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Abstract

The notion of a subgeometry partition of a finite projective space PG(2m−
1, q2) by PG(m−1, q2)’s and PG(2m−1, q)’s or a partition of PG(2m, q2) by
PG(2m, q)’s is generalized to quasi-subgeometry partitions of PG(2m−1, qd)
by PG(dm/e−1, qe)’s for a set of divisors e of d and, partitions of PG(2m, q2d)
by PG(d(2m + 1)/f − 1, qf )’s for a set of divisors f of d. In all cases, there
are associated vector space spreads that are unions of ‘fans’.

More generally, in the arbitrary dimensional case, a complete theory of
quasi-subgeometry partitions of PG(V − 1, D) corresponding to generalized
spreads admitting D∗ as a fixed-point-free collineation group is obtained.
When D is a quadratic extension of a base field, ‘subgeometry’ partitions
are obtain.

1 Introduction.

In 1976, A. Bruen and J.A. Thas [3] showed that it was possible to find partitions of
the points of PG(2s−1, q2) by projective subgeometries isomorphic to PG(s−1, q2)’s
and PG(2s− 1, q)’s. These might be called ‘mixed subgeometry partitions’. Bruen
and Thas showed that there is an associated translation plane of order q2s and kernel
containing GF (q). There is an another construction using Segre varieties given in
Hirschfeld and Thas [4] which generalizes and includes Baer subgeometry partitions
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of PG(2s, q2) by PG(2s, q)’s. In this latter case, there is an associated translation
plane of order q2s+1 and kernel containing GF (q).

Recently, in [6], there is an interpretation of the above construction from the
viewpoint of the translation plane. That is, starting with a translation plane of a
certain type, a ‘retraction’ method is possible which reverses the construction and
produces either a mixed or a Baer subgeometry partition of a projective space. The
main consideration is that a group isomorphic to GF (q2)∗ acts as a collineation
group of the translation plane.

In this article, we generalize these constructions several ways. First of all, finite-
ness is not required. Second, to apply the group action more generally, we define
what we call a ‘quasi-subgeometry’ of a projective space to realize that certain
spreads produce ‘quasi-subgeometry partitions’ of projective spaces. In the finite
case, we could have a projective space isomorphic to PG(2s− 1, qd) partitioned by
quasi-subgeometries isomorphic to PG(ds/e−1, qe) for various divisors e of d. Third,
it is realized that subgeometry or quasi-subgeometry partitions of a projective space
need not actually produce a spread but do produce a ‘generalized spread’. Further-
more, a generalized spread admitting a fixed-point-free field acting as a collineation
group produces a quasi-subgeometry partition. Hence, our work generalizes to the
consideration of generalized spreads and how these might produce partitions of pro-
jective spaces.

As mentioned, the fundamental device in our work is the consideration of the
nature of collineation groups acting on the generalized spread S that arise from
extension fields F of K. Such groups define within the vector space what we call
‘FL-fans’. These fans when considered projectively are the quasi-subgeometries in
question.

Fans are only considered from the vector space point of view and we are interested
in the associated quasi-subgeometry partitions. Hence, we form a generalization and
integration of the André and Bruck-Bose approaches to the study of ‘spreads’.

We then have a hybrid of the vector space and projective space variations which
allows a complete generalization of the theory of subgeometry partitions of projective
spaces and their associated translation planes to quasi-subgeometry partitions and
associated generalized spreads.

Also included is a discussion a theory of subgeometry partitions of PG(ds/2−
1, q2) by subgeometries isomorphic to PG(s/2− 1, q2) and PG(s− 1, q) if s is even,
or by PG(s − 1, q)’s if s is odd. This is further generalized to a consideration of
arbitrary quasi-subgeometry partitions of PG(ds/e − 1, qe) by appropriate quasi-
subgeometries.

In terms of examples in the finite case, we construct a variety of examples of
finite quasi-subgeometry partitions from generalized André planes.

Our main theorems are as follows:

Theorem 1. Let V be a vector space over a field K and let S be a generalized
spread of V . Assume that there exists a field D containing K that contains the
scalar mapping group K∗ and the multiplicative group D∗ acts as a fixed-point-free
collineation group in GL(V, K) on S.

Then there is a quasi-subgeometry partition of PG(V −1, D) by quasi-subgeome-
tries isomorphic to PG(Li−1, DLi

) where Li is a component of S and K ⊆ DLi
⊆ D,
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DLi
a field extension of K and a subfield of D, for i ∈ Λ. Furthermore, S is a union

of DLi
-fans, i ∈ Λ.

Theorem 2. Let P be a quasi-subgeometry partition of PG(V − 1, D) by quasi-
subgeometries isomorphic to PG(L− 1, DL) where L is a component of S and K ⊆
DL ⊆ D, DL a field extension of K and a subfield of D.

Then there is a generalized spread S that is a union of DL-fans and admits D∗

as a fixed-point-free collineation group in GL(V, K).

2 André versus Bruck-Bose.

There are two well-known approaches to the study of translation planes; one using
vector spaces, due to André [1] and another using projective spaces due to Bruck-
Bose [2]. We shall employ a combination of these two methods noting that it is
often more expedient when working with translation planes to work in the associated
vector space.

Definition 1. A ‘finite-dimensional vector space spread’ of a 2n-dimensional vector
space V2n over a skewfield K is a set S of n-dimensional vector subspaces with the
following properties:

(i) ∪{W ; W ∈ S} = V2n and

(ii) if W, Q are distinct elements of S then the direct sum W ⊕Q = V2n.
Given a finite-dimensional vector spread spread S, an affine translation plane

πS may be defined by defining ‘points’ to be the vectors of V2n and ‘lines’ to be the
additive cosets of the elements of S.

Remark 1. It is possible to have a vector space-approach without assuming that
there is a finite-dimensional vector space.

Let V be a vector space over a skewfield K that can be decomposed as the external
direct sum Wo ⊕Wo, where Wo is some K-vector space. Let S be a set of mutually
disjoint vector subspaces of V each of which is K-isomorphic to Wo. Then, S is a
‘vector-space spread’ of V provided

(i) ∪{W ; W ∈ S} = V and
(ii) if W, Q are distinct elements of S then the (internal) direct sum W ⊕Q = V .

Definition 2. Given a vector spread spread S, an affine translation plane πS may
be defined by defining ‘points’ to be the vectors of V and ‘lines’ to be the additive
cosets of the elements of S.

When a translation plane π is obtained using a vector space spread as above, we
shall say that it is obtained by the ‘André method’.

Hence, using the André method or vector space-approach, a ‘finite (vector space)
spread’ is a set of mutually disjoint half-dimensional vector subspaces which cover the
vector space as above. Actually, it is also the associated affine space corresponding
to the vector space that is of importance in interconnecting the methods under
discussion. For these interconnections, we adopt some non-standard notation which
is useful in these contexts.
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Notation 1. Let V be a vector space over a field K. Then, we denote AG(V, K) to
be the affine space whose ‘points’ are the vectors of V and whose ‘subspaces’ are the
vector translates of the vector subspaces of V .

Now there are two projective spaces associated with V and/or AG(V, K):
(i) Extend AG(V, K) to a projective space by the method of adjunction of a

‘hyperplane at infinity’. We shall call this projective space PG(V, K).
(ii) Form the projective space obtained from V by taking the ‘points’ to be the

1-dimensional K-subspaces and the set of ‘projective subspaces’ to be the lattice of
vector subspaces. We shall use the (somewhat non-standard) notation PG(V −1, K)
to denote this projective space.

Note that if V is k-dimensional over K, AG(V, K) and PG(V, K) are denoted by
AG(k, K) and PG(k, K), respectively. Furthermore, PG(V − 1, K) is then denoted
by PG(k − 1, K).

(iii) If S is a set of vector subspaces of V , we write P (S) to denote the set
{PG(W − 1, K); W ∈ S} in PG(V − 1, K).

Definition 3. Let K be a skewfield and let P be a projective space isomorphic to
PG(2n−1, K). A ‘finite-dimensional projective spread’ of P is a set SP of mutually
disjoint (n− 1)-dimensional projective subspaces such that ∪{WP ; WP ∈ SP } = P.

More generally, we may define a projective spread over a possibly infinite-dimen-
sional projective space.

Definition 4. Let K be a skewfield, V a vector space which is the external direct
sum Wo ⊕Wo, where Wo is a K-vector space. Let P denote the lattice of projective
subspaces of V .

A ‘projective spread’ of P is a set SP of mutually disjoint projective subspaces of
PG(V − 1, K) such that

(i) each element of P is isomorphic to PG(Wo−1, K), any two distinct elements
of P generate PG(V − 1, K) (in the sense that all points are on lines joining pairs
of points from the two projective subspaces) and

(ii)

∪{WP ; WP ∈ SP} = P.

In either setting an element of a spread (vector space or projective) is called a
‘component’.

Let Σ denote the projective space (isomorphic to) PG(V − 1, K). Now embed
Σ into a projective space Σ+ so that Σ is a (projective) hyperplane of Σ+. This is
accomplished as follows: Let V + denote the associated vector space over K such that
V + = V ⊕Q, where Q is a 1-dimensional K-vector space and the sum is considered
an ‘external direct sum’.

Hence, ± is isomorphic to PG(V−1, K) and Σ+ is isomorphic to PG(V +−1, K).
Furthermore, let W +

o = Wo ⊕Q (again, an external direct sum).
We now define an affine translation plane π

SP
as follows: the ‘points’ are the

points of P+ − P and the ‘lines’ are the projective subspaces of P+ isomorphic to
PG(W +

o − 1, K) that intersect P in an element of SP .
When an affine translation plane is obtained as above using a projective spread,

we shall say that the plane is obtained using the ‘Bruck-Bose method’.
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So, using the Bruck-Bose method or projective space-approach, a finite projective
spread is a set of mutually skew n − 1 -dimensional projective spaces covering the
points of PG(2n− 1, q).

The essentially difference between the André and Bruck-Bose approaches then
depends on the methods used in constructing the affine translation plane corre-
sponding to the spread whether it be a vector space or a projective spread.

In the following discussion, we shall give the interconnections between these two
methods, generally considering an arbitrary vector space over a skewfield K of the
form the external direct sum Wo ⊕Wo, for Wo a K-vector space. It might be noted
that the Bruck-Bose approach has only been considered for finite dimensional pro-
jective spaces. However, with our slightly different definition of ‘projective spreads’,
the method can also be accomplished for possibly infinite dimensional vector spaces.

Here we do consider such an approach more generally for arbitrary dimensional
projective spaces. The question is, of course, whether vector space spreads and
projective spreads are equivalent. We provide a proof for the following since it
provides something of a mirror in which to reflect a more general construction that
is the point of this article.

