right)$. Here we prove that $\pi(X)$ is a closed analytic subset of $\mathbf{P}\left(V_{0}\right)$ with the following universal property. For every finite-dimensional reduced analytic space Y and every holomorphic map $f: X \rightarrow Y$ there is a unique holomorphic map $g: \pi(X) \rightarrow Y$ such that $f=g \circ(\pi \mid X)$.

The aim of this note is to prove the following result.
Theorem 1. Let $V_{i}, 0 \leq i \leq s, s \geq 1$, be complex Banach spaces. Assume V_{i} infinite-dimensional for $1 \leq i \leq s$, V_{0} finite-dimensional and $V_{0} \neq 0$. Let $\pi: \mathbf{P}\left(V_{0}\right) \times$ $\cdots \times \mathbf{P}\left(V_{s}\right) \rightarrow \mathbf{P}\left(V_{0}\right)$ be the projection. Let X be a closed analytic subset of finite codimension of $\mathbf{P}\left(V_{0}\right) \times \cdots \times \mathbf{P}\left(V_{s}\right)$. Then $\pi(X)$ is a closed analytic subset of $\mathbf{P}\left(V_{0}\right)$ with the following universal property. For every finite-dimensional reduced analytic space Y and every holomorphic map $f: X \rightarrow Y$ there is a unique holomorphic map $g: \pi(X) \rightarrow Y$ such that $f=g \circ(\pi \mid X)$.

We will also give a description of $\pi(X)$ (see Proposition 1). We will need the following known result.
Lemma 1. Let $W_{1}, \ldots, W_{m}, m \geq 1$, be complex Banach spaces and Y a closed analytic subset of finite codimension of $\mathbf{P}\left(W_{1}\right) \times \cdots \times \mathbf{P}\left(W_{m}\right)$. Then Y is algebraic, i.e. it is the zero-locus of finitely many continuous multihomogeneous polynomials on $W_{1} \times \cdots \times W_{m}$.

[^0]Proof. Let $f: W_{1} \times \cdots \times W_{m} \backslash\{0\} \rightarrow \mathbf{P}\left(W_{1}\right) \times \cdots \times \mathbf{P}\left(W_{m}\right)$ be the quotient map. Hence $f^{-1}(Y)$ is a closed analytic subset of $W_{1} \times \cdots \times W_{m} \backslash\{0\}$ with finite codimension. Let Z be the closure of $f^{-1}(Y)$ in $W_{1} \times \cdots \times W_{m}$. By [1], Prop. III.2.1.3, Z is an analytic subset of finite codimension of $W_{1} \times \cdots \times W_{m}$. Hence there is a neighborhood U of 0 in $W_{1} \times \cdots \times W_{m}$ such that the analytic set $Z \cap U$ is defined by finitely many holomorphic functions $f_{j}: U \rightarrow \mathbf{C}$. The invariance of $f^{-1}(Y)$ and hence of Z for the multiplication by a different scalar on each factor W_{i} shows that the multihomogeneous components (with respect to the variables in W_{1}, \ldots, W_{m}) of each f_{j} vanish on U. Thus Z is defined locally around 0 by finitely many continuos multihomogeneous polynomials. The same multihomogeneous polynomials define Y as a subset of $\mathbf{P}\left(W_{1}\right) \times \cdots \times \mathbf{P}\left(W_{m}\right)$.

Lemma 2. Let $V_{i}, 1 \leq i \leq s$, be infinite-dimensional complex Banach spaces and A, B finite-codimensional non-empty closed analytic subsets of $\mathbf{P}\left(V_{1}\right) \times \cdots \times \mathbf{P}\left(V_{s}\right)$. Then $A \cap B \neq \emptyset$.

Proof. Call z the maximal codimension of one of the irreducible components of $A \cup B$. Fix any finite-dimensional projective subspace M_{i} of $\mathbf{P}\left(V_{i}\right)$ with $\operatorname{dim}\left(M_{i}\right) \geq z+s+1$ and set $M:=M_{1} \times \cdots \times M_{s}$. Hence $M \cap A$ and $M \cap B$ are non-empty closed analytic subsets of M with codimension at most z. Hence $(M \cap A) \cap(M \cap B) \neq \emptyset$, proving the lemma.

Now we can give a description of the defining equations of the set $\pi(X)$ appearing in the statement of Theorem 1 in terms of the defining equations of X.

