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Abstract

We propose a reduction procedure for symplectic connections with sym-

metry. This is applied to coadjoint orbits whose isotropy is reductive.

0

The aim of this paper is to show that under very mild conditions, Marsden-Weinstein
reduction is “compatible” with a symplectic connection. This means that if a sym-
plectic manifold (M, ω) is endowed with a strongly Hamiltonian action of a connected
Lie group G and with a G-invariant symplectic connection ∇, there is a natural way
to construct a symplectic connection ∇r on a reduced manifold (M r, ωr). The con-
struction always works when G is compact, and in many non-compact cases as well.

The interest of the construction if two-fold. First it leads to interesting examples
of symplectic connections when (M, ω) is a very simple symplectic manifold and G
is, for example, one-dimensional or multidimensional but abelian ([2]). Secondly,
it may be a useful tool in dealing with the general problem of commutation of
quantization and reduction in the framework of deformation quantization.

The paper is organized as follows. We first recall some classical results about
strongly Hamiltonian actions. In the second paragraph we show how to construct
a reduced connection with a technical assumption and we prove that this is always
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possible in the compact case. The third paragraph collects several examples where
this construction gives interesting results. We finally indicate some possible further
developments.

1

Let (M, ω) be a symplectic manifold and let σ : G×M → M be a strongly Hamil-
tonian action of a connected Lie group G, (g, x) 7→ g ·x, which we will assume to be
effective. If g is the Lie algebra of G, we denote by J : M → g

∗ the corresponding
G-equivariant momentum map:

i(X∗)ω = d(J∗X), ∀X ∈ g (1)

where X∗ is the infinitesimal generator of the action corresponding to X:

X∗

x =
d

dt
exp(−tX) · x

∣

∣

∣

∣

t=0
(2)

and J∗ : g ⊂ C∞(g∗) → C∞(M) the map defined by

(J∗X)(x) = 〈J(x), X〉, ∀x ∈ M. (3)

Let µ ∈ g
∗ be a regular value of J and let Σµ = J−1(µ) be the constraint

manifold; it is a closed embedded submanifold of M .
The following two lemmas are classical [1] and presented here for the sake of

completeness.

Lemma 1.1. In the neighborhood of Σµ, the action of G is locally free, i.e. for
any x ∈ Σµ, there exists a neighborhood Ωx of the identity element e of G and a
neighborhood Ux of x in M such that for any g ∈ Ωx, y ∈ Ux, the equation g · y = y
implies g = e.

Proof. Let x ∈ Σµ. The map J∗x : TxM → Tµg
∗ ∼= g

∗ is surjective; hence the map
(J∗x)

∗ : (g∗)∗ ∼= g → T ∗

xM is injective, i.e. ∀X ∈ g, X 6= 0, one has:

(J∗x)
∗(X) = (dJ∗X)x = i(X∗

x)ωx 6= 0;

hence X∗

x 6= 0. This means that the stabilizer Gx of x is discrete. Let χ : G×M →
M ×M be the map (g, y) 7→ (g · y, y). By the above χ∗(e,x) is injective; hence there
exist neighborhouds Ωx of e in G and Ux of x in M such that χ|Ωx×Ux

is injective. �

Let Gµ be the stabilizer of µ under the coadjoint action.

Lemma 1.2. (i) Let x ∈ Σµ and denote by Ox the orbit of x under the action of
G. Then (TxΣµ)⊥ = TxOx (where ⊥ means orthogonal with respect to ωx).

(ii) Let ∆x = (TxΣµ)⊥ ∩ TxΣµ; then ∆x has constant dimension (independent of
x) and the orbit of x under the action of Gµ is an integral manifold of ∆.
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Proof. (i) For Z ∈ TxM , we have:

Z ∈ TxΣµ ⇔ J∗xZ = 0 ⇔ 〈J∗xZ, X〉 = ωx(X
∗

x, Z) = 0, ∀X ∈ g.

Consequently TxΣµ ⊂ (TxOx)
⊥. But dim Σµ = dim M − dim G = codim Ox (by

Lemma 1.1). Hence TxΣµ = (TxOx)
⊥.

(ii) Z ∈ TxΣµ ⇔ J∗xZ = 0; Z ∈ (TxΣµ)⊥ = TxOx ⇔ there exists Y ∈ g such
that Z = Y ∗; so, by equivariance of J , Z ∈ ∆x ⇔ Z = Y ∗ with Y ∈ gµ, where
gµ is the Lie algebra of Gµ. Hence, dim ∆x = dim gµ and ∆x is both the radical of
ω|TxΣµ×TxΣµ

and the tangent space to the orbit of Gµ passing through x. �

Assumption 1. The constraint manifold Σµ is a Gµ-principal bundle over the

reduced manifold M r = Gµ\Σµ.

