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Abstract

In this paper we prove the existence, uniqueness and asymptotic behaviour
of global regular solutions of the mixed problem for the Kirchhoff nonlinear
model given by the hyperbolic-parabolic equation

(ρ1ut)t + ρ2ut −M
(

t,

∫ β(t)

α(t)
|ux|2dx

)

uxx = f in Q̂,

where Q̂ =
{

(x, t) ∈ R
2
∣

∣ α(t) < x < β(t), 0 < t < ∞
}

is a noncylindrical
domain of R

2 and β(·), α(·) are positive functions such that

lim
t→∞

(β(t)− α(t)) = +∞.

The real function M(·, ·) is such that M(t, λ) ≥ m0 > 0 ∀(t, λ) ∈ [0,∞[×[0,∞[,
while ρ1(·), ρ2(·) are given functions which satisfy some appropriate condi-
tions.
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1 Introduction

In this paper, we study existence, uniqueness and asymptotic behaviour of global
regular solutions for the mixed problem of the Kirchhoff nonlinear model for the
hyperbolic-parabolic equation

(ρ1ut)t + ρ2ut −M

(

t,

∫ β(t)

α(t)
|ux|2dx

)

uxx = f (1.1)

in the noncylindrical domain Q̂ of R
2 defined by

Q̂ =
{

(x, t) ∈ R
2
∣

∣

∣ α(t) < x < β(t), 0 < t < ∞
}

,

where α(·) et β(·) are two functions such that

lim
t→∞

(β(t)− α(t)) = +∞.

The lateral boundary Σ̂ of Q̂ is given by

Σ̂ =
⋃

0<t<∞

(α(t)× {t}) ∪ (β(t)× {t}).

Moreover the solution must satisfy the boundary and initial conditions

u(t, α(t)) = u(t, β(t)) = 0 (0 < t < ∞), (1.2)

u|t=0 = u0, ut|t=0 = u1 in ]α(0), β(0)[. (1.3)

In the equation (1.1), we assume that the functions ρ1, ρ2 and M(·, ·) satisfy the
following conditions















M ∈ C1([0,∞[×[0,∞[),

M(t, λ) ≥ m0 > 0 ∀(t, λ) ∈ [0,∞[×[0,∞[,

Mt(t, λ) ≤ 0 ∀(t, λ) ∈ [0,∞[×[0,∞[,

(1.4)















ρ1 ∈ W 2,∞(0,∞), ρ2 ∈ W 1,∞(0,∞),

ρ1(t) ≥ 0, ∀t ∈ [0,∞[, ρ1(0) > 0,

ρ2(t)− 1
2
|ρ′1(t)| ≥ δ0 > 0 ∀t ∈ [0,∞[,

(1.5)

where δ0 and m0 are given positive numbers.

Since ρ1(t) ≥ 0, the equation degenerates into a parabolic case on the subset of
[0,∞[ where ρ1(t) = 0. Therefore, the equation (1.1) is an equation of hyperbolic-
parabolic type.

The linear and nonlinear equations of hyperbolic-parabolic type has been studied
by several authors see for example Lar’kin [12], Bensoussan-Lions- Papanicolau [3]
and Ferreira-Lar’kin [9].

In [4], Bisognin proved the existence of local solution of (1.1) in a bounded or
unbounded domain of R

n.
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When ρ1 = 1 and ρ2 = 0, there is a large number of papers connected with the
Kirchhoff-Carrier operator

Lu = ∂2
t u−

(

1 + M
(

∫

Ω
|∇u|2)dx

)

)

∆u.

The existence of global solutions to problem (1.1) for analytic initial data,
was firstly investigated by Pohozaev [18] and Arosio-Spagnolo [1]. More recently,
Cavalcanti-Domingos Cavalcanti-Soriano [6] proved the existence of global solutions
for regular solutions in the usual Sobolev’s space without any smallness on the ini-
tial data. But until now the existence of a weak global solution, for arbitrary initial
data taken in the usual Sobolev’s spaces, has not been proved.

For Ω = {x ∈ R| x > 0} we have the work of Dickey [7] and his result was
generalized to Ω = R

n by Menzala [15] and Menzala-Pereira [16].
In order to obtain a global solution for Lu = f several authors, see for example

Nishihara [18], have considered damping terms as −∆ut or ∆2u, which give strong
estimates resulting in the convergences of the nonlinear term showing in this way
the global existence result, no matter how large the derivative of M is. Another
class of dissipative mechanism was considered by Ikehata and Okazawa [10], where
the author of this paper studied the equation of a stretched string with ”frictional”
damping

utt −
(

1 + M

(
∫

Ω
|∇u(x, t)|2dx

)

)

∆u + µut = 0

and showed the existence of global strong solutions, provided µ (a parameter de-
pending on the initial data) is large enough. The behaviour, as t →∞, of solutions
to problem (1.1) in a cylinder with some modifications was studied by Nishihara
[17], among other.

About local solutions of related problems with model on the operator Lu, we
can mention, among others, the works of Matos [14] and Ebihara-Medeiros-Miranda
[8]. A great numbers of works deal with weak or regular solutions in nondegen-
erate case associated the equation (1.1). The degeneracy of nonlinear hyperbolic
equations brings essential difficulties in the case of noncylindrical domains, because
the geometry of the domain influences directly in the corresponding problem (see
Lar’kin [13]) when a domain is characteristic.