We begin with a fundamental lemma which shows that the projective space
PG(V + − 1, K) obtained from the vector space V + over K by defining the inci-
dence geometry as the lattice structure of vector subspaces of V + is isomorphic to
PG(V, K), the projective space obtained by adjunction of a hyperplane at infinity
to the affine space AG(V, K) associated with V . In the following, we adopt the
notation developed in the previous definitions.

Lemma 1. (1) PG(V + − 1, K) is isomorphic to PG(V, K).
(2) Bases may be chosen for V and V + so that

(a) vectors of V + may we represented in the form:

((xi), x∞) for all i ∈ ρ, ρ an index set, where xi, x∞ ∈ K,

((xi), 0) for all i ∈ ρ, ρ an index set, where xi ∈ K

represent vectors in V and
(b) regarding two non-zero ‘tuples’ above to be equal if and only if they are

K-scalar multiples of each produces the ‘homogeneous coordinates’ of the associated
projective spaces PG(V − 1, K) and PG(V + − 1, K),

(c)
((xi), 1) for all i ∈ ρ, ρ an index set, where xi ∈ K

represents homogeneous coordinates for a subset isomorphic to AG(V, K).
(3) Furthermore, we may consider PG(V, K) as the adjunction of PG(V −1, K)

as the hyperplane at infinity of AG(V, K).

Proof. Let B be a vector basis for the vector space V over K. Let ρ be an index set
for B so that

B = {ei; i ∈ ρ} .

Consider the vector space a left K-space. A vector v =
∑

xiei where xi ∈ K and
ei ∈ B and xi = 0 for all but finitely many ei’s in B.Then, ‘points’ of AG(V, K) may
be considered as tuples ((xi); i ∈ ρ) such that xi = 0 for all but finitely many i’s in



236 N. L. Johnson

ρ. Now we consider a new ‘tuple’ of the form ((xi), x∞) where xi, x∞ ∈ K, for i ∈ ρ
but agree to identify two such tuples if and only if they are scalar multiples of each;
((xi), x∞) = ((xi)

′, x′∞) if and only if there is a non-zero α ∈ K such that xi = αx′i
and x∞ = αx∞. We further require that not all elements of either tuple are 0.

If x∞ = 1, consider the mapping ((xi)) 7−→ ((xi), 1). This is an injection and
hence an embedding of the points of AG(V, K) into the new tuple system. If x∞ =
0 then the set of scalar multiples of tuples ((xi), 0) represents a projective space
isomorphic to PG(V − 1, K). The set of tuples as represented is the projective
space PG(V, K) obtained by adjunction of the hyperplane at infinity isomorphic to
PG(V − 1, K) to AG(V, K).

Now considering V + = V ⊕ Q, choose a basis {e∞} for Q. Then, B∪{e∞} is a
basis for V +. We may then represent a vector of V + in the form ((xi), x∞), where
now

((xi), x∞) =
∑

xiei + x∞e∞.

Now form the projective space PG(V +− 1, K) by defining the projective subspaces
using the lattice of vector subspaces of V +. Since a ‘point’ of PG(V + − 1, K)
is a 1-dimensional K-subspace 〈(xi, x∞); i ∈ ρ〉, this is equivalent to requiring two
‘tuples’ to be equal if and only if they are scalar multiples of each other. Hence,
PG(V + − 1, K) is isomorphic to PG(V, K). �

2.1 André implies Bruck-Bose.

Theorem 3. André implies Bruck-Bose: Hence, from a vector space V over a
skewfield K and spread S, we obtain a translation plane πS and a corresponding
projective partial spread P (S) of PG(V − 1, K).

Proof. Let Li for i ∈ ρ, ρ an index set, be components of a corresponding vector
space spread S of V . Now take the lattice of K-subspaces PG(V − 1, K). Clearly,
P (S) is a projective spread of PG(V − 1, K). �

Note that although it is immediate that from a vector space spread S a projective
space spread P (S) is obtained, we have not determined whether the translation plane
πS obtained using the André method is isomorphic to the translation plane πP (S)

obtained using the Bruck-Bose method. We shall now show this to be the case while
considering the more complicated converse to the above theorem.

2.2 Bruck-Bose implies André.

Theorem 4. Bruck-Bose implies André: Let V be a vector space over a skewfield
K, which is the external direct sum Wo ⊕Wo, where Wo is a K-vector space. If Q
is any 1-dimensional K-subspace, form the external direct sum V ⊕Q = V + and let
the lattice of K-subspaces be denoted by PG(V + − 1, K).

(1) Then, PG(V − 1, K) may be considered a hyperplane of PG(V + − 1, K)
(‘co-dimension 1-subspace’), which we call the ‘hyperplane at infinity’.
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(2) Let S be a projective spread in PG(V − 1, K) and let L be an element of S.
Now L is a subspace of V that is K-isomorphic to Wo. Consider L+ = L⊕Q. Then,
in PG(V + − 1, K),

(a) PG(L+ − 1, K) is isomorphic to PG(Wo, K) and
(b) PG(L+ − 1, K) intersects PG(V − 1, K) in L.

(3) From PG(V + − 1, K), remove the hyperplane at infinity PG(V − 1, K) to
produce

(a) an affine space isomorphic to AG(V, K) and
(b) a corresponding vector space spread V (S) obtained by taking

V (S) =
{
PG(L+ − 1, K)− PG(V − 1, K) ∩ PG(L+ − 1, K);L ∈ S

}
.

The proof to the above result will become clear once we compare the translation
planes obtained from the two processes.

2.3 The Translation Planes are Isomorphic.

Notation 2. If S is a projective spread, we shall use the notation introduced in the
theorem of the previous subsection to obtain a vector space spread V (S). If Z is
a vector space spread, we shall use the notation P (Z) to denote the corresponding
projective spread obtained using lattices.

Theorem 5. (1) The translation plane πS obtained from the projective spread S by
using the Bruck-Bose method is isomorphic to the translation plane πV (S) obtained
from the vector space spread V (S) using the André method.

(2) The translation plane πZ obtained from a vector space spread Z using the
André method is isomorphic to the translation plane πP (Z) using the Bruck-Bose
method.

(3) πS ' πV (S) ' πP (V (S)) and πZ ' πP (Z) ' πV (P (Z)), using the notations of (1)
and (2).

Proof. Again, we let Li for i ∈ ρZ , ρZ an index set, for ‘components of a correspond-
ing vector space spread Z of V . Now take the lattice of K-subspaces PG(V −1, K).
As noted previously, P (Z) is a projective spread of PG(V − 1, K). The question
basically comes down to asking whether πV (P (Z)) is isomorphic to πZ . This will be
true if and only if there is an element of ΓL(V, K) that maps V (P (Z)) onto Z.

That is, all of the previous connections between the two translation planes are
valid if we can show that embedding PG(V − 1, K) into PG(V + − 1, K) and then
restricting to the associated affine space AG(V, K) produces the same vector space
spread.

Since we may extend to PG(V + − 1, K) by taking the lattice of K-subspaces
of V + = V ⊕ Q, letting L+

i = Li ⊕ Q, the corresponding elements of the exten-
sion become PG(L+

i − 1, K). As argued in the previous lemma, choosing a basis
B for V and a basis {e∞} for Q, we obtain that the points of PG(V + − 1, K) are
the ‘homogeneous coordinates’ (v, 0) and (w, 1) where w, v ∈ V . Letting the set
{(v, 0); v ∈ V } denote the hyperplane at infinity, removal of this set produces the
set of points {(w, 1); w ∈ V } of an affine space. Note that two points (w, 1) and (v, 1)
of the affine space are joined by a line consisting of the lattice of K-subspaces of
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the 2-dimensional K-subspace generated by (w, 1) and (v, 1) by removing the point
with homogeneous coordinates (t, 0). This becomes the translate of a 1-dimensional
K-subspace.

Hence, to obtain the corresponding 1-dimensional vector subspace, we may take
〈(0, 1), (v, 1)〉 , for v 6= 0, as a 2-dimensional K-subspace and then remove the point
〈(v, 0)〉 to obtain the set (αv, 1) for all α ∈ K, which we identify with [αv].

In this way, the projective space PG(L+
i − 1, K) becomes the set of vectors

[u] for all u ∈ Li. Since any two such projective spaces PG(Li − 1, K) generate
PG(V − 1, K), then any point of PG(V − 1, K) is a point of a line joining a point
of PG(Li − 1, K) and a point of PG(Lj − 1, K) for i 6= j. Equivalently, all 1-
dimensional K-subspaces of V are in the internal direct sum Li ⊕ Lj, which is
equivalent to V = Li ⊕ Lj. This proves the result. �

The model that we want to emphasize to the reader when going from vector
space to affine space to projective spaces is summarized in the following remark.

Remark 2. Take a vector space spread Z and form the associated affine space. Ex-
tend the affine space to a projective space and extend the affine spaces corresponding
to spread components to projective subspaces. Construct a projective spread on the
hyperplane at infinity by intersection of the projective ‘component’ subspaces. Thus,
abusing language somewhat we have:

‘Bruck-Bose is André at infinity.

3 Subgeometries.

If Σ is a projective space and Π is a subset of points of Σ such that if a line ` of
Σ intersects Π in at least two points A and B then we define a ‘line’ of Π to be
the set of points ` ∩ Π. If the points of Π and the ‘lines’ induced from lines of Σ
form a projective space, we say that Π is a ‘subgeometry’ of Σ. If Σ is a projective
space over a skewfield F , it is not completely clear when Π is a projective space
over a skewfield T that T may be taken as a subskewfield of F . However, all of the
subgeometies that have been considered thus far are of this type. Furthermore, the
subgeometries studied in this article will be assumed to be of this type. Hence, to
be clear, we formulate our definition of subgeometry as follows.

Definition 5. Let Σ be a projective space isomorphic to PG(V − 1, F ), where F is
a skewfield. If Π is a subgeometry Σ that arises from a subskewfield T of F , we shall
say that Π is an ‘induced’ subgeometry.

Remark 3. (1) Let V be an F -vector space such that the points of Σ are 1-
dimensional F -subspaces and lines of Σ are 2-dimensional F -subspaces. If Π is an
induced subgeometry isomorphic to PG(Z−1, T ) then the points of Π are assumed to
be exactly those 1-dimensional F -subspaces 〈z〉F with a generator a non-zero vector
z of Z considered as a subspace of V over T and T is a subskewfield of T .

(2) In the following any reference to ‘subgeometries’ will intrinsically mean ‘in-
duced subgeometries’.
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Considering subgeometries in the above manner, there is a natural generalization
to what we shall call ‘quasi-subgeometries’.