Remark 1. If the action of G on M is free and proper, Assumption 1 is satisfied;
in particular this is true if the action is free and the group G is compact.

The restriction to the constraint submanifold Σµ of the tangent bundle TM ,
denoted TM |Σµ

is a vector bundle over Σµ; the group Gµ acts by automorphisms
on this bundle. It contains four Gµ-stable vector subbundles, TΣµ, (TΣµ)⊥, TΣµ +
(TΣµ)

⊥ and TΣµ ∩ (TΣµ)⊥.

Assumption 2.There exists a Gµ-stable vector subbundle S̃ of TM |Σµ
such that:

TM |Σµ
= (TΣµ + (TΣµ)⊥)⊕ S̃.

Remark 2. If the group G is compact, such a vector subbundle always exists.
Indeed, we can build a Gµ-invariant metric on TM |Σµ

and choose S̃ to be the
orthogonal complement, relative to this metric, of TΣµ + (TΣµ)⊥.

Lemma 1.3. One may assume that S̃ is isotropic (relative to ω).

Proof. By dimension argument, dim S̃ = dim(TΣµ ∩ (TΣµ)
⊥) and ω induces a non-

singular pairing between these two Gµ-invariant subbundles. Let x ∈ Σµ and let Vx

be the symplectic subspace of TxM defined by:

Vx = S̃x ⊕∆x.

For any u ∈ S̃x, there is a unique element Lxu ∈ ∆x so that−ωx(u, v) = 2ωx(Lxu, v) ∀v ∈
S̃x; hence there is a unique linear map Lx : S̃x → ∆x such that, ∀u, v ∈ S̃x,

ωx(Lxu, v) = ωx(u, Lxv),

ωx(Lxu, v) + ωx(u, Lxv) = −ωx(u, v).

The graph of Lx in Vx, {u + Lxu | u ∈ S̃x}, is an isotropic subspace Sx of Vx such
that

Vx = Sx ⊕∆x.
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Let g ∈ G; then

0 = ωx(Lxu, v)− ωx(u, Lxv) = (g∗ω)x(Lxu, v)− (g∗ω)x(u, Lxv)

= ωg·x(g∗Lxu, g∗v)− ωg·x(g∗u, g∗Lxv)

−ωx(u, v) = −(g∗ω)x(u, v) = −ωg·x(g∗u, g∗v)

= ωx(Lxu, v) + ωx(u, Lxv) = (g∗ω)x(Lxu, v) + (g∗ω)x(u, Lxv)

= ωg·x(g∗Lxu, g∗v) + ωg·x(g∗u, g∗Lxv).

By unicity, Lg·x = g∗ ◦ Lx ◦ g−1
∗

and hence the subbundle S is Gµ-stable. �

Remark 3. By dimension argument:

(S ⊕∆)⊥ =
(

(S ⊕∆)⊥ ∩ TΣ
)

⊕
(

(S ⊕∆)⊥ ∩ TΣ⊥
)

not
== W1 ⊕W2

and the two subbundles W1 and W2 are Gµ-stable.

2

We consider the situation where one has a symplectic manifold (M, ω), a Hamilto-
nian action σ : G×M → M of a connected Lie group G and a symplectic connection
◦

∇ which is G-invariant.

Lemma 2.1. If the group G is compact such a connection always exist.

Proof. Let ∇̃ be any symplectic connection and let X, Y be smooth vector fields on
M . Define:

(
◦

∇X Y )x =
∫

G

[

(g · ∇̃)XY
]

x
dg =

∫

G

(

g∗∇̃g−1

∗
Xg−1

∗
Y

)

(x)dg.

One checks that
◦

∇ is a torsion free linear connection. Furthermore:

ωx(
◦

∇X Y, Z) + ωx(Y,
◦

∇X Z) =

=
∫

G

[

ωx

(

g∗∇̃g−1

∗
Xg−1

∗
Y, Z

)

+ ωx

(

Y, g∗∇̃g−1

∗
Xg−1

∗
Z

)]

dg

=
∫

G

[

ωg−1·x

(

∇̃g−1

∗
Xg−1

∗
Y, g−1

∗
Z

)

+ ωg−1·x

(

g−1
∗

Y, ∇̃g−1

∗
Xg−1

∗
Z

)]

dg

=
∫

G
(g−1
∗

X)g−1·xω(g−1
∗

Y, g−1
∗

Z)dg =
∫

G
Xxω(Y, Z)dg

= Xxω(Y, Z),

if the Haar measure dg is properly normalized. �
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If Assumptions 1 and 2 are satisfied, Σµ (the constraint manifold) is a Gµ-
principal bundle over the reduced manifold M r:

π : Σµ → M r.