The global existence, uniqueness and asymptotic behavior of regular solutions to
problem (1.1)-(1.3) was studied by Benabidallah-Ferreira [2] in the case where the
length L(t) = β(t) − α(t) of the interval ]α(t), β(t)[ is finite. The purpose of the
present paper is to improve considerably the previous results in connection with the
Kirchhoff equation in moving domains, namely, to solve globally the initial value
problem (1.1)-(1.3) and to study the asymptotic behaviour in the case lim

t→∞
L(t) =

∞. According to our best knowledge, this is the first result in the prior literature
concerning equation (1.1).

The method used to prove the existence, uniqueness and decay energy result
consists of transforming this problem into another initial boundary-value problem
in a cylindrical domain whose sections are not time-dependent. This is done by
means of suitable change of variable. Next, this new initial value problem is treated
using Galerkin’s approximation. We conclude returning to Q̂ using the inverse of
the change of variable.
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At first we will study our problem in a cylinder Q =]0, 1[×]0,∞[. We observe
that the domains Q and Q̂ are related by the diffeomorphism τ : Q̂ −→ Q defined
by

τ(x, t) = (y, t) =
(

x− α

L
, t

)

for (x, t) ∈ Q̂, (1.6)

where
L = L(t) = β(t)− α(t)

and τ−1 : Q −→ Q̂ is defined by

τ−1(y, t) = (x, t) = (α + yL, t).

If we put
v(y, t) = u ◦ τ−1(y, t) = u(α + yL, t) (1.7)

and we suppose that the functions α(·) and β(·) belong to W 2,∞([0,∞[) then the
equation (1.1) and the conditions (1.2)-(1.3) become, if we denote by Dk (k ∈ N)

the differential operator ∂k

∂zk (z is a generic one spatial dimensional variable),

(ρ1vt)t+ρ2vt − L−2M̃

(

t, L−1
∫ 1

0
|Dv|2dy

)

)

D2v −D(aDv)+ (1.8)

+ a1Dvt + a2Dv = g in Q,

v(t, 0) = v(t, 1) = 0 on ]0,∞[, (1.9)

v|t=0 = v0, v|t=0 = v1 in ]0, 1[, (1.10)

where


















a(y, t) = m0

2L2 − ρ1

(

α′+L′y
L

)2
, a1(y, t) = −2ρ1

(

α′+L′y
L

)

,

a2(y, t) = −
(

ρ1
α′′+L′′y

L
+ (ρ′1 + ρ2)

α′+L′y
L

)

,

M̃(t, λ) = M(t, λ)− m0

2
.

(1.11)

We assume that the functions α and β satisfy the conditions














α, β ∈ W
3,∞
loc ([0,∞[),

α′(t) < 0, β ′(t) > 0 ∀t ∈ [0,∞[,

ρ1(t)(α
′(t) + L′(t)y)2 < m0

2
∀(t, y) ∈ [0,∞[×[0, 1].

(1.12)

Note that the assumptions α′(t) < 0 and β ′(t) > 0 mean that Q̂ is increasing in
the sense that if t1 > t2 then the projection of [α(t1), β(t1)] on the subspace t = 0
contains the projection of [α(t2), β(t2)] on the same subspace.

We observe that the second condition of (1.4) and the last one of (1.12) imply
that

a(t, y) > 0 ∀(t, y) ∈ Q, (1.13)

M̃(t, σ) ≥ m0

2
∀(t, σ) ∈ [0,∞[×[0,∞[. (1.14)

Moreover, since α(t) < β(t) for all t ∈ [0, T ], the second condition of (1.12)
implies that

Da1 = −ρ1
L′

L
< 0. (1.15)
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2 Existence and Uniqueness of Local Solution

Let us denote by A the operator

A = −D2, D(A) = H1
0(0, 1) ∩H2(0, 1).

It is well known that A is a positive self adjoint operator in the Hilbert space
L2(0, 1) for which there exist sequences {wn}n∈N and {λn}n∈N of eigenfunctions and
eigenvalues of A such that {wn}n∈N is dense in D(A) and λ1 < λ2 ≤ . . . λn →∞ as
n →∞. Let us denote by

v0,m =
m

∑

i=1

(v0, wi)wi, v1,m =
m

∑

i=1

(v1, wi)wi,

if (v0, v1) ∈ D(A)×H1
0 (0, 1). So, we have v0,m → v0 strongly in D(A) and v1,m → v1

strongly in H1
0 (0, 1).

Finally by Vm we will denote the space generated by w1, . . . , wm. The standard
results on ordinary differential equations imply the existence of a local solution v(mε)

of the form

vmε(t) =
m

∑

i=1

gi,mε(t)wi,

for
((

ρ1εv
′
mε

)′
, wj

)

+ ρ2(v
′
mε, wj) + 1

L2 M̃
(

t, 1
L
‖Dvmε‖2

L2

)

× (2.1)

× (Dvmε, Dwj) + (aDvmε, Dwj) + (a1Dv′mε, wj)+

+ (a2Dvmε, wj) = (g, wj) (j = 1, . . . , m),

vmε(x, 0) = v0,mε, v′mε(x, 0) = v1,mε (2.2)

where ρ1ε = ρ1 + ε (0 < ε ≤ 1) and (·, ·) denote the scalar product in L2(0, 1), while
v′m denote, for simplicity, the partial derivative with respect t. In our following
calculations we will omit the index ε.