Definition 6. A ‘quasi-subgeometry’ of a projective space is a subset of points that
can be made into a projective space such that the lines of the projective set are subsets
of lines of the projective space.

If Σ is a projective space isomorphic to PG(V − 1, F ), where F is a skewfield
and Π is a subset of Σ isomorphic to PG(Z − 1, T ), where T is a subskewfield of
F , if the points of Π are induced in the same manner as in the above definition of
subgeometry and ‘lines’ of Π as a PG(Z − 1, T ) are subsets of lines of Σ, we shall
say that Π is an ‘induced quasi-subgeometry’.

In the following any reference to a ‘quasi-subgeometry’ shall intrinsically mean
an induced quasi-subgeometry.

Remark 4. In either a subgeometry or a quasi-subgeometry, we also assume that
the ‘lines’ of the structure are induced from the set of 1-dimensional F -subspaces
that lie in a 2-dimensional F -subspace and are generated by vectors of Z.

Definition 7. A partition of a projective space by quasi-subgeometries is called a
‘quasi-subgeometry partition’. If all of the quasi-subgeometries are subgeometries,
the partition is called a ‘subgeometry partition’.

What we are trying to accomplish in this article is to construct a variety of new
partitions of projective geometries by either subgeometries or by quasi-subgeometries.

We have seen that if the subgeometries or quasi-subgeometries are all what might
be called ‘half-dimensional’ then the ideas of ‘Bruck-Bose is André at infinity’ show
that there is a corresponding translation plane. However, if the quasi-subgeometries
involved in a partition could be essentially chosen from any set of projective geome-
tries, it is not at all clear that there are connections between vector space spreads
and quasi-subgeometry partitions or even if there are spreads producing translation
planes. In order to see what sorts of vector space spreads or generalizations of these
might conceivably correspond to quasi-subgeometry partitions, we define and study
‘fans’ first in vector space spreads and then more generally in ‘generalized spreads’.
We note that all of the quasi-subgeometries that we obtain from ‘fans’ are induced
quasi-subgeometries. We first consider ‘partial spreads’ and ‘generalized spreads’.

4 Partial Spreads.

Definition 8. A ‘partial vector space spread’ of a vector space V is merely a set of
vector subspaces any two distinct elements of which direct sum to the vector space
and are each isomorphic to a fixed subspace.

In a similar manner, one way define a ‘partial projective spread’. The elements
of a partial spread are called ‘components’.

From a partial vector space spread P, we may form a ‘translation net’ T (P) by
taking the ‘points’ of the net to be the vectors and the ‘lines’ of the net to be the
vector translates of the partial spread components.

Remark 5. The analysis of André versus Bruck-Bose works for partial spreads just
as for spreads. Hence, a partial vector space spread produces a partial projective
spread and conversely.
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Definition 9. Let π be a translation plane defined using the André method. The
group T of translations of the underlying vector space V over a skewfield K are
collineations of π. This group is called the ‘translation group’ of π.

Let Z denote the vector space spread defining π, so that π = πZ . Let ΓL(V, K)
denote the semi-linear group of V over K. If σ is a collineation of π then σ is
an element of the semi-direct product of ΓL(V, K) by T . Let F denote the full
collineation group of π. Then, (ΓL(V, K) ∩ F)T = F .

We note that ΓL(V, K)∩F may be regarded as the stabilizer subgroup of the zero
vector 0 : F0.

The group ΓL(V, K) ∩ F is called the ‘translation complement of π with respect
to K’.

If GL(V, K) is the general linear subgroup of ΓL(V, K) then GL(V, K) ∩ F is
called the ‘linear translation complement’ of π with respect to K’.

If K+is the maximal skewfield containing K such that the spread components are
also K+-subspaces, we shall say that K+ is the ‘kernel’ of π.

In this case, if F is the full collineation group of π then also

(ΓL(V, K+) ∩ F)T = F .

We then use the terms ‘translation complement’ and ‘linear translation comple-
ment’ when referring to the ‘translation and linear translation complements with
respect to the kernel K+.

Note that the translation complement is the subgroup of ΓL(V, K+) that permutes
the spread components.

Remark 6. We may extend the previous definitions to collineation groups of partial
vector space spreads and speak of the translation complement of a translation net as
the subgroup of ΓL(V, K) that permutes the partial spread components. However,
it may also be when considering the action on partial spreads that the associated
vector space V may be allowed to be a vector space over a field L different from K
and L need not be a superfield of K and a collineation might be in ΓL(V, L) instead
of ΓL(V, K).

4.1 Generalized Partial Spreads.

Definition 10. (1) Let V be a vector space over a skewfield K. Let {Ti; i ∈ Ω} = T
be a set of mutually disjoint K-vector subspaces, then T shall be called a ‘generalized
partial spread’. If V = ∪i∈ΩTi, then {Ti; i ∈ Ω} shall be called a ‘generalized spread’
of V .

Note that this allows that the individual subspaces can be of different dimensions.
(2) Assume that V is isomorphic to the external direct sum

∑
i∈λ Wo,i, of di-

mension |λ|wo, where all Wo,i are K-vector spaces that are K-isomorphic to a fixed
subspace Wo over K and all Ti are K-isomophic to Wo, and dimKWo = wo, we shall
say that {Ti; i ∈ Ω} is a ‘|λ|-generalized spread of size (wo, K)’.

In all cases, the subspaces Ti are called the ‘components’ of the generalized spread.
For example, if V is a dwo-dimensional over K for d finite and Wo is wo-

dimensional, we obtain a ‘d-generalized spread of size (wo,K)’.
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(3) If d = 2 and all components of the generalized spread pairwise generate V
then we have a spread.

If K is finite of order q, and wo is also finite, we shall say that we have a ‘d-
generalized spread of size (wo, q)’. We shall also use the terminology ‘d-spread’ to
indicate this same structure.

We shall be interested in the case when K is a field.

Definition 11. We shall say that an extension field D of K ‘acts’ on a generalized
spread if and only if

(i) the multiplicative group D∗ is in GL(V, K),
(ii) D∗contains the scalar group K∗,
(iii) permutes the spread components and
(iv) acts fixed-point-free (each non-identity element fixes only the zero vector).
Hence, a field D acting on a generalized spread maps components of a given

dimension onto components of the same dimension.
Any orbit of components of a generalized spread under a field D shall be called

a ‘fan’. If the subfield DL of D is induced from the stabilizer of a component L, we
shall call the orbit O(L) under D a ‘DL-fan’.

Definition 12. Let S be a d-spread of size (s, K) of a vector space V over a skewfield
K. If we define ‘points’ as vectors and ‘lines’ as translates of spread components, we
obtain an incidence geometry of points and lines such that the line set is partitioned
into a set of parallel classes. If d = 2, then distinct lines from different parallel
classes must intersect, whereas if d > 2, this is not the case. Such an incidence
geometry is called a ‘translation space’ and is an example of a ‘Sperner space’.

Remark 7. We shall be interested in the collineation group of a translation space
as well as the collineation group of a generalized spread.

We define the ‘linear’ translation complement of a generalized spread over the
skewfield to be the subgroup of GL(V, K) that permutes the components of the spread.

5 Fans.

In this section, we consider that K is a field.
Let V be a K-vector space. Let D be a field extension of K that acts on a

generalized partial spread P of V . For any component L of P, then D∗
L ∪{0} = DL

is a subfield of D since L is a K-subspace. Furthermore, L is a DL-vector space if
D∗ is fixed-point-free (no non-identity element fixes a non-zero vector).

Notation 3. We shall consider the vector spaces V and L over various fields F , T
Consistent with our previous notation, we shall denote the corresponding projective
spaces of the lattice of F -subspaces as PG(V − 1, E) and PG(L− 1, E) respectively,
where E could be F or T . Note that when V is finite n-dimensional , care must be
taken to change to the appropriate PG(k− 1, E), where k is the E-dimension of V .

Definition 13. If D is a 2-dimensional field extension of K, we say that the asso-
ciated fan is a ‘quadratic fan’ provided the stabilizer of a component is not D, that
the fan is not simply a single component.
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Lemma 2. Every quadratic fan is a K-regulus in some associated projective space
over K.

Proof. We have that D acts on the DL-fan and D is a field extension of K of
degree 2. Since D∗ contains the kernel homology group K∗ by assumption, then
K∗ ⊆ D∗

L ⊆ D∗, implying D∗
L = K. Hence, the D-orbits on the quadratic fan are

1-dimensional D-subspaces which then are 2-dimensional K-subspaces partitioned
by their intersections with the orbit components in the quadratic fan. Let L and
M be distinct components of the orbit O(L) under D∗. Since each of L and M are
K-vector spaces, we have that L ⊕ M is a K-vector space. Moreover, there exists
an element α ∈ D∗ such that M = Lα. Similarly, any component N in the orbit
O(L) is Lβ for some β ∈ D∗. We note that for v ∈ L− {0}, then vδ for all δ ∈ D∗

union the zero vector is a 1-dimensional D-vector space and thus L and Lα must
each intersect {vδ; δ ∈ D} in a 1-dimensional K-subspace since D∗ contains the
K∗-scalar group. Thus, there are vectors w and t from L and Lα respectively that
generate the 2-dimensional K-space {vδ; δ ∈ D}. Thus, for any α ∈ D∗ such that
L 6= Lα then Lβ ⊆ L⊕Lα, for all β ∈ D∗. If Lβ 6= Lδ then it also follows that L and
Lα ⊆ Lβ ⊕ Lδ ⊆ L⊕ Lα = V L. So, we have that for any two distinct components
N and J of the orbit O(L) of D∗, it then follows that N ⊕ J = V L. Hence, we have
a partial spread, inducing a translation net relative to VL. So, we have a net which
is covered by Pappian subplanes. That is, we have a ‘subplane covered net’. By
the results of the author [5], the net is a regulus net in some projective space. This
proves the result. �

5.1 Folding the Fan.

Our definition of a ‘fan’ is an orbit of components under a group D∗. These com-
ponents share the zero vector and are otherwise disjoint as sets. When we consider
a ‘folding’ of a fan, we basically fold all of the components into a single one in the
orbit and define a projective space arising from the fold as follows:

5.1.1 The Incidence Geometry.

Let O(L) = η be an DL-fan, for L a component and let the stabilizer of L in D∗ define
a field DL. Then, by taking the lattice of D-subspaces, we obtain a projective space
PG(L− 1, DL). Since D acts on the vector space V , V considered over D produces
PG(V −1, D) by the lattice definition. The goal is to see that PG(L−1, DL) may be
considered the ‘folded fan’ and as a quasi-subgeometry of PG(V −1, D), in the sense
that we have a subset G(η) of points and a set of ‘subsets’ of lines of PG(V − 1, D)
that forms a projective space PG(L− 1, DL).