Furthermore, at a point x ∈ Σµ, the tangent space TxΣµ is the direct sum of two
Gµ-invariant distributions:

TxΣµ = ∆x ⊕ (W1)x

where ∆x = ker π∗x = radω(TxΣµ). The distribution W1 will be called the horizon-

tal distribution. To W1 is canonically associated a connection 1-form α on Σµ

(with values in gµ):
α(U) = X,

if U = δ + w1 with δx = (d/dt) exp(−tX) · x
∣

∣

∣

∣

t=0
= X∗

x. Remark that

αg·x(g∗x
U) = Ad g(αx(U)) ∀g ∈ Gµ.

Observe that in this framework

TxM = ∆x ⊕ (W1)x ⊕ (W2)x ⊕ Sx.

Hence we have a projection operator Px : TxM → TxΣµ.

Definition 1. If X, Y are smooth vector fields, along Σµ, tangent at each point to
Σµ, we define a linear connection ∇ along Σµ, by:

∇XY = P (
◦

∇XY ). (4)

Lemma 2.2. ∇ is a torsion free linear connection on Σµ. Furthermore, Gµ is a
group of affine transformations of ∇.

Proof. One has for f ∈ C∞(Σµ):

[∇X(fY )]x = P (
◦

∇XfY )x = P ((Xf)Y + f
◦

∇XY )x = (Xxf)Yx + f(x)(∇XY )x

∇XY −∇Y X − [X, Y ] = P (
◦

∇XY −
◦

∇Y X − [X, Y ]) = 0.

Also, if Z ∈ gµ:

(LZ∗∇)XY = [Z∗,∇XY ]−∇[Z∗,X]Y −∇X [Z∗, Y ]

= [Z∗, P
◦

∇XY ]− P
◦

∇[Z∗,X]Y − P
◦

∇X [Z∗, Y ]

= P
(

[Z∗,
◦

∇XY ]−
◦

∇[Z∗,X]Y −
◦

∇X [Z∗, Y ]
)

using the Gµ-invariance of P . Hence the conclusion since
◦

∇ is Gµ-invariant. �

Lemma 2.3. The orbits of Gµ in Σµ are totally geodesic with respect to ∇ if and
only if for all X, Y ∈ gµ and for all vector fields Z on M , one has:

ω(P
◦

∇X∗Y ∗, PZ) = 0.

Proof. The totally geodesic condition means that (∇X∗Y ∗)(x) belongs to ∆x which
is the radical of TxΣµ. �
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Definition 2. If X is a smooth vector field on M r, its horizontal lift X̄ to Σµ is
defined by X̄x ∈ W1x and π∗x

X̄x = Xπ(x). Remark that X̄g·x = g∗x
X̄x ∀g ∈ Gµ. The

reduced connection ∇r on M r is defined as follows. Let X, Y be smooth vector
fields on M r; denote by X̄, Ȳ their horizontal lifts to Σµ. Then:

(∇r
XY )(x) = (∇X̄ Ȳ )(x)− [αx(∇X̄ Ȳ )]∗. (5)

Proposition 2.4. Formula 5 defines a torsion free linear connection on M r. Fur-
thermore, if ωr is the 2-form on M r such that

ωr
π(x)(X, Y ) = ωx(X̄, Ȳ ),

then ωr is symplectic and parallel relative to ∇r.

Proof. Formula 5 defines a linear connection on M r. Indeed, one has, if g ∈ Gµ:

∇X̄ Ȳ
∣

∣

∣

g·x
− [αg·x(∇X̄ Ȳ )]∗ = ∇g∗X̄g∗Ȳ

∣

∣

∣

g·x
− g∗

(

Ad(g−1)αg·x(∇X̄ Ȳ )
)∗

x

= g∗x

[

(g−1 · ∇)X̄ Ȳ
∣

∣

∣

x
− Ad(g−1) Ad(g)αx

(

(g−1 · ∇)X̄ Ȳ
)∗]

= g∗
[

∇X̄ Ȳ
∣

∣

∣

x
− αx(∇X̄ Ȳ )∗

]

.

Thus formula 5 is independent of the choice of x in the fibre over π(x). Also:

∇r
XY −∇r

Y X − [X, Y ] = ∇X̄ Ȳ − αx(∇X̄ Ȳ )∗ −∇Ȳ X̄ + αx(∇Ȳ X̄)∗ − [X, Y ]

= [X̄, Ȳ ]− αx([X̄, Ȳ ])∗ − [X, Y ] = 0

and ∇r is torsion free.