To obtain the corresponding estimates we will define the following energy func-
tion associated to equation (1.8)

E(t, v) = ρ1(t)‖v′(t)‖2
H1 + ‖Dv‖2

H1 .

We will denote by
Em(t) = E(t, vm).

In order to show the estimates result, we will prove some inequalities that the
above energy function satisfies.

In fact, first we multiply equation (2.1) by g′im(t). Next we replace wj by
−λ−1

j D2wj in (2.1) and multiply it by g′jm(t). Now if we sum up with respect
to j (j = 1, . . . , m), we obtain, after some calculations and taking into account the
conditions (1.4)-(1.5), (1.12)-(1.13) and (1.15), the estimate

Em(t) +
∫ t

0
‖v′m‖

2
H1ds ≤ Const ∀t ∈ [0, T ∗] (2.3)

(For the details see [2]).
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Moreover, if we multiply the j-th equation of (2.1) by ρ1g
′′
jm(t) + ρ′1g

′
jm(t) and

we sum with respect to j, we easily obtain, by using (2.3), the estimate

∫ t

0
‖(ρ1v

′
m)′‖2

L2ds ≤ c8 ∀t ∈ [0, T ∗]. (2.4)

Since the estimates (2.3)-(2.4) are established, then we can pass to the limit in
(2.1). The argument for the linear terms is classical, we only have to justify the
limit in the non linear term.

Indeed, from the estimates (2.3)-(2.4), it follows that Dvm is bounded in C0(0, T ∗,

L2(0, 1)). Moreover, since
∣

∣

∣‖Dvm(t)‖2
L2 − ‖Dvm(τ)‖2

L2

∣

∣

∣ ≤
≤ 2|t− τ | 12 ‖Dvm‖C0(0,T ∗;L2(0,1))‖Dv′m(t)‖L2(0,T ∗;L2),

we deduce from the Ascoli-Arzelá theorem and from (2.3) that we can extract a sub-

sequence {vν} such that
{

‖Dvν(·)‖2
L2

}

converges uniformly in [0, T ∗] to ‖Dv(·)‖2
L2 .

Since the function M̃(·, ·) belongs to the class C1([0, T ∗] × [0,∞[) and Dvν is
bounded in L∞(0, T ∗, H1(0, 1)) (maybe passing to the new subsequence), we have
for ν > j

M̃(t,
1

L
‖Dvν(t)‖2

L2)(D
2vν, wj) −→ M̃(t,

1

L
‖Dv(t)‖2

L2)(D
2v, wj). (2.5)

Now if we replace in (2.1) m by ν and we pass to the limit when ν → ∞, we
obtain, taking (2.5) into account and the usual classical arguments for the limit in
the linear terms,

((ρ1εvε)
′)′, wj) + ρ2(v

′
ε, wj) + 1

L2 M̃(t, 1
L
‖Dvε‖2

L2)(Dvε, Dwj)+ (2.6)

+ (aDvε, Dwj) + (a1Dv′ε, wj)

+ (a2Dvε, wj) = (g, wj) in L2(0, T ∗).

We observe that the estimates (2.3)-(2.4) obtained above are also independent of
ε. Therefore, by the same arguments we can pass to the limit in (2.6) when ε → 0.
Thus, we obtain a function v satisfying equation (1.8) in the sense L2(0, T ∗; L2(0, 1)).

Consequently, we have the following result.

THEOREM 2.1. Let

v0 ∈ H2
0 (0, 1), v1 ∈ H1

0 (0, 1), g ∈ L2(0, T ; H1
0(0, 1)).

If the assumptions (1.4)-(1.5) and (1.12) hold, then there exists T ∗ > 0 such that

the initial boundary value problem (1.8)-(1.10) admits in [0, T ∗] a unique solution v

in the class






v ∈ L∞(0, T ∗; H1
0(0, 1) ∩H2(0, 1)), vt ∈ L2(0, T ∗; H1(0, 1)),

√
ρ1vt ∈ L∞(0, T ∗; H1(0, 1)), (ρ1vt)t ∈ L2(0, T ∗; L2(0, 1))

(2.7)

and v satisfies the equation (1.8) in the sense of L2(0, T ∗; L2(0, 1)).
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REMARK 2.1. The interval [0, T ∗] mentioned in the theorem 2.1 depends on
v0, v1. But the argument which we have used above allows us to determine T ∗ as
a function of the positive number R such that the solution remains in [0, T ∗] for all
initial data v0, v1 satisfying

‖v1‖H1 + ‖v0‖H2 ≤ R.

About the uniqueness of solution it’s easy to show by a classical argument that
the solution is unique.

Now let v the solution obtained from theorem 2.1, then it is easy to see that

u = v ◦ τ

(see (1.6) for τ) belongs to the class







u ∈ L∞(0, T ∗; H1
0(It) ∩H2(It)), ∂tu ∈ L2(0, T ∗; H1(It)),√

ρ1ut ∈ L∞(0, T ∗; H1(It)), (ρ1ut)t ∈ L2(0, T ∗; L2(It)).
(2.8)

and from (1.8) it follows u = v ◦ τ satisfies the equation (1.1) in the sense L2(0, T ∗;
L2(It)). Let u1, u2 be two solutions to (1.1), and v1, v2 be the functions obtained
through the diffeomorphism τ given by (1.6). Then v1, v2 are the solutions to (1.8).
By the uniqueness result of theorem 2.1, we have v1 = v2, so u1 = u2, so that we
have the following result.