We shall show that this provides a quasi-subgeometry in PG(V −1, D). To begin
with, we assume that DL = K and produce a subgeometry. After this, we realize
that the arguments are valid more generally and produce quasi-subgeometries.

So, for the moment, let DL = K.
Hence, we define an incidence geometry G(η) as follows: The ‘points’ are those

D∗-orbits union the zero vector of vectors that lie in O(L). Given two non-zero
vectors u and v in different D∗-orbits that lie components on O(L) note that the
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2-dimensional D-subspace 〈u, v〉D is the same subspace when u and v are considered
on the same component L∗. Within 〈u, v〉D, a ‘line’ will be the set of ‘points’ as
D∗-orbits arising from vectors in 〈u, v〉K, where u and v are vectors on a compo-
nent L∗of O(L) that are in different D∗-orbits. The question is 〈u, v〉D ∩ G(η) =
{〈αov + βov〉D ; αo, βo ∈ K}?

We now utilize the model that a quadratic fan is a K-regulus.

Lemma 3. Let Z be a vector space and R a regulus in PG(Z − 1, K) for K a field.
Then, R is a partial spread and we let N(R) denote the associated regulus net in the
associated K-vector space Z.

Then
(a) any pair of subplanes πo and π1 that share the zero vector can be embedded

in a unique derivable subnet Dπo,π1 of N(R) that contains πo and π1.
(b) Furthermore, the only subplanes incident with the zero vector that non-

trivially intersect πo ⊕ π1 are in the derivable subnet Dπo,π1.

Proof. Part (a) follows from Johnson [5] (15.25) p. 187. Each subplane is a 2-
dimensional K-vector space. Now πo ⊕ π1 is a 4-dimensional K-vector space Vo.
Since the supernet defines a K-regulus, the subnet is also a regulus in an associated
PG(3, K) corresponding to the lattice of K-subspaces of Vo. Any subplane within Vo

must be a line of the opposite regulus so is in the derivable net. Furthermore, if π2 is
a subplane incident with the zero vector and P2 is a non-zero point of π2, then π2 is
the unique subplane containing P2 and 0 so that if P2 intersects the derivable subnet
then there is a subplane of the derivable subnet containing 0 and P2, implying that
π2 is a subplane of the derivable subnet. But, P2 is a point of the derivable subnet
only if it also lies within πo ⊕ π1. �

Lemma 4. If D acts on the quadratic fan then

〈u, v〉D ∩G(η) = {〈αov + βov〉D ; αo, βo ∈ K} .

Proof. Since in the previous lemma, πo and π1 are 1-dimensional D, subspaces, let
u and v be in πo and π1 respectively and assume that u and v are on the same
component of the quadratic fan. πo ⊕ π1 is a 2- dimensional D-space 〈u, v〉D. Since
the only subplanes in πo⊕π1 are in the derivable subnet and these subplanes are all
1-dimensional D-subspaces, all subplanes within the derivable net can be represented
by 〈αov + βov〉D. This proves the result. �

Hence, we also obtain:

Lemma 5. Given two distinct points A and B of G(η), there is a unique line AB
incident with A and B. This line is a subline of the line in PG(V − 1, D) obtained
from the 2-dimensional D-space 〈A, B〉D.

Furthermore, for any two distinct points C, D of AB, AB = CD.

Proof. Let L1 and L2 be two lines of O(L) and let ui, vi be non-zero vectors in
A and B respectively and ui, vi are in Li for i = 1, 2. We need to show that the
‘line’ arising from D∗-orbits of vectors in 〈u1, v1〉DL

is the same as the ‘line’ arising
from D∗-orbits of 〈u2, v2〉DL

. We note that there is an element g of D∗ that maps
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L1 onto L2. Now since g(u1) and u2 are in the same D∗-orbit and are also in L2,
it follows that they are DL-scalar multiples of each other. Hence, there exists an
element α1 ∈ D∗

L such that α1g(u1) = u2. Similarly, there exists an element α2 ∈ D∗
L

such that α2g(v1) = v2. Now the ‘points’ originating from 〈u1, v1〉DL
are of the form

(δu1 + ρv1)D and the ‘points’ from 〈u2, v2〉DL
are of the form (λu2 + γv2)D for

δ, ρ, λ, γ ∈ DL. Now (δu1 + ρv1)D = g((δu1 + ρv1))D
= (δg(u1) + ρg(v1))D = (δα−1

1 u2 + ρα−1
2 v2)D. Thus, the two ‘lines’ have the

same ‘points’ and hence we have a unique such line. Since the ‘lines’ are defined
from the set of points on a line of PG(V − 1, D), the lines of G(η) are ‘sublines’ of
PG(V − 1, D).

Take any 2-dimensional DL-space Ψ on L. Then, there is a unique set of D∗-
orbits defined by the images of vectors within Ψ. By the above remarks, this set is
a ‘line’. Take any two such orbits R and T . Then R and T intersect L in distinct 1-
dimensional DL-subspaces of L in Ψ and hence generate Ψ. Since the corresponding
set of orbits of elements of Ψ then become our ‘line’, then since every 1-dimensional
DL-subspace of L defines a unique orbit ‘point’, it follows that any 2-dimenisonal
DL-subspace of L produces and/or corresponds to a ‘line’ of G(η) and any ‘line’ of
G(η) corresponds to a 2-dimensional DL-subspace of L. �

We wish to show that G(η) is a projective space. Since the ‘point set’ corresponds
to the set of 1-dimensional DL-vector subspaces on L, and the line set corresponds
to the set of 2-dimensional DL-subspaces on L, we may define the associated sub-
geometry based on the lattice of DL-subspaces to realize this as a projective space
isomorphic to PG(L− 1, DL).

Theorem 6. Let η be an K-fan (a quadratic fan). Define an incidence geometry
G(η) as follows:

(i) ‘points’ of G(η) are the point-orbits of D acting on the partial spread P and
(ii) ‘lines’ are defined by pairs of distinct ‘points’ A and B as follows: If A = uD

and B = vD, for u, v on same component of O(L), then the line AB is the set of
points arising as D-orbits of vectors in 〈u, v〉DL

.
Then G(η) is a projective space isomorphic to PG(L− 1, DL) that may be con-

sidered a subgeometry of PG(V − 1, D).

Our main result on quadratic fans is that a vector space generalized spread that
is the union of fans produces a subgeometry partition of a projective space.

Theorem 7. Let Z be a generalized spread whose components are K-subspaces with
underlying vector space V over a field K. Let D be a quadratic field extension of K.
Assume that D acts on Z.

Let the orbits of D∗ be denoted by O(L) where L is a component of the spread of
π.

For O(L), let DL denote the subfield of D leaving L invariant. If the generalized
spread Z for π is

∪{O(L); L ∈ Z},

let Li be a representative for the orbit O(Li) = ηi, for i ∈ Λ, an index set for the set
of orbits.

Then
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(a) there is a subgeometry partition Sub(Z) of PG(V − 1, D) defined as follows:

Sub(Z) = {G(ηi) ' PG(Li − 1, DLi
); i ∈ Λ} .

That is, a generalized spread Z that is a union of DLi
-fans produces a subgeome-

try partition of PG(V −1, D) by PG(Li−1, DLi)’s for all i ∈ Λ, where DLi
is either

K or D.
(b) Each orbit of length > 1, O(Li) under D∗ is a K-regulus in some projective

space PG(V Li − 1, K). Note that we are not assuming that the dimensions of Li

and Lj are equal over K.

We now take up the more general problem.

5.2 Quasi-Subgeometries.

In the general situation, a DL-fan produces a projective geometry that sits within
PG(V − 1, D) by defining lines to arise from the D-1-subspaces originating from
a vector on L; that is by {〈αov + βov〉D ; αo, βo ∈ K} ⊆ 〈u, v〉D ∩ G(η). However,
although this would produce a projective geometry isomorphic to PG(Wo − 1, DL)
that sits in PG(V − 1, D), it may not actually be the complete set of intersection
points and hence would not properly be considered a ‘subgeometry’. We have de-
fine this embedded projective geometry as a ‘quasi-subgeometry’, so then from any
spread that is a union of DLi

-fans, we would obtain a partition of PG(V − 1, D) by
quasi-subgeometries isomorphic to PG(Wo − 1, DLi

) for i ∈ Φ.
The analogous theorems for quasi-subgeometry partitions are as follows and note

that a re-reading of the previous results reveals that the proofs are essentially the
same as for the subgeometry partitions, except that a ‘subline’ given may not be
the intersection of the pointset by a given line, although it will be a subset of a line.

Theorem 8. Let η be a DL-fan. Define an incidence geometry G(η) as follows:
(i) ‘points’ of G(η) are the point-orbits of D acting on the generalized partial

spread P and
(ii) ‘lines’ are defined by pairs of distinct ‘points’ A and B as follows: If A = uD

and B = vD, for u, v on same component of O(L), then the line AB is the set of
points arising as D-orbits of vectors in 〈u, v〉DL

of the form 〈αov + βov〉D ; αo, βo ∈
DL.

Then G(η) is a projective space isomorphic to PG(L− 1, DL) that may be con-
sidered a quasi-subgeometry of PG(V − 1, D).

Theorem 9. Z be a generalized spread S with underlying vector space V with com-
ponents K-spaces where K is a field. Let D be a field acting on Z.

Let the orbits of D∗ be denoted by O(L) where L is a component of the generalized
spread.

For O(L), let DL denote the subfield of D leaving L invariant. If the generalized
spread Z for π is

∪{O(L); L ∈ Z},

let Li be a representative for the orbit O(Li) = ηi, for i ∈ Λ, an index set for the set
of orbits.
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Then there is a quasi-subgeometry partition Sub(Z) of PG(V − 1, D) defined as
follows:

Sub(Z) = {G(ηi) ' PG(Li − 1, DLi
); i ∈ Λ}

That is, a generalized spread Z that is a union of DLi
-fans produces a quasi-

subgeometry partition of PG(V − 1, D) by PG(Li − 1, DLi)’s for all i ∈ Λ.

5.3 Unfolding the Fan.

We think of a particular quasi-subgeometry as a ‘projective’ folded fan and argue
that this can be unfolded into an associated vector space fan.

Let V be a K-vector space, for K a field and D be an extension field of K. Let L
be a K-vector subspace such that V is a D-space and L is a DL-space. Hence, assume
that we have a (induced) quasi-subgeometry Σo isomorphic to PG(L−1, DL), where
Σo is in Σ1, and Σ1 is the lattice of subspaces PG(V − 1, D). We want to realize
this quasi-subgeometry as a DL-fan in the vector space V over D. Since we assume
that DL is a subfield of D, then V is also an DL-vector space. We also assume that
DL contains the field K.