Proposition 1. Let $V_{i}, 0 \leq i \leq s, s \geq 1$, be complex Banach spaces. Assume V_{i} infinite-dimensional for $1 \leq i \leq s$, V_{0} finite-dimensional and $V_{0} \neq 0$. Let $\pi: \mathbf{P}\left(V_{0}\right) \times$ $\cdots \times \mathbf{P}\left(V_{s}\right) \rightarrow \mathbf{P}\left(V_{0}\right)$ be the projection. Let X be a closed analytic subset of finite codimension of $\mathbf{P}\left(V_{0}\right) \times \cdots \times \mathbf{P}\left(V_{s}\right)$. Let $\left\{g_{\alpha}\right\}_{\alpha \in T}$ be a finite set of multihomogeneous polynomials defining X. Set $S:=\left\{\alpha \in T: g_{\alpha}\right.$ has degree 0 with respect to each factor $\left.V_{1}, \ldots, V_{s}\right\}$. Hence each $g_{\alpha}, \alpha \in S$, defines a homogeneous polynomial on V_{0}. We have $\pi(X)=\left\{P \in \mathbf{P}\left(V_{0}\right): g_{\alpha}(P)=0\right.$ for every $\left.\alpha \in S\right\}$. In particular $\pi(X)$ is a closed algebraic subset of $\mathbf{P}\left(V_{0}\right)$.

Proof. Call z the maximal codimension of an irreducible component of X. Fix any finite-dimensional subspace M_{i} of $\mathbf{P}\left(V_{i}\right)$ with $\operatorname{dim}\left(M_{i}\right) \geq z+s+1$ and set $M:=M_{1} \times$ $\cdots \times M_{s}$. Set $Z:==\left\{P \in \mathbf{P}\left(V_{0}\right): g_{\alpha}(P)=0\right.$ for every $\left.\alpha \in S\right\}$. Obviously, we have $X \subseteq \pi^{-1}(Z)$. It is sufficient to show that if $Q \in Z$, then $\pi^{-1}(Q) \cap X \neq \emptyset$. The closed analytic subset $\pi^{-1}(Q) \cap X$ of $\pi^{-1}(Q) \cong \mathbf{P}\left(V_{1}\right) \times \cdots \times \mathbf{P}\left(V_{s}\right)$ is defined evaluating at Q the multihomogeneous polynomials $\left\{g_{\alpha}\right\}_{\alpha \in T}$. Since $Q \in Z$, after the evaluation at Q none of these polynomials is a non-zero constant. Hence $M \cap\left(\pi^{-1}(Q) \cap X\right) \neq \emptyset$ by Hilbert Nullstellensatz.

Proof of Theorem 1. It is sufficient to check that for all $P, Q \in X$ with $\pi(Q)=\pi(P)$ we have $f(Q)=f(P)$. Set $A:=f^{-1}(f(P)) \cap \pi^{-1}(P)$ and $B:=$ $f^{-1}(f(Q)) \cap \pi^{-1}(Q)=f^{-1}(f(Q)) \cap \pi^{-1}(P)$. Since Y has finite dimension, P and Q may be locally defined in Y by finitely many germs of analytic functions. Thus A and B are finite codimensional closed analytic subsets of $\pi^{-1}(P) \cong \mathbf{P}\left(V_{1}\right) \times \cdots \times \mathbf{P}\left(V_{s}\right)$;
the non-emptiness of A and B follows for instance by their description given by Proposition 1. By Lemma 2 we have $A \cap B \neq \emptyset$. Since $f^{-1}(f(Q))$ and $f^{-1}(f(P))$ are fibers of a map, this implies $f(Q)=f(P)$, concluding the proof.

References

[1] J.-P. Ramis, Sous-ensembles analytiques d'une variété banachique complexe, Erg. der Math. 53, Springer-Verlag, Berlin - Heidelberg - New York, 1970.

Dept. of Mathematics
University of Trento
38050 Povo (TN), Italy
email : ballico@science.unitn.it

[^0]: *The author was partially supported by MURST and GNSAGA of INdAM (Italy).
 Received by the editors May 2002.
 Communicated by F. Bastin.
 1991 Mathematics Subject Classification : 32K05, 14N05.
 Key words and phrases : Banach analytic set, complex Banach projective space, infinitedimensional complex projective space.