THEOREM 2.2. Let It, I0 the intervals ]α(t), β(t)[ and ]α(0), β(0)[ respectively.

If we have

u0 ∈ H2
0 (I0), u1 ∈ H1

0 (I0), f ∈ L2(0, T ; H1
0(It))

and the assumptions (1.4)-(1.5) and (1.12) hold, then there exists T ∗ > 0 such that

the equation (1.1) with the conditions (1.2)-(1.3) admits in [0, T ∗] a unique solution

u which belongs to the class in (2.8) and satisfies the equation (1.1) in the sense of

L2(0, T ∗; L2(It)).

3 Global Solution

In what follows, besides hypotheses (1.4)-(1.5) and (1.12), we assume also that the
following conditions are satisfied

∣

∣

∣M̃(t, λ)
∣

∣

∣ ≤ S0,
∣

∣

∣M̃λ(t, λ)
∣

∣

∣ ≤ S1 ∀(t, λ) ∈ [0,∞[×[0, Λ], (3.1)

where S0 and S1 are a positive constants independent of t and Λ is given in (3.3),

|α(i)(t)| ≤ ε0, |β(i)(t)| ≤ ε0 ∀t > 0 (i = 1, 2, 3), (3.2)

where ε0 is a suitable positive number which will be determined latter (see 3.22)
(ϕ(k) denotes the the k-th derivative of the generic real function ϕ(k), the first and
the second derivative are denoted by ϕ′ and ϕ′′).
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We assume also that
‖Dv‖L∞(0,∞;L2) ≤ Λ (3.3)

where Λ is given positive number.
Finally we assume that

ρ′2(t) ≤ −δ1, ∀t ∈ [0,∞[ (δ1 > 0), (3.4)

where δ1 is a positive constant.
In what follows ci (i = 1, . . . , 14) denote some positive constants which depend

only on m0, δ0, δ1, Λ, S0, S1, L0 = L(0) and on norms of ρ1 in W 2,∞(0,∞) and ρ2

in W 1,∞(0,∞).

A PRIORI ESTIMATES. We consider the scalar product in L2(0, 1) of the equation
(1.8) with vt. We obtain the following equality

1

2

d

dt
L1(t) + (ρ2 − 1

2
ρ′1)‖vt‖2

L2 + L′

2L3 M̃(t, 1
L
‖Dv‖2

L2)‖Dv‖2
L2−

− 1
2L

∫ 1
L
‖Dv‖2

L2

0
M̃t(t, λ)dλ+

+ L′

2L2 M̂
(

t, 1
L
‖Dv‖2

L2

)

− 1
2

∫ 1

0
(Da1)|vt|2dy =

3
∑

i=1

Ii (3.5)

where

L1(t) = ρ1‖vt‖2
L2 +

∫ 1

0
a|Dv|2dy + 1

L
M̂

(

t, 1
L
‖Dv‖2

L2

)

, (3.6)

M̂(t, λ) =
∫ λ

0
M(t, σ)dσ

and

I1 = −
∫ 1

0
a2(Dv)vtdy, I2 = −1

2

∫ 1

0
at|Dv|2, I3 =

∫ 1

0
gvtdy.

If we recall the expressions of coefficient a and a2 (see (1.11)), we have, taking
into account the hypothesis (3.2) (see also (1.5))

∣

∣

∣

3
∑

i=1

Ii

∣

∣

∣ ≤ δ0
2
‖vt‖2

L2 + c1
ε0

L2 ‖D2v‖2
L2 + 1

δ0
‖g‖2

L2,

where we have used also the obvious inequality ‖Dv‖L2 ≤ ‖D2v‖L2.
If we joint this estimate with (3.5) and taking into account (1.4), (1.15) and

respectively the last and the second condition of (1.5) and (1.12), we obtain

1

2

d

dt
L1(t) + δ0

2
‖vt‖2

L2 ≤ c1
ε0

L2 ‖D2v‖2
L2 + 1

δ0
‖g‖2

L2 . (3.7)

In other words, the scalar product in L2(0, 1) of the equation (1.8) with −D2vt,
gives the equality

1
2

d
dt
L2(t) + (ρ2 − 1

2
ρ′1)‖Dvt‖2

L2 + β′

2L
|Dvt(t, 1)|2 − α′

2L
|Dvt(t, 0)|2−

− 1
2L2 ‖D2v‖2

L2M̃t

(

t, 1
L
‖Dv‖2

L2

)

+

+ L′

L3 M̃(t, 1
L
‖Dv‖2

L2)‖D2v‖2
L2 =

7
∑

i=1

Ii (3.8)
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where

L2(t) =ρ1‖Dvt‖2
L2 + 1

L2 M̃
(

t, 1
L
‖Dv‖2

L2

)