Lemma 6. Under the above assumptions and notation, there is a vector space V +

over D defining a projective space Σ2 as PG(V + − 1, D) so that

Σo ⊆ Σ1 ⊆ Σ2.

Note that Σo is a quasi-subgeometry of Σ1 and Σ1 is a projective subspace of Σ2.

Proof. Let Q be any 1-dimensional D-vector space, and consider the external direct
sum V ⊕ Q = V + as a D-vector space. Let Σ2 denote the lattice of D-subspaces
of V +. In this way, we have embedded Σ1 in the projective geometry Σ2, which is
PG(V + − 1, D). And, as above, Σo may be considered isomorphic to the lattice of
subspaces of the vector space Wo over DL:

PG(L− 1, DL) ' Σo, PG(V − 1, D) ' Σ1, PG(V + − 1, D) ' Σ2, where

Σo ⊆ Σ1 ⊆ Σ2.

�

We now make explicit a coordinate description of the above embedding. Note
that this is the reflection of our previous discussion on ‘Bruck-Bose is André at
infinity’. We restate our Lemma 1 in terms of the field D.

Lemma 7. (1) PG(V + − 1, D) is isomorphic to PG(V, D).
(2) Bases may be chosen for V and V + so that

(a) vectors of V + may we represented in the form:

((xi), x∞) for all i ∈ ρ, ρ an index set, where xi, x∞ ∈ D,

((xi), 0) for all i ∈ ρ, ρ an index set, where xi ∈ D
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represent vectors in V and
(b) regarding two non-zero ‘tuples’ above to be equal if and only if they are

K-scalar multiples of each produces the ‘homogeneous coordinates’ of the associated
projective spaces PG(V − 1, D) and PG(V + − 1, D),

(c)

((xi), 1) for all i ∈ ρ, ρ an index set, where xi ∈ D

represents homogeneous coordinates for a subset isomorphic to AG(V, D).
(3) Furthermore, we may consider PG(V, D) as the adjunction of PG(V − 1, D)

as the hyperplane at infinity of AG(V, D).

What we try now to do is to integrate the idea that Σo is isomorphic to a pro-
jective space PG(L − 1, DL) while at the same time being embedded into Σ1, the
projective space PG(V − 1, D) as a quasi-subgeometry. This is somewhat problem-
atic since we need to think simultaneously of a point of Σo being a 1-dimensional
DL-vector subspace as well as a 1-dimensional D-vector subspace and we need to
realize that Σo is only isomorphic to PG(L − 1, DL) as a quasi-subgeometry of
PG(V − 1, D).

Lemma 8. (1) (a) Using the representation of the previous lemma, a point of Σo

may be represented by either a 1-dimensional D-subspace generated by ((xi), 0) or
defines a ‘point’ of Σ1 having homogeneous coordinate ((xi), 1).

(b) We adopt the notation 〈(v, 0)〉 for some v of L, for the first situation
and note that D-scalar multiplication may be defined as

α(v, 0) = (αv, 0).

(c) Note that (αv, 1) , for any α ∈ D and v ∈ L, is a ‘point’ of Σ1 and Σ2.
(d) αv = βw for v, w in L − {0} and α, β ∈ D if and only if α−1βw = v

implying that α−1β ∈ DL.

Remark 8. We recall that the lattice PG(L − 1, DL) corresponds to Σo . Hence,
when we consider the points of Σo defined using the notation (αv, x∞), for v ∈ L,
we are using the above setup. Since Σo is a subset of points of PG(V − 1, D), there
is a preimage set Σ+

o of 1-dimensional D-subspaces; a subset of vectors of V . In our
notation, we have a point not in PG(V − 1, D) of the form (αv, 1) for all v ∈ L and
for all α ∈ D.

We define some sets of points which will become projective quasi-subgeometries
of PG(V + − 1, D):

Let

Σα = {(αv, 1), 〈(v, 0)〉D ; v ∈ L} for fixed nonzero α ∈ D}.

(1) (a) Σα is a projective quasi-subgeometry of PG(V +−1, D) that is isomorphic
to PG(L+ − 1, DL) ' PG(L, DL).

(b) Under the above structure of ‘lines’, Σα induces on the point set Σo an
isomorphic (as projective spaces) quasi-subgeometry.

(c) ∩Σα = Σo = {〈(v, 0)〉D ; v ∈ L}.
(2) Let

V̂ = {(w, 1); w ∈ V } .
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Then by defining β(w, 1) = (βw, 1), V̂ is an D-vector space isomorphic to V over
D.

Also, Σ−
α may be considered a DL-vector subspace over DL, that admits the scalar

multiplication over DL ⊆ D.
(3) Let

Σ+
o = {(αv, 1), α ∈ D and v ∈ L} ⊆ V̂ .

This set of vectors produces Σo = PG(L − 1, DL) when considering Σ+
o as the

lattice of D-subspaces of the subset Σ+
o . Let A and B be distinct 1-dimensional D-

subspaces within Σ+
o . Hence, the ‘line’ of Σo AB containing A and B must be realized

within the 2-dimensional D-subspace, 〈A, B〉D and must abstractly correspond to a
2-dimensional DL-subspace of Wo. If a, b ∈ L, for a ∈ A and b ∈ B then the ‘points’
of the ‘line‘ in the quasi-subgeometry are of the form 〈αou + βov〉D for all αo, βo in
DL, for not both αo and βo zero.

Let

Σ−

α = {(αv, 1); for fixed non-zero α ∈ D and for all v ∈ L} .

Then Σ−
α may be made into a DL-vector space by defining β(αv, 1) = (βαv, 1)

where β ∈ DL and v ∈ L. Under our notation, L represents (or becomes) a subset
of V as Σ−

1 .
Similarly, V is a subspace of V + and L is a subset of V , so a subset of V +.

Proof. (1) We consider the 2-dimensional vector space of V + generated by vectors
(αv, 1) and (αu, 1) over D:

{β((αv), 1) + γ((αv)1, ); β, γ ∈ D} .

The corresponding ‘line’ in PG(V + − 1, D) is

{(β/(β + γ)(αv), 1) + (γ/(β + γ)(αu), 1, ), (α(u− v), 0); β, γ ∈ D, β + γ 6= 0} .

If we restrict β and γ to DL, we have a ‘line’ corresponding to DL. Moreover,
any two ‘points’ of the ‘line’ clearly determine the same subset as a ‘line’. Hence,
we see that we may regard Σα as a projective quasi-subgeometry of PG(V +−1, D),
and Σα is obviously isomorphic to PG(L+ − 1, DL).

Deleting the set
{
〈(v, 0)〉DL

; v ∈ L
}

from Σα as a subset of points of PG(V + −

1, D) isomorphic to PG(L−1, DL) produces an affine space isomorphic to AG(L, DL)
and Σ−

α is this set.
Note that a line of Σα produces a line of Σ−

α by the deletion of a point 〈u− v, 0〉 ,
so we see that (restrict β and γ to DL) then

{(β/(β + γ)(αv), 1) + (γ/(β + γ)(αu), 1, ); β, γ ∈ DL, β + γ 6= 0}

is a subset of Σ−
α ; Σ−

α then is an DL-subspace by the action indicated in the statement
of part (2). Finally, we note that the action given in Σα is that essentially induced
from the action of the associated field. This ‘subline’ set will induce on Σo a subline
set of a pair of distinct points (assuming that the dimension of Σ−

α is larger than 1).
�
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5.4 The Associated Affine Spaces Σ−
α ' AG(L, DL).

Consider the group D∗/D∗
L and let CL = {αj; j ∈ Ω} be a coset representative set

for D∗
L. Now fix α ∈ D − {0} and consider

Σ−

α = {(αv, 1); v ∈ L}.

The previous lemma shows that in our defined action of D on V̂ , we may regard
that D∗

L leaves each Σ−
α invariant.

As an affine space, we suppress the ‘1’ and write (αv, 1) as [v]α to place these
elements back in V (or an isomorphic copy of V ).

If βo is in DL, then more formally, we have βo(αv, 1) = (βoαv, 1) = (αβov, 1).
Hence, βo[v]α = [βov]α for all βo ∈ DL and for all v ∈ L.

To emphasize the previous, we repeat part of the statement of the previous
remark.

Lemma 9. Σ−
α is a subset of AG(V, D) which may be considered isomorphic to

AG(L, DL). Furthermore, the associated vector space over DL is isomorphic to L.
In addition, Σα is a subset of Σ2 isomorphic to PG(L, DL).

(1) Let αj and αk be distinct elements in CL, then

Σ−

αj
∩ Σ−

αk
= (0, 1).

(2)
{
Σ−

αj
; j ∈ Ω

}
is a set of mutually isomorphic and pairwise disjoint DL-vector

spaces.

Proof. In this context, Σ−
α is clearly DL-isomorphic to L, by the mapping that maps

[v]α 7−→ v.

Thus, we have Σ−
α is an affine geometry isomorphic to AG(L, DL). Hence, Σα is a

subspace of Σ2 isomorphic to PG(L, DL).
Now assume that (αv, 1) = (βu, 1) ∈ Σ−

α ∩ Σ−

β if and only if α−1βu = v, and if
both u and v are non-zero then this implies that α−1β ∈ DL. Thus, two distinct
elements of a coset representative set define affine spaces that are mutually disjoint
as vector spaces. This completes the proof of the the lemma. �

5.5 D Acts on the set of Affine Spaces Σ−
α as D∗/D∗

L.

We have previously defined an action of D∗ so that:

Lemma 10. (1) D∗ acts transitively on
{
Σ−

αj
; j ∈ Ω

}
and induces faithfully the

group D∗/D∗
L on this set.

(2) D∗ fixes (0, 1) and fixes Σo pointwise.
(3) D∗ acts as a collineation group of the affine space AG(V, D) that fixes the

zero vector of the associated vector space V and acts as a natural scalar group.
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Proof. We note that Σα = Σαk for any k ∈ DL − {0}.
Recall that the group action of D∗ is by

τβ : Σα 7−→ Σαβ : ((αv), 1) 7−→ ((αβv), 1) and (w, 0) 7−→ β(w, 0).

Hence, we note that the group D∗ acts on the associated projective spaces Σα

and also acts on the affine geometries Σ−
α , each of which is isomorphic to AG(L, DL).

If β ∈ DL then (αv, 1) and (αβv, 1) are both in Σ−
α so that D∗

L is the elementwise
stabilizer of this set. Since for any γ, τα−1γ maps Σ−

α onto Σ−
γ , it follows that we

have the transitive action as maintained. Furthermore, the group clearly fixes (0, 1)
and fixes all points of Σo.