The 2-form ωr has maximal rank; furthermore, if +� denotes the cyclic sum, we
have:

(dωr)π(x)(X, Y, Z) = +�
X,Y,Z

[

Xπ(x)ω
r(Y, Z)− ωr

π(x)([X, Y ], Z)
]

= +�
X,Y,Z

[

X̄xω(Ȳ , Z̄)− ωx([X̄, Ȳ ]− αx([X̄, Ȳ ])∗, Z̄)
]

= (dω)x(X̄, Ȳ , Z̄),

hence ωr is closed. Finally:

Xπ(x)ω
r(Y, Z) = X̄xω(Ȳ , Z̄) = ωx(

◦

∇X̄ , Ȳ , Z̄) + ωx(Ȳ ,
◦

∇X̄Z̄)

= ωx(P
◦

∇X̄ Ȳ , Z̄) + ωx(Ȳ , P
◦

∇X̄Z̄) = ωx(∇X̄ Ȳ , Z̄) + ωx(Ȳ ,∇X̄Z̄)

= ωx(∇
r
XY , Z̄) + ωx(Ȳ ,∇r

XZ)

= ωr
π(x)(∇

r
XY, Z) + ωr(Y,∇r

XZ),

which proves that ∇r is symplectic. �



Marsden-Weinstein reduction for symplectic connections 97

Formula for the curvature of the reduced connection. Let X, Y, Z be
vector fields on M r. Then:

Rr(X, Y )Z =
(

∇r
X∇

r
Y −∇r

Y∇
r
X −∇r

[X,Y ]

)

Z

= ∇X̄(∇r
Y Z)− α

(

∇X̄(∇r
Y Z)

)∗

−∇Ȳ (∇r
XZ) + α

(

∇Ȳ (∇r
XZ)

)∗

−∇[X,Y ]Z̄ + α
(

∇[X,Y ]Z̄
)∗

= ∇X̄

(

∇Ȳ Z̄ − α(∇Ȳ Z̄)∗
)

− α
(

∇X̄

(

∇Ȳ Z̄ − α(∇Ȳ Z̄)∗
))∗

−∇Ȳ

(

∇X̄Z̄ − α(∇X̄Z̄)∗
)

+ α
(

∇Ȳ

(

∇X̄Z̄ − α(∇X̄Z̄)∗
))∗

−∇[X̄,Ȳ ]−α([X̄,Ȳ ])∗Z̄ + α
(

∇[X̄,Ȳ ]−α([X̄,Ȳ ])∗Z̄
)∗

= R(X̄, Ȳ )Z̄ − α(R(X̄, Ȳ )Z̄)∗ −∇X̄(α(∇Ȳ Z̄)∗) + α
(

∇X̄(α(∇Ȳ Z̄)∗)
)∗

+∇Ȳ (α(∇X̄Z̄)∗)− α
(

∇Ȳ (α(∇X̄Z̄)∗)
)∗

+∇α([X̄,Ȳ ])∗Z̄

−α
(

∇α([X̄,Ȳ ])∗Z̄
)∗

In the special case where Σµ is totally geodesic with respect to the connection
◦

∇ (i.e. autoparallel, i.e.
◦

∇XY is tangent to Σµ at each point of Σµ for all smooth

vector fields X, Y along Σµ tangent at each point to Σµ), we have ∇XY =
◦

∇XY
for all vector fields X, Y tangent to Σµ and the vertical subbundle (ker π∗) in TΣµ

(which coincides with the radical of ω|Σµ
) is preserved by the connection ∇.

Furthermore, the reduced connection ∇r does not depend on the choice of S. Indeed,
for another subbundle Ŝ with the same properties as S, we have another horizontal
distribution Ŵ1; if X is a vector field on M r, X̄ and X̂ its horizontal lifts with respect
to W1 and Ŵ1, and α̂ the connection 1-form defining Ŵ1, then X̂ = X̄ + α(X̂)∗ =
X̄ − α̂(X̄)∗. If ∇r̂ is the reduced connection defined by 5 for the connection α̂,

then one easily sees that ∇̂r̂
XY = ∇r

XY − α̂(∇r
XY ) = ∇̂r

XY , which simply means
that ∇r and ∇r̂ coincide. The reduction of the symplectic connection when Σµ is
autoparallel is natural and can be performed without the machinery we introduce
here (see [4] for more details).