‖D2v‖2
L2+

+ 2
∫ 1

0
(Da + a1 + a2)(Dv)(D2v)dy +

∫ 1

0
a|D2v|2dy (3.9)

and

I1 = 1
2L3 M̃λ(t,

1
L
‖Dv‖2

L2)‖D2v‖2
L2

d
dt
‖Dv‖2

L2 ,

I2 =− L′

2L4 M̃λ(t,
1
L
‖Dv‖2

L2)‖D2v‖2
L2‖Dv‖2

L2,

I3 =
∫ 1

0
(a2t + Dat)(Dv)(D2v)dy,

I4 =−
∫ 1

0
(a2 + Da)(Dvt)(D

2v)dy,

I5 =
1

2

∫ 1

0
at(D

2v)2dy, I6 =
∫ 1

0
(Dg)(Dv′)dy,

I7 =−
∫ 1

0
(Da1)|Dvt|2dy

(here M̃λ(t, λ0) denotes the partial derivative with respect λ calculated at the point
λ0).

By virtue of the hypotheses (3.1) and (3.3), we have

|I1 + I2| ≤ S1Λ
2L0

1
L2‖Dvt‖L2‖D2v‖2

L2 + ε0S1

L2
0

1
L2 ‖Dv‖2

L2‖D2v‖2
L2 ,

where L0 = L(0) = β(0)− α(0) > 0.
Moreover, by using (3.2) (see also (1.11)), it follows

∣

∣

∣

6
∑

i=3

Ii

∣

∣

∣ ≤ c2ε0
1

L2 ‖D2v‖2
L2 + δ0

2
‖Dvt‖2

L2 + 1
δ0
‖Dg‖2

L2 .

Finally, we have by using (3.3) and (1.15)

|I7| ≤ c3ε0‖Dvt‖2
L2 .

If we add the above estimates with (3.8), we get the inequality

1

2

d

dt
L2(t) + ( δ0

2
− c3ε0)‖Dvt‖2

L2 ≤ c2
ε0

L2 ‖D2v‖2
L2+ (3.10)

c4
1

L2 ‖Dvt‖L2‖D2v‖2
L2 + c5

1
L2‖Dv‖2

L2‖D2v‖2
L2 + 1

δ0
‖Dg‖2

L2.

Now we consider the scalar product in L2(0, 1) of the equation (1.8) with −D2v.
we get

1

2

d

dt
L3(t)+

1
L2 M̃

(

t, 1
L
‖Dv‖2

L2

)

‖D2v‖2
L2 − 1

2
ρ′2‖Dv‖2

L2+ (3.11)

+
∫ 1

0
a|D2v|2dy =

5
∑

i=1

Ii
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where

L3(t) = 2
∫ 1

0
ρ1(Dvt)(Dv)dy + ρ2‖Dv‖2

L2 (3.12)

and

I1 = ρ1‖Dvt‖2
L2 , I2 =

∫ 1

0
a2(Dv)(D2v)dy,

I3 = −
∫ 1

0
(Da)(Dv)(D2v)dy, I4 = −

∫ 1

0
Dg(Dv)dy,

I5 =
∫ 1

0
a1(Dvt)(D

2v)dy.

It’s easy to see from the hypotheses (3.2)-(3.3), and the expressions (1.11) of the
functions a1 and a2 that

|I2 + I3 + I4| ≤ m0

8L2‖D2v‖2
L2 + c6ε0‖Dv‖2

L2 + Λ‖Dg‖L2,

|I5| ≤ m0

8L2 ‖D2v‖2
L2 + c7ε0‖Dvt‖2

L2 .

These estimates, together with (3.11) give, taking account into (3.4),

d
dt
L3(t) + ( δ1

2
−c6ε0)‖Dv‖2

L2 + m0

4L2 ‖D2v‖2
L2 ≤ (3.13)

≤ (c7ε0 + ‖ρ1‖L∞)‖Dvt‖2
L2 + Λ‖Dg‖L2.

Now we can enunciate and prove our main result about the global existence and
uniqueness solution.

We have the

THEOREM 3.2. Let (u0, u1) ∈ H2
0 (I0) × H1

0 (I0), f ∈ L2(0,∞; H1
0(It)) ∩

L1(0,∞; H1
0(It)). We assume that conditions (3.1)-(3.3) are satisfied and the norms

∫∞
0 ‖f‖2

H1(It)
dt,

∫∞
0 ‖f‖H1(It)

dt, ‖u0‖H2(I0) and ‖u1‖H1(I0) are small enough. Then

the equation (1.1) admits one and only one solution u in the class















u ∈ L∞(0,∞; H2(It) ∩H1
0 (It)), u ∈ L2(0,∞; H2(It)),√

ρ1ut ∈ L∞(0,∞; H1(It)), ut ∈ L2(0,∞; H1(It)),

(ρ1ut)t ∈ L2(0,∞; L2(It)).

(3.14)

and satisfies the equation (1.1) in the sense of L2(0,∞; L2(It)).