Now consider Σ2 − Σ1, points of the form ((xi), 0). If we define D∗ to act on
these points by scalar multiplication, we see that D∗ acts as a collineation group of
the affine space AG(V, D) which fixes the ‘zero vector’ and acts as a scalar mapping
on the underlying vector space. This completes the proof of the lemma. �

Now realize this vector space as over K. Note that the Σ−′
α s are naturally DL-

subspaces under the scalar action of D restricted to DL, since each is fixed by DL.

Definition 14. Suppose that V = Wo ⊕Wo. A quasi-subgeometry of PG(V − 1, D)
isomorphic to PG(Wo − 1, DL) shall be said to have the ‘congruence generating
property’ if and only if as vector spaces,

Σ−

αj
⊕ Σ−

αk
= V

for any distinct pair of elements αj, αk ∈ CL.
Note that there is a unique way to consider the direct sum that is dependent only

on the pointsets involved.

Proposition 1. If Wo is finite dimensional over K then PG(L − 1, DL) has the
‘congruence generating property’.

Proof. Assume that Wo is finite dimensional of dimension k over K so that the
dimension of V over K is 2k. Now if Π1 and Π2 are two mutually disjoint DL-
subspaces that are DL-isomorphic to Wo then they are also K-isomorphic to Wo.
Hence, any two of these subspaces will generate V . �

Theorem 10. If PG(V − 1, D) has a quasi-subgeometry isomorphic to PG(Wo −
1, DL) that has the congruence generating property then the quasi-subgeometry pro-
duces an DL-fan in the vector space V such that each pair of components in the
associated generalized partial spread generate V as a direct sum.

Proof. Under the assumptions, we have a set of mutually disjoint vector subspaces
of a vector space V over K that are DL-isomorphic to Wo and any two generate V .
By our previous lemmas, the group D∗ acts in the manner required, implying that
we have constructed a DL-fan acting on a partial spread. �

Our main result of this section is as follows:
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Theorem 11. Let V be a vector space over a field K and assume there are field
extensions DLi

and D such that K ⊆ DLi
⊆ D, for i ∈ Λ, an index set, and Li

K-vector subspaces of V .

Let P be a quasi-subgeometry partition of PG(V − 1, D) by quasi-subgeometries
Gi isomorphic to PG(Li − 1, DLi

), so that

P = ∪i∈ΛGi.

(1) Then, by ‘unfolding’, there is a corresponding generalized spread SP of the
vector space V such that D acts on V and SP consists of DLi

-fans for i ∈ Λ.

(2) Conversely, the associated generalized spread admitting D produces, by ‘fold-
ing’, a quasi-subgeometry partition of PG(V −1, D) consisting of PG(Li−1, DLi

)’s
on the analgous pointsets of the partition.

(3) The constructed generalized spread is a spread if and only if the quasi-
subgeometries generate K-subspaces that pairwise have the congruence generating
property.

This is true for example if L′
i⊕L′

j = V , for all distinct i, j ∈ Λ, for all subspaces
L′

i of O(Li), the D∗-orbits.

(4) If D is a 2-dimensional field extension of K then the quasi-subgeometries are
subgeometries and there is a bijective correspondence between generalized spreads
admitting D and subgeometry partitions of PG(V − 1, D) by PG(Li − 1, K)’s and
PG(Lj − 1, D)’s. The generalized spreads are unions of K-reguli and subspaces fixed
by D∗.

Proof. Let Σ1
o ' PG(L1 − 1, DL1) and Σ2

o ' PG(L2 − 1, DL2) be disjoint quasi-
subgeometries of PG(V − 1, D).

There are subsets Σi+
o of V of 1-dimensional D-subspaces that give rise of Σi

o,
for i = 1, 2. These two subsets must be disjoint on 1-dimensional D-subspaces and
hence disjoint on non-zero vectors. In order to realize this within our notation,
we assume that L and M are disjoint K-vector spaces. We then may consider the
representations of Σi+

o as follows:

Σi+
o =

{
αvi; α ∈ D, vi ∈ Li

}
, for 1, 2.

Hence, it is then clear that we have two fans that are disjoint, one a DL1-fan and
one a DL2-fan.

Now if there is a partition of PG(V − 1, D) by quasi-subgeometries isomorphic
to PG(Li − 1, DLi

) for i ∈ Ω, then we obtain a set of mutually disjoint DLi
-fans for

i ∈ Ω. Since every 1-dimensional D-subspace lies within one of the subgeometries,
then every vector of V must lie within one of the fans. Hence, there is a covering of
V by DLi

-fans for i ∈ Ω so we have a generalized spread that is the union of DLi
-fans

and admits D∗ as a collineation group within GL(V, K). This proves (1), (2). Part
(3) is merely the requirement that we actually obtain a spread. To prove (4), we
note in the quadratic extension case, all quasi-subgeometries become geometries, the
K-fans become K-reguli and the D-fans are simply components of the generalized
spread fixed by D∗. �



252 N. L. Johnson

6 Finite Fans in Spreads.

In the previous sections, we have developed the connections with fans and quasi-
subgeometries. Since all of our results are valid for arbitrary vector spaces, we may
apply these results, in particular, for finite spreads; finite fans and finite quasi-
subgeometries. In the general results, we considered a field extension D and dis-
cussed DL-fans. In the finite case, we also do the same thing, and we consider the
study of finite vector spaces of dimension 2ds over K isomorphic to GF (q) that
admit a fixed-point-free field group D∗ = F ∗

d of order qd − 1 (i.e. Fd = F ∗
d ∪ {0}

is a field) that contains the field group K∗ or those that could admit D∗ = F ∗
2d

isomorphic to GF (q2d)∗. Note that for spreads of finite dimensional vector spaces
V , the dimension over a subkernel field is necessarily even, say 2ds. In this setting,
the order of the associated translation plane is qds. We are interested in essentially
two types of fields ‘acting’ as collineation groups of the translation plane. First, we
consider whether it is possible that the field D could fix a component of the spread.
Since a component has qds − 1 nonzero vectors and D ' GF (qw) is fixed point free,
then w must divide ds in this context. So, in such a setting we take w = d without
loss of generality. On the other hand, assume that it would be required that D
never fix a component. Since V is a 2ds dimensional GF (q)-vector space, then V
would be a 2ds/w-dimensional GF (qw)-vector space. Hence, w divides 2ds and if it
does not divide ds, then without loss of generality, we consider w = 2d. Hence, the
fields in question could be isomorphic to GF (qd) or GF (q2d), where 2d divides 2ds
but not ds, so we assume that s is odd in the latter case to avoid reduction to the
previous situation.

Hence, the qe-fans that are under consideration have degree either (qd−1)/(qe−1)
where e divides d or degree (q2d − 1)/(qe − 1) where e divides 2d.

Definition 15. A ‘qe-fan’ in a 2ds-dimensional vector space over K isomorphic to
GF (q) is a set of (qw − 1)/(qe − 1) mutually disjoint K-subspaces of dimension ds
that are in an orbit under a field group F ∗

w of order (qd − 1), where Fw contains K
and such that F ∗

w is fixed-point-free, and where w = d or 2d and in the latter case s
is odd.

Hence, applying our main results to the finite case, we obtain the following
corollaries.

Corollary 1. Assume a partial spread Z of order qds in a vector space of dimension
2ds over K isomorphic to GF (q) admits a fixed-point-free field group F ∗

w of order
(qw−1) containing K∗, for w = d or 2d and s is odd if w = 2d. Then any component
orbit Γ of length (qw− 1)/(qe− 1) (a ‘qe-fan’), for e a divisor of d, produces a quasi-
subgeometry isomorphic to a PG(ds/e− 1, qe) in the corresponding projective space
PG(2ds/w− 1, qw), considered as the lattice of Fw-subspaces of V .

Corollary 2. Let π be a translation plane of order qds and kernel containing K
isomorphic to GF (q) that admits a fixed-point-free field group F ∗

w of order (qw − 1)
containing K∗, where w = d or 2d and s is odd if w = 2d.

(1) Then, for any component orbit Γ, there is a divisor eΓ of w such the orbit
length of Γ is (qw − 1)/(qeL − 1) so that Γ is a qeΓ-fan.
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Hence, there is a quasi-subgeometry partition of PG(2ds/w − 1, qw) by quasi-
subgeometries isomorphic to PG(ds/eΓ − 1, qeΓ), for various divisors eΓ of w.

(2) Conversely, for w = d or 2d, every quasi-subgeometry partition of PG(2ds/w−
1, qw) by quasi-subgeometries isomorphic to PG(ds/f−1, qf), for various divisors f
of w, produces a translation plane of order qds and kernel containing K isomorphic
to GF (q), that admits a fixed-point-free field collineation group of order qw − 1, F ∗

w

containing K∗. The projective quasi-subgeometries of type PG(ds/f − 1, qf) corre-
spond to qf -fans.

Our general main result for the finite spread case is now summarized as follows.

Theorem 12. Let π be a translation plane of order qds and kernel containing K
isomorphic to GF (q). Assume that there is a fixed-point-free collineation group GK ∗

such that GK is a field isomorphic to GF (qw), where w = d or 2d and s is odd in
the latter case. Let the set of divisors of w be N = {ei; i = 1, ...., E}, including w
and 1.

(1) Each component L has a unique maximal subfield GF (qf) within GF (qw),
for f = ek for some k, such that L is a GF (qf)-subspace. In this case, the orbit
length of L under GK∗ is (qw − 1)/(qf − 1) and the orbit is a qf -fan.

Let ki denote the number of GK∗-orbits of components of length (qw−1)/(qei−1);
of qei-fans, and let N− denote the subset of N containing the divisors ei used in the
construction.

Then
∑N−

i=1 ki(q
w − 1)/(qei − 1) = qds + 1.

(2) Consider the associated affine geometry AG(2ds/w, qw), embed in PG(2ds/w,
qw) and let ∆ denote the hyperplane at infinity isomorphic to PG(2ds/w − 1, qw).
Consider an orbit of components under GF (qw)∗ of length (qw−1)/(qei−1); the vari-
ous qei-fans. Each qei-fan will produce a quasi-subgeometry isomorphic to PG(ds/ei−
1, qei) in ∆. Hence, we obtain ki such PG(ds/ei − 1, qei)′s.

(3) If
∑N−

i=1 ki(q
w − 1)/(qei − 1) = qds + 1, then there is a corresponding quasi-

subgeometry partition of PG(2ds/w − 1, qw) by ki PG(ds/ei − 1, qei)′s for i =
1, 2, ..., N . We call this a partition of type (k1, ...., kN−).

(4) If PG(2ds/w−1, qw) admits a quasi-subgeometry partition by ki PG(ds/ei−
1, qei)′s for i = 1, 2..., N−, for ei ∈ N− ⊆ N and N = {ei; i = 1, 2, ..., E} is the set
of all divisors of d then necessarily

N−∑

i=1

ki(q
w − 1)/(qei − 1) = qds + 1).