3

Coadjoint orbits are standard examples of reduced symplectic manifolds [1].
Let p : T ∗G → G be the cotangent bundle to a connected Lie group G; it can be
identified, as manifold, to the direct product G× g

∗ by:

φ : T ∗G → G× g
∗, a 7→ (g, L∗

ga), g = p(a),

where g is the Lie algebra of G. The left translation by g1 of G, lifts to T ∗G and
can be read by the above identification, as:

L(g1) : G× g
∗ → G× g

∗, (g, ξ) 7→ (g1g, ξ).

Similarly, the right translation by g1 reads:

R(g1) : G× g
∗ → G× g

∗, (g, ξ) 7→ (gg1, Coad(g−1
1 )ξ).
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The Liouville 1-form θ on T ∗G, reads on G× g
∗:

(

(φ−1)∗θ
)

(g,ξ)
(Lg∗X + η)

not
== θ̄(g,ξ)(Lg∗X + η) = ξ(X),

for X ∈ g, η ∈ g
∗. This gives the symplectic form

ω(g,ξ)(Lg∗X + η, Lg∗X
′ + η′) = 〈η, X ′〉 − 〈η′, X〉 − 〈ξ, [X, X ′]〉.

The fundamental vector field corresponding to the left action is

X l(g, ξ) = −Rg∗X.

Similarly, the fundamental vector field corresponding to the right action is

Xr(g, ξ) = Lg∗X + ξ ◦ ad(X).

From this one deduces the expression of the left (resp. right) momentum maps:

J l(g, ξ) = Coad(g)ξ

Jr(g, ξ) = ξ.

If µ ∈ g
∗ one constructs a constraint submanifold Σl

µ (resp. Σr
µ) corresponding to

the left (resp. right) action:

Σl
µ =

{

(g, Coad(g−1)µ) | g ∈ G
}

Σr
µ = {(g, µ) | g ∈ G}.

Let us consider the constraint manifold corresponding to the right action:

T(g,µ)Σ
r
µ = {Lg∗

X | X ∈ g};

(

T(g,µ)Σ
r
µ

)⊥

= {Xr(g, µ) | X ∈ g};

(

TΣr
µ ∩ (TΣr

µ)⊥
)

(g,µ)
= {Ỹ | Y ∈ g, µ ◦ ad(Y ) = 0} ∼= gµ,

where gµ is the Lie algebra of the stabilizer Gµ of µ in the coadjoint action and
where Ỹ(g,µ) = Lg∗

Y for Y ∈ g.

(

TΣr
µ + (TΣr

µ)
⊥

)

(g,µ)
= {X̃ + µ ◦ ad(Y ) | X, Y ∈ g}.

Lemma 2.5. On (T ∗G ∼= G×g
∗, ω) there exists a symplectic connection ∇ invariant

by the right action of G.

Proof. Let ∇0 be the linear connection on G× g
∗ defined by:

∇0
X̃+η(X̃

′ + η′) =
1

2
˜[X, X ′].
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This connection is right and left invariant but not symplectic; indeed, one has:

(∇0
X̃+ηω)(g,ξ)(Ỹ + ζ, Ỹ ′ + ζ ′) = (X̃ + η)[〈ζ, Y ′〉 − 〈ζ ′, Y 〉 − 〈ζ, [Y, Y ′]〉]

−
1

2

(

− 〈ζ ′, [X, Y ]〉 − 〈ξ, [[X, Y ], Y ′]〉
)

−
1

2

(

〈ζ, [X, Y ′]〉 − 〈ξ, [Y, [X, Y ′]]〉
)

= −〈η, [Y, Y ′]〉+
1

2
〈ζ ′, [X, Y ]〉 −

1

2
〈ζ, [X, Y ′]〉

+
1

2
〈ξ, [X, [Y, Y ′]]〉.

This can be projected on the space of symplectic connections as follows. Write

∇UV = ∇0
UV + A(U)V

where A(U) is an endomorphism such that

A(U)V = A(V )U (torsion free condition).

Then choose:

ω(A(U)V, W ) =
1

3
[(∇0

Uω)(V, W ) + (∇0
V ω)(U, W )].

This gives a symplectic connection which is G-invariant. �

Proposition 2.6. If the group Gµ is reductive, there exists on the reduced symplectic
manifold a symplectic connection.

Proof. The action of G on T ∗G is free; hence Assumption 1 is satisfied. The reduc-
tiveness hypothesis ensures Assumption 2. �

Curvature properties of these reduced connections are worth investigating. We
recall in particular the examples given in [2]. It seems also worthwhile to read the
nice Gotay-Tuynman paper [3] thinking of connections.

Acknowledgments. We thank our friends J. H. Rawnsley and S. Gutt for many
useful remarks.
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