Proof. Theorem 3.2 will follow from theorem 2.1 (see also remark 2.1), if we obtain
an a priori estimate which shows that the norm

ρ1‖vt‖2
H1 + ‖Dv(t)‖2

L2 + 1
L2 ‖D2v(t)‖2

L2

is uniformly bounded for all t ∈ [0,∞[. In fact, if this norm is bounded for all t by
the same constant, then the theorem 2.1 implies that the solution v can be continued
to the interval [t, t + T ′[ and repeating this argument, we can extend v to the whole
interval [0,∞[.
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To this end, we introduce the functions L(t), E(t) and D(t); by putting

L(t) = L1(t) + κL2(t) + L3(t), (3.15)

E(t) = ρ1‖vt‖2
H1 + ‖Dv(t)‖2

L2 + 1
L2 ‖D2v(t)‖2

L2, (3.16)

D(t) = ‖vt‖2
H1 + ‖Dv(t)‖2

L2 + 1
L2‖D2v(t)‖2

L2 (3.17)

(see (3.6) (3.9) and (3.12)) for the expressions of Li(t) (i = 1, 2, 3)), where κ is a
constant which will be determined in the following. In fact we want choose k and
ε0 such that

cE(t) ≤ L(t) ≤ cE(t) (3.18)

L(t) + k1

∫ t

0
D(s)ds ≤ L0 + k2

∫ t

0
D(s)(L(s) + L 1

2 (s))ds (3.19)

where

L0 = L(0) + k3

∫ ∞

0
(‖g‖2

H1 + ‖g‖H1)dt, (3.20)

while ki (i = 1, 2, 3) and c are positives constants depending only on m0, δ0, δ1, Λ
and ε0.

We determine the constants κ and the positive number ε0 in the inequality (3.7),
(3.10) and (3.13) by the following relations:

κ = 1 + max
(

c10,
2‖ρ1‖L∞

δ0

)

, (3.21)

ε0 = min
(

1,
δ1

2c6
,

δ0

2(κc3 + c7)
,

m0

4(κc2 + c1)
,

1

2κc9
,
m0

c8

)

. (3.22)

We remark that it is easy to see from (3.2) (see also (1.12) and the last condition
of (1.5)which implies that ρ2 ≥ δ0), that we have

∣

∣

∣

∣

2
∫ 1

0
(Da + a1 + a2)(Dv)(D2v)dy

∣

∣

∣

∣

≤ c8
ε0

L2
‖D2v‖2

L2 + c9ρ2ε0‖Dv‖2
L2 , (3.23)

∣

∣

∣

∣

2
∫ 1

0
ρ1(Dvt)(Dv)dy

∣

∣

∣

∣

≤ 1

2
ρ2‖Dv‖2

L2 + c10ρ1‖Dvt‖2
L2 . (3.24)

If we recall the definition of L(·) (see (3.15) and also (3.6), (3.9), (3.12)), it is
easy to see that the inequalities (3.23)-(3.24) imply (3.18) with a constant c .

In other words, for (3.19), we recall the inequalities (3.7), (3.10) and (3.13). Now
if we sum inequalities (3.7), (3.10) multiplied by κ given in (3.21) and (3.13) and we
substitute in these inequalities the expression (3.22) of ε0, we obtain immediately
(3.19)-(3.20) with the constants ki (i = 1, 2, 3).

Suppose now that

L(0) + k3

∫ ∞

0
(‖g‖2

H1dt + ‖g‖H1)dt+ < σ0, (3.25)

where

σ0 = min
(

k1

k2
+

1

2

(

1−
√

1 + k1k
−1
2

)

, cΛ
)

.
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Then, since we have
k2(r +

√
r) < k1

for r ∈
[

0, k1

k2
+ 1

2

(

1−
√

1 + k1

k2

)[

, we deduce from (3.18) that

L(t) ≤ L0 ∀t > 0. (3.26)

In the same way it follows that

‖Dv‖L∞(0,∞;L2) ≤ Λ

which means that the hypothesis (3.3) is verified.
Hence, now we can say that (3.25) implies (3.26) without the hypothesis (3.3).

Then, in view of (3.18) and (3.16), with (3.26) we obtain the a priori estimate

ρ1(t)‖vt‖2
H1 + ‖Dv(t)‖2

L2 +
1

L2
‖D2v(t)‖2

L2 ≤
1

c
L0. (3.27)

Since u = v ◦ τ (see (1.6) for τ), it is easy to see that







‖Du‖2
H1(It)

≤ 1
L0

(

‖Dv‖2
L2(0,1) + 1

L2‖D2v‖2
L2(0,1)

)

,

‖Dut‖2
L2(It)

≤ c
(

‖Dv‖2
L2(0,1) + 1

L2‖D2v‖2
L2(0,1) + ‖Dvt‖2

L2(0,1)

) (3.28)

where c is a constant which depends on ε0 and L0 = L(0) = β(0)− α(0) > 0. From
(3.27) it follows that

Du ∈ L∞(0,∞; H1(It)),
√

ρ1Dut ∈ L∞(0,∞; L2(It)). (3.29)

Moreover, since
k1 − k2(L(t) + L 1

2 (t)) ≥ ν > 0

(see (3.25)-(3.26)), we deduce from (3.19) that

D(·) ∈ L1(0,∞).

Recalling the expression of D(·) (see (3.17)), it’s easy to see by using the first
inequality of (3.28) that

Du ∈ L2(0,∞; H1(It), Dut ∈ L2(0,∞; L2(It)). (3.30)

To conclude that our solution belongs to the class (3.14) it remains, taking into
account (3.29)-(3.30), to prove that







u ∈ L∞(0,∞; L2(It), u ∈ L2(0,∞; L2(It)),√
ρ

1
ut ∈ L∞(0,∞; L2(It)), ut ∈ L2(0,∞; L2(It)).