Furthermore, there is an associated translation plane of order qds and kernel con-
taining GF (q) admitting a collineation group GK∗ such that the union with the zero
mapping is a field isomorphic to GF (qw) that is fixed-point-free and there is a set of
ki mutually disjoint qei-fans whose union is the spread for the translation plane.

We now show that there are a great variety of examples of quasi-subgeometry
partitions based on net replacement. All of the associated translation planes that
we shall consider are generalized André planes. It is pointed out that in the cases in
question, in the following, the group acting is considered always of the type GF (qd)∗.
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7 Multiple André Replacement.

For additional background on André planes and generalized André planes, we refer
the reader to Lüneburg [7].

Let Σ be a Desarguesian plane of order qds where q is a prime power. Let Fds

denote the field isomorphic to GF (qds) coordinatizing Σ.

Definition 16. A ‘generalized André plane’ is a translation plane with spread

x = 0, y = 0, y = xqλ(m)

m; m ∈ Fds,

where λ is a function from F ∗
ds to N , the set of natural numbers.

Definition 17. Let the ‘q-André net’ Aα be defined as follows:

Aα = {y = xm; m(qds−1)/(q−1) = α}.

We define ‘André replacement’ as follows:
Choose any divisor e of d and consider the ‘André replacement net’ Aqef

α defined
as follows:

Aqef

α = {y = xqef

m; m(qds−1)/(q−1) = α, (ef, d) = e}.

Then if Σ is the associated Desarguesian with spread

Aα ∪M

then there is a constructed translation plane with spread

Aqef

α ∪M.

This translation plane is called an ‘André plane’.

Definition 18. The collineation subgroup of the associated Dessarguesian plane Σ
that is in the linear translation complement and acts like the GF (qds)-scalar group
is called the ‘GF (qds)-kernel group’.

Then the GF (qds)-kernel group acts on the André net and if we replace by André
replacement as above, this group acts on the constructed André plane.

Choose any divisor e of d and consider the André replacement net Aqef

α . Take
the subfield Fd of Fds isomorphic to GF (qd). This group F ∗

d acts on Aqef

α with orbits

of length (qd − 1)/(qe − 1) and hence there are exactly ke = (qds−1)
(q−1)

(qe−1)
(qd−1)

qe-fans.
Note that this process can be done for any divisor eβ for any André net Aβ. Hence,
we obtain a variety of qeβ -fans.

Theorem 13. Let Σ be a Desarguesian affine plane of order qds. For each of the
q − 1, André nets Aα, choose a divisor eα of d, (these divisors can possibly be equal
and/or possibly equal to 1 or d). For each q-André net Aα, there is a corresponding
set of kα qeα-fans. Form the corresponding André plane Σ(eαfα∀α∈GF (q)) obtained with
spread:

y = xqeαfα
m for m(qds−1)/(q−1) = α, x = 0, y = 0; m ∈ GF (qds), (eαfα, d) = eα.

Then the spread Σ(eαfα∀α∈GF (q)) is a union of
∑q−1

α=1(keα
= (qds−1)

(q−1)
(qeα−1)
(qd−1)

) qeα-fans,

together with two qd-fans x = 0 and y = 0.
There is a corresponding quasi-subgeometry partition of PG(2s − 1, qd) of keα

quasi-subgeometries isomorphic to PG(ds/eα − 1, qeα), and two PG(s− 1, qd) (cor-
responding to x = 0 and y = 0).
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7.1 Multiple qe-André Replacement.

Actually, a refinement of the above will produce a more general variety of partition,
however, the associated translation planes are not necessarily André planes but are
certainly generalized André planes. For example, we may partition any q-André net
of cardinality (qds − 1)/(q − 1) into (qe − 1)/(q − 1) qe-André nets of cardinality
(qds − 1)/(qe − 1). For the qe-André nets, the basic replacement components must
be the form y = xqef

m, however, we may choose the f ′s independent of each other
for the (qe − 1)/(q − 1) qe-André nets. We then may choose another divisor e1 of

d/e to produce a set of (qds−1)
(qe−1)

(qee1−1)
(qd−1)

qee1-fans from each of the (qe − 1)/(q − 1)
qe-André nets. Furthermore, the partitioning into relative sized André nets can be
continued. For example for any one of the qe-André nets, choose a divisor e1 of
d/e and partition this qe-net into a set of qee1-André nets. The point is that we
may choose each of these fans with possibly different component set configurations.
Furthermore, we can continue this partitioning and choice of component sets for the
fans.

In this way, we obtain an explosion of possible subgeometry partitions as the
number of possibilities is extremely large.

For example, we may require a qe-fan for every divisor e of d. In other to obtain
this, it suffices to require q > N , the number of divisors of d.

Theorem 14. If q− 1 ≥ the number of divisors (including d and 1) of d then there
exists a generalized André translation plane obtained from a Desarguesian plane of
order qds by multiple André replacement that produces a quasi-subgeometry partition
of PG(2s− 1, qd) such that for every divisor e of d, there exists quasi-subgeometries
of the partition isomorphic to PG(ds/e− 1, qe).

Perhaps we should illustrate the above theorem with a few examples. Note that
one of the above constructions give quasi-subgeometry partitions PG(2s− 1, qd) of
(qds−1)
(q−1)

(qeα−1)
(qd−1)

subgeometies isomorphic to PG(ds/eα−1, qeα) and two PG(s−1, qd)’s.
Perhaps the most wild situation is when s = 1.

Example 1. Let s = 1 and d = 6. Then the superspace is isomorphic to PG(1, q6)

and there are
∑q−1

α=1(keα
= (qds−1)

(q−1)
(qeα−1)
(qd−1)

) PG(ds/eα− 1, qeα)′s together with the two

PG(s − 1, qd)′s, where eα = 1, 2, 3 or 6. Note that for each α in GF (q)∗, eα may
be chosen as indicated. Hence, to obtain all types we would require that q − 1 is at
least 4. But, in any case, there is a very large number of possibilities.

7.2 Recognition of André type Partitions.

The question remains, if we are given a quasi-subgeometry partition of PG(2s−1, qd)
by quasi-subgeometries isomorphic to PG(ds/e − 1, qe) for a set of divisors e of d,
when is the associated translation plane André or generalized André? Of course,
in the translation plane, we can determine if the plane is André by consideration
of its collineation group. However, this does not mean that the partition itself is
André. Here we are intending this to mean that a quasi-subgeometry partition is
obtained via qe-fans of André type using André replacement in a Desarguesian affine
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plane. Note in all cases the translation plane associated are generalized André planes
contructed by multiple André replacement.

Definition 19. Any quasi-subgeometry partition obtained by using multiple André
replacement shall be called ‘Andre’.

So, we shall list some open questions:
(1) When is a quasi-subgeometry (respectively, subgeometry) parti-

tion André?
(2) If a quasi-subgeometry (respectively, subgeometry) partition pro-

vides a generalized André translation plane, is the partition itself André?
(3) Do non-André quasi-subgeometry (respectively, subgeometry) par-

titions exist for d > 2? Note that when d = 2, we obtain simply a mixed
partition and the q-fans become (are) K-reguli. Hence, non-André parti-
tions certainly exist if d = 2.

We have not given examples of quasi-subgeometry partitions ((respec-
tively, subgeometry) corresponding to qe-fan spreads, when GF (q2d)-acts.
However, when d = 1, there are a variety of examples. In this case the
q-fans are K-reguli and produce subgeometries.

(4) Do quasi-subgeometry partitions of PG(s − 1, q2d) exist by quasi-
subgeometries isomorphic to PG(ds/e− 1, qe) for d and s odd?.

Now we turn to our more general results involving finite generalized spreads.

8 Generalized Spreads and Replaceable Translation Sperner

Spaces.

When there is a spread, the vector space is 2ds dimensional over K isomorphic
to GF (q) and the components have qds vectors each. We consider a more general
situation where the vector space is tds-dimensional and we have a generalized spread
whose components have qds vectors each. Thus, we consider ‘t-spreads of size (ds, q)’.
Here, we also have a ‘translation space’ whose points are the vectors of V and whose
lines are the translates of the components of the t-spread.

To see a simple example of such t-spreads, take any vector space V of dimension
t over GF (qds) and let S be the t-spread of V of (qtds − 1)/(qds − 1) 1-dimensional
GF (qds)-subspaces. Forming the ‘translation Sperner space’ by taking translates of
these (qtds − 1)/(qds − 1) spread components, we obtain a Sperner space with qtds

total points and qdspoints per line.
Now assume that ds = 2, regard V as 2t-dimensional over GF (q) and take any

proper subspace W of V of dimension 2 over GF (q) which is not contained in a
component of the t-spread. Hence, whenever, W intersects a spread component, it
must intersect in a 1-dimensional GF (q)-subspace. Consider the subspread induced
on W of (q2−1)/(q−1) 1-dimensional GF (q)-subspaces. This defines a subplane of
the translation space that is Desarguesian of order q by taking the translates within
W as lines of the subplane. We note that this subplane πo cannot be considered
a subspace of the associated affine space over GF (q2). Take the set of images
of πo under the GF (q2)∗-scalar group to obtain a set of (q + 1) subplanes πi, for
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i = 0, 1, ..., q, that share the same set W + of q + 1 1-dimensional GF (q2)-spaces.
Replace W + with the set {πi; i = 0, 1, ..., q}.

Now consider the original t-spread components of 1-dimensional GF (q2)-subspa-
ces. If we consider these as 2-dimensional GF (q)-spaces then the set of (q + 1)-1-
dimensional GF (q)-subspaces within each is a 2-spread of each original compoenent.
Hence, if we take S − W + as a partial 2t-spread of V as a 2t-dimensional GF (q)-
subspace together with {πi}, we obtain a ‘new’ 2t-spread of size (1, q) upon which
GF (q2) acts. Then GF (q2)∗ has exactly one orbit of length q + 1, a q-fan and
the remaining orbits are of length 1. Our previous analysis shows that we have a
q-regulus in PG(πo ⊕ π1 − 1, q).

Thus, we see that we may fold the fan and produce a quasi-subgeometry partition
of PG(t−1, q2) by quasi-subgeometries isomorphic to PG(0, q2) and PG(1, q)’s. Such
partitions are perhaps are not all that interesting, but this gives a glimpse of what
could occur. For example, there could be t-spreads of size (s, q) that admit a group
isomorphic to GF (q2) without s necessarily equal to 2. Suppose that s is even and
let s/2 = s∗, then, in this setting, there would be a partition of PG(tds∗− 1, q2) by
either PG(s∗− 1, q2)′s where the component is fixed by GF (q2) or PG(2s∗− 1, q)’s;
that is, either q2-fans or q-fans.