(3.31)

To this end, first we consider the scalar product in L2(It) of the equation (1.1)
with ut, we obtain, taking into account the relation

Du(t, x)β ′(t) + ut(t, x)|x=β(t) = Du(t, x)α′(t) + ut(t, x)|x=α(t) = 0
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which is a immediate consequence of the conditions u(t, α(t)) = u(t, β(t)) = 0, the
inequality

1

2

d

dt
E1(t) + (ρ2(t) +

1

2
ρ′(t))‖ut‖2

L2(Is) −
1

2

∫ ‖Du‖2
L2(It)

0
Mt(t, σ)dσ

+
1

2β ′

∣

∣

∣ut(t, β(t))
∣

∣

∣

2(

M(t, ‖Du‖2
L2(It)

)− ρ1(t)β
′2(t)

)

+

+
1

2α′

∣

∣

∣ut(t, α(t))
∣

∣

∣

2(

ρ1(t)α
′2(t)−M(t, ‖Du‖2

L2(It)
)
)

= 0, (3.32)

where
E1(t) = ρ1‖ut‖2

L2(It)
+ M̂(t, ‖Du‖2

L2(It)
).

and

M̂(t, λ) =
∫ λ

0
M(t, σ)dσ.

If we choose the number ε0 given in (3.22) (see also (3.2)) such that

ε0 ≤
√

m0

‖ρ1‖L∞

, (3.33)

we get






M(t, ‖Du‖2
L2(It)

)− ρ1(t)β
′2(t) ≥ 0,

ρ1(t)α
′2(t)−M(t, ‖Du‖2

L2(It)
≤ 0 ∀t ≥ 0.

Thus, if we recall the last conditions of (1.4) and (1.5) and the first condition of
(1.12), we deduce from (3.32) that

1

2

d

dt
E1(t) + δ0‖ut‖2

L2(It)
≤ 0. (3.34)

However, if we consider the scalar product of (1.1) with u, we obtain

1

2

d

dt
E2(t)− ρ1‖ut‖2

L2(It)
− 1

2
ρ′2‖u‖2

L2(It)
+ (3.35)

+ M
(

t, ‖Du‖2
L2(It)

)

‖Du‖2
L2(It)

= 0,

where

E2(t) = 2
∫ 1

0
ρ1uutdx + ρ2‖ut‖2

L2(It)
.

Since (see the last condition of (1.5) which implies that ρ2 ≥ δ0)

E2(t) ≥
1

2
ρ2‖u‖2

L2(It)
− 2δ−1

0 ‖ρ1‖L∞ρ1‖ut‖2
L2(It)

,

if we choose the positive number δ2 such that

δ2 ≥ 2δ−1
0 ‖ρ1‖L∞ (3.36)

we obtain, recalling the expressions of E1 and E2,

δ2E1(t) + E2(t) ≥
1

2
ρ2‖u‖2

L2(It)
+ (δ2 − 2δ−1

0 ‖ρ1‖L∞)ρ1‖ut‖2
L2(It)

≥ 0. (3.37)
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Now if we multiply (3.32) by δ2 given in (3.36) and add it with (3.35), we obtain

1

2

d

dt

(

δ2E1(t) + E2(t)
)

+ δ2δ1‖u‖2
L2(It)

+ (δ2δ0 − ‖ρ1‖L∞)‖ut‖2
L2(It)

≤ 0.

From the above inequality (see also (3.37)), it is easy to verify that u satisfies (3.31)
and according to (3.29)-(3.30) we deduce that u belongs to the class (3.14).

Thus the proof of theorem (3.1) is completed. �

4 Asymptotic behaviour

In this section we shall examine the asymptotic behaviour of the solution given by
the theorem 2.2 always in the case where

lim
t→∞

L(t) = lim
t→∞

(β(t)− α(t)) = +∞.

We assume that the hypotheses (3.1) and (3.4) hold and

|α(i)(t)| ≤ ε1 ≤ ε0, |β(i)(t)| ≤ ε1 ≤ ε0 ∀t > 0 (i = 1, 2, 3) (4.1)

where ε0 is given in (3.22) (see also (3.33)), while ε1 will be chosen conveniently in
the following (see (4.15)).
Moreover, here we assume that the positive number δ0 given in (1.5) satisfies

δ0 >
S1Λ

L0

, (4.2)

where S1 and Λ are given in (3.1), (3.3), while L0 = L(0).
Then we have

THEOREM 4.1 Let u0 ∈ H2(I0) ∩H1
0 (I0) and u1 ∈ H1

0 (I0). We assume that

the hypotheses (3.1), (3.4) and (4.1)-(4.2) hold, then the solution of the equation

(1.1) with f = 0 satisfies for all t > 0 the inequality

ρ1(t)‖ut‖2
H1(It)

+ ‖u(t)‖2
H2(It)

≤ CL(t)e−γt (4.3)

for suitable positive constants C and γ.

We remark (see (4.1)) that the function L′ = β ′ − α′ is bounded and therefore
L(t)e−γt → 0 as t →∞.