In the previous setting, t = 2 produces the subgeometry partitions of PG(2s∗ −
1, q2) that correspond to spreads. Here, it still might be possible for a t-spread
of size (ds, q) to involve a union of ‘reguli’. Furthermore, we have seen that these
GF (q2)-orbits of ds-spaces are still covered by subplanes; that is, these are still
subplane covered nets that become (are) reguli. We know that if A and B are two
1-dimensional GF (q2) subspaces that lie within O(L) then

〈A, B〉GF (q2) ∩ O(L) = 〈αoA + βoB〉GF (q2) ∀αo, βo ∈ GF (q).

Hence, each such orbit induces a ‘subgeometry’ in PG(tds∗ − 1, q2) isomorphic to
PG(2s∗ − 1, q).

If ds is odd, however, then it still might be possible for GF (q2)∗ to act on the t-
spread, but there could be no fixed components. This could occur if (qtds−1)/(qds−1)
is divisible by (q + 1).

Theorem 15. (1) Let S be a t-spread of V of size (ds, q).

(a) If s is even, let s/2 = s∗. Assume that GF (q2) ‘acts’ on S then there
is a subgeometry partition of PG(tds∗ − 1, q2) consisting of PG(s∗ − 1, q2)’s and
PG(2s∗ − 1, q)’s. If (q + 1) divides (qtds − 1)/(qds − 1), it is possible that there are
no PG(s∗ − 1, qs)’s.

(b) If ds is odd, but t is even, let t∗ = t/2 and assume that GF (q2) acts on S
then there is a subgeometry partition of PG(t∗ds−1, q2) by subgeometries isomorphic
to PG(s− 1, q)’s.

(2) Conversely,

(a) any subgeometry partition of PG(tds∗ − 1, q2) by PG(s∗ − 1, q2)’s and
PG(2s∗ − 1, q)’s produces a t-spread of size (ds, q) that is a union of q2-fans and
q-fans and

(b) any subgeometry partition of PG(t∗ds− 1, q2) by PG(s− 1, q)’s produce
a t-spread of size (ds, q) that is a union of q-fans.
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In either case (a) or (b), the t-spread corresponds to a translation Sperner space
admitting GF (q2)∗ as a collineation group.

(3) The t-spread is a union of components fixed by GF (q2)∗and a set of GF (q)-
reguli each in a projective space isomorphic to PG(2s−1, q) = PG(4s∗−1, q). Note
that these projective spaces need not be the same for different GF (q)-reguli.

Problem 1. If we have a t-spread of size (ds, q) where ds is odd, and GF (q2) acts on
the t-spread then is it possible that there is a collineation group that acts transitively
(2-transitively on the d-spread components)? If t = 2 then a 2-spread is a spread
and there would be a corresponding flag-transitive translation plane.

Remark 9. If we have a t-spread Z of size (ds, q), then we ask when GF (qw)
could act on Z. Certainly the associated vector space V of dimension tds over K
isomorphic to GF (q) is then a GF (qw)-vector space so that w must divide tds. When
t = 2, we isolated on fields GF (qd) or GF (q2d), where 2d does not divide ds. In the
t-spread case, we could analogously consider GF (qd) and GF (t∗d) where t∗d does
not divide ds, and t∗ divides t.

Theorem 16. (1) Let S be a t-spread of V of size (ds, q), and assume that w = d
or t∗d where t∗d does not divide ds, and t∗ divides t.

Assume that GF (qw) ‘acts’ on S then there is a quasi-subgeometry partition of
PG(tds/w − 1, qw) consisting of PG(ds/ei − 1, qei)’s where ei divides w for i ∈ Λ.

(2) Conversely, any quasi-subgeometry partition of PG(tds/w − 1, qw) by PG
(ds/ei − 1, qei)’s for i ∈ Λ, and ei a divisor of w, produces a t-spread of size (ds, q)
that is a union of qei-fans. The t-spread corresponds to a translation Sperner space
admitting GF (qw)∗ as a collineation group.

Clearly, we have barely scratched the surface of the many open questions and
problems that the previous results generate. We shall be content here to list essen-
tially one involving ‘subgeometry’ partitions.

Problem 2. For any t-spread of type (s, q) :
(a) If s is even, determine an infinite class of subgeometry partitions of

PG(ts/2− 1, q2) by PG(s/2− 1, q2)’s and PG(s− 1, q)’s.
(b) If t is even, determine an infinite class of subgeometry partitions of

PG(ts/2− 1, q2) by PG(s− 1, q)’s.

Example 2. For example, for subgeometry partitions of PG(5, q2), we consider an
associated vector space V of dimension 12 = ts over GF (q), producing an t-spread
where t = 1, 2, 3, 4, 6 or 12. We assume that such an t-spread admits GF (q2).

(i) If t = 1 then s = 12 then we have one component admitting GF (q2), so
this is a trivial partition and we obtain exactly one PG(5, q2).

(ii) If t = 2 and s = 6, the projective space could be partitioned by PG(5, q)′s
and PG(2, q2)′s. In this case, a PG(5, q) arises from a vector space of q6 vectors
which defines a q-fan and a PG(2, q2) produces a vector space of q4 vectors which is
fixed by GF (q2). The q-fans define reguli in PG(11, q) = PG(2s− 1, q).

(iii) If t = 3 and s = 4 then the partition subgeometries are PG(1, q2) and
PG(3, q)’s. A PG(1, q2) produces a vector space of q4 vectors fixed by GF (q2)∗ and a
PG(3, q) arises from a vector space of q4-vectors which defines a q-fan. The q-fans
define reguli in various PG(7, q)’s=PG(2s− 1, q)’s.
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(iv) If t = 4 and s = 3 the we have a partition by PG(2, q)’s arising from
q-fan’s that define reguli in various PG(5, q)’s =PG(2s− 1, q)’s.

(v) If t = 6 and s = 2, PG(5, q2) could be partitioned by PG(0, q2)’s and
PG(1, q)’s arising from q-fans that define reguli in various PG(3, q)’s= PG(2s −
1, q)’s and a PG(0, q2) produces a vector space of q2 vectors fixed by GF (q2)∗.

(vi) If t = 12 and s = 1, PG(5, q2) could be partitions by PG(0, q)’s arising
from q-fans that define (trivially) reguli in various PG(1, q)’s.

9 Congruence Generating Partitions.

In our main result regarding the unfolding of a projective fan, at one point, to obtain
a spread, we have assumed that the quasi-subgeometries are ‘congruence generating’.
Suppose that there are not. Then, we still obtain a partition of the vector space
V = Wo ⊕Wo by subvector spaces K-isomorphic to Wo. This would not necessarily
be a spread since the dimension of Wo over K is not necesssarily finite. However, if
we have the congruence generating property we obtain a spread. On the other hand,
we would obtain a generalized spread. If we more generally study coverings of vectors
spaces V = Wo⊕Wo by mutually disjoint vector subspaces isomorphic to Wo, we still
could discuss ‘fans’ –say, ‘pseudo-fans’ to distinguish between the finite and infinite
dimensional situations, and these would produce quasi-subgeometry partitions. We
shall call such a partition of a vector space a ‘pseudo-spread’. Conversely, without
any further assumptions, quasi-subgeometry partitions of projective spaces produce
pseudo fans. We formally list this observation.

Theorem 17. Pseudo-spreads that are unions of pseudo-fans are equivalent to quasi-
subgeometry partitions by projective spaces PG(Wo − 1, T ) arising from subfields T
of the field F of the ambient projective space isomorphic to PG(Wo ⊕Wo − 1, F ).

Of course, there is not a distinction between finite-dimensional pseudo-spreads
and spreads. Hence, such differences necessarily lie with infinite-dimensional pro-
jective spaces.

10 Final Remarks.

We have seen that generalized spreads with fields D acting on them are equiva-
lent to quasi-subgeometry partitions of projective spaces. There are subgeometry
partitions corresponding to the action of quadratic extension fields of a base field.
Furthermore, there are spreads that produce and correspond to both subgeometry
and quasi-subgeometry partitions. We have provided examples of finite general-
ized André planes that produce new quasi-subgeometry and subgeometry parti-
tions. Flag-transitive finite translation planes can produce subgeometry partitions
but could conceivably also produce different subgeometry partitions. We have raised
a variety of questions and problems involving the construction of both subgeometry
and quasi-subgeometry partitions from t-spreads.

In the infinite case, since we have a much more varied class of fields to work with,
conceivably there will be more and varied examples of infinite fans and infinite
quasi-subgeometry partitions. In particular, we may construct the analogues of
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André and generalized André planes using multiple André replacement from Pappian
planes Σ defined over certain algebraic extension fields, analogous to finite extension
fields of K isomorphic to GF (q). Again, there are many areas of investigation
related to quasi-subgeometry partitons that have not been previously considered.
Clearly, there is a tremendous number of quasi-subgeometry partitions, so there are
a variety of open questions and problems dealing with infinite partitions. Although
the development of spreads partitioned by fans is of general interest in the infinite
case, for space reasons we do not continue this theory here. Similarly, we do not
here pursue the analysis and construction of t-spreads admitting fields D.

Instead and finally, we return to our main unswered questions involving spreads
and pseudo-spreads associated with quasi-subgeometry partions and generalized
spreads but we now do not restrict ourselves to finite fields.

Let K and D, K ⊆ D be fields and V a K-vector space K-isomorphic to Wo.

Problem 3. Are there partitions of PG(V − 1, D) by quasi-subgeometries
isomorphic to PG(L − 1, DL), for all intermediate subfields DL between
K and a specified field D, where L is a K-subspace of V , for a set of
such subspaces.

We have solved the next problem in the finite case, but we state this more
generally for arbitrary fields.

Problem 4. For V = Wo⊕Wo, and Wo a K-space, and when it makes sense
to discuss André partitions, are there André partitions of PG(V−1, D) by
quasi-subgeometries isomorphic to PG(Wo − 1, DL), for all intermediate
subfields DL between K and a specified field D?

Problem 5. For V = Wo ⊕Wo and when it makes sense to discuss André
partitions, are there NON-André partitions of PG(V − 1, D) by quasi-
subgeometries isomorphic to PG(Wo − 1, DL), for all intermediate sub-
fields DL between K and a specified field D?

Problem 6. Do proper pseudo-spreads exist? Is there a proper pseudo-
spread that is the union of pseudo-fans?

Problem 7. For V =
∑n

i=1 Wi and Wi isomorphic to Wo, a subspace over K,
determine subgeometry partitions of PG(V −1, D) where D is a quadratic
field extension of K.
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