Proof. We have already seen that the scalar product in L2(0, 1) of the equation (1.8)
with vt gives us the inequality

1

2

d

dt
L1(t) + δ0

2
‖vt‖2

L2 ≤ c1
ε1

L2 ‖D2v‖2
L2 + 1

δ0
‖g‖2

L2 , (4.4)

where

L1(t) = ρ1‖vt‖2
L2 +

∫ 1

0
a|Dv|2dy + 1

L
M̂

(

t, 1
L
‖Dv‖2

L2

)

. (4.5)
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In the same way as (3.8), the scalar product in L2(0, 1) of the equation (1.8) with
−D2vt, gives us the inequality

1

2

d

dt
L2(t) + ( δ0

2
− c3ε1)‖Dvt‖2

L2 ≤ c2
ε1

L2 ‖D2v‖2
L2+ (4.6)

+ S1Λ
2L0

1
L2 ‖Dvt‖L2‖D2v‖2

L2 + S1

2L2
0
ε1

1
L2 ‖Dv‖2

L2‖D2v‖2
L2 + 1

δ0
‖Dg‖2

L2

where

L2(t) =ρ1‖Dvt‖2
L2 + 1

L2 M̃
(

t, 1
L
‖Dv‖2

L2

)

‖D2v‖2
L2+ (4.7)

+ 2
∫ 1

0
(Da + a1 + a2)(Dv)(D2v)dy +

∫ 1

0
a(D2v)2dy.

Since

‖Dv‖2
L2 ≤ Λ,

1

L2
‖D2v‖2

L2 ≤ Λ

(see (3.25), (3.27) and (3.20)), we deduce from (4.6) that

1

2

d

dt
L2(t) + (δ3 − c3ε1)‖Dvt‖2

L2 ≤ (4.8)

≤ ε1(c2 + S1Λ
2L2

0
) 1

L2‖D2v‖2
L2 + 1

δ0
‖Dg‖2

L2

where (see (4.2))

δ3 =
δ0

2
− S1Λ

2L0
> 0.

Moreover if we consider the scalar product in L2(0, 1) of the equation (1.8) with
−D2v, we obtain by the same argument as (3.11), the inequality

d

dt
L3(t) + ( δ1

2
−c6ε0)‖Dv‖2

L2 + m0

4L2 ‖D2v‖2
L2 ≤ (4.9)

≤ (c7ε1 + ‖ρ1‖L∞)‖Dvt‖2
L2 + Λ‖Dg‖L2

where

L3(t) = 2
∫ 1

0
ρ1(Dvt)(Dv)dy + ρ2‖Dv‖2

L2 . (4.10)

We put

L(t) = L1(t) + κ1L2(t) + L3(t) (4.11)

and we recall the expressions (3.16)-(3.17) of E(·) and D(·). The positive number
κ1 will be fixed in the following (see (4.14)). In fact we want to choose k1 and ε1 in
the inequalities (4.4) and (4.8)-(4.9) such that

c11E(t) ≤ L(t) ≤ c12D(t), (4.12)

d

dt
L(t) + c13D(t) ≤ 0. (4.13)
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We determine the constant κ1 and the number ε1 in the inequality (4.4) and
(4.8)-(4.9) by the following relations

κ1 = max
(

κ,
2‖ρ1‖L∞

δ2

)

, (4.14)

ε1 = min
(

ε0,
m0

2(κ(2c2 + S1ΛL−2
0 ) + 2c1)

,
δ3

κc3 + c7

)

(4.15)

(κ and ε0 see (3.21)-(3.22)).
From the inequality (3.23)-(3.24) and the relations (4.14)-(4.15), we deduce easily

the inequality of the left hand side of (4.12), while the other inequality follows
immediately from the expressions of Li (i = 1, 2, 3) (see also the first condition of
(3.1)).

Now, if we multiply (4.8) by κ1 given in (4.14) and add it with the inequalities
(4.4) and (4.9) and we substitute in these inequalities the expression (4.15) of ε1,
we obtain immediately (4.13).

The inequalities (4.12)-(4.13) give us

d
dt
L(t) + γL(t) ≤ 0 ∀t ≥ 0

where γ is a positive constant which depends only on the numbers m0 δ0, δ1, Λ and
S0. This above inequality implies that

L(t) ≤ L(0)e−γt

which, with a help of (4.12) (see also (3.16)-(3.17)), gives us

ρ1‖vt‖2
H1 + ‖v‖2

H1 + 1
L2‖D2v‖2

L2 ≤ c(‖v1‖2
H1 + ‖v0‖2

H2)e−γt. (4.16)

In order to conclude our result, it is sufficient to see that

u = v ◦ τ

(see (1.6) for τ) satisfies the following estimates

‖ut‖2
H1(It)

≤ cL(‖vt‖2
H1(0,1) + ‖Dv‖2

L2(0,1) +
1

L2
‖D2v‖2

L2(0,1)

)

,

‖u‖2
H2(It)

≤ cL
(

‖v‖2
H1(0,1) +

1

L2
‖D2v‖2

L2(0,1)

)

with a positive constant c independent of t, so that the inequality (4.16) implies

ρ1(t)‖u‖2
H1(It)

+ ‖u‖2
H2(It)

≤ cL(t)e−γt.

Thus the proof of theorem 4.1 is completed. �

REMARK 2.2. When f decays in an appropriate way (see [16]) we can obtain
the same result as in Theorem 4.1.
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