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Abstract. Given a complex-valued polynomial of the form p(z) =

(z−1)k(z−r1)m(z−r2)n with |r1| = |r2| = 1; k,m, n ∈ N and m 6= n,

where are the critical points? The Gauss-Lucas Theorem guarantees
that the critical points of such a polynomial will lie within the unit

disk. This paper further explores the location and structure of these
critical points. Surprisingly, the unit disk contains two ‘desert’ re-

gions in which critical points cannot occur, and each c inside the unit

disk and outside of the desert regions is the critical point of exactly
two such polynomials.

1. Introduction

Given a complex-valued polynomial p(z), the Gauss-Lucas Theorem im-
plies that its critical points lie in the convex hull of its roots. If the roots of
p(z) form the vertices of a triangle, then its critical points must lie in that
triangle. Several recent papers [1, 2, 3, 4, 6] have studied critical points
of polynomials with three roots. If p(z) is a complex-valued polynomial
with roots r1, r2, and r3, then there is a unique circle containing the roots.
By changing coordinates, we can send this circle to the unit circle and fix
r3 = 1. The critical points of

{p : C→ C | p(z) = (z − 1)(z − r1)(z − r2), |r1| = |r2| = 1}
are characterized in [1]. For this family of polynomials, a single critical
point almost always determines a polynomial uniquely, and the unit disk
contains a desert, {z ∈ C : |z − 2

3 | <
1
3}, in which critical points cannot

occur.
For k,m, n ∈ N, a natural extension of [1] is to study polynomials of the

form

P (k,m, n)

=
{
p : C→ C | p(z) = (z − 1)k(z − r1)m(z − r2)n, |r1| = |r2| = 1

}
.

Critical points of polynomials in P (1, k, k) and P (k,m,m) are characterized
in [2] and [4], respectively. In either case, similar to [1], a critical point
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Figure 1. The desert region for P (1, 4, 4) on the left, and
P (10, 4, 4) on the right.

almost always determines a polynomial uniquely, and the unit disk contains
a desert in which critical points cannot occur. In Figure 1, the interior of the
white disk is the desert region for P (1, 4, 4) on the left, and P (10, 4, 4) on the
right. The structural similarity is due to the symmetry in the multiplicities
of the roots located at r1 and r2.

This paper completes the characterization of the critical points of poly-
nomials in P (k,m, n) by analyzing the m 6= n case. One can use GeoGebra
to graphically investigate the critical points of these polynomials. Set r1
and r2 in motion around the unit circle and trace the loci of the critical
points. See Figure 2. Due to the loss of symmetry in the multiplicities of
the roots located at r1 and r2, the unit disk contains two desert regions
in which critical points cannot occur. Furthermore, each c inside the unit
disk and outside of the desert regions is the critical point of exactly two
polynomials in P (k,m, n).
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Figure 2. For the family of polynomials P (9, 3, 8), the
unit disk contains two desert regions in which critical
points cannot occur.

2. Critical Points

In this paper, we study critical points of polynomials in P (k,m, n) with
m 6= n. Without loss of generality, we assume m < n. Our results can be
applied to polynomials with three roots that lie elsewhere by changing the
coordinate system.

We begin by introducing some notation. For α > 0, let Tα denote the
circle tangent to x = 1 with diameter α passing through 1 and 1−α in the
complex plane. That is,

Tα =
{
z ∈ C :

∣∣∣z − (1− α

2

)∣∣∣ =
α

2

}
.

For example, T2 is the unit circle and T 2k
m+n+k

is a circle centered at z =
m+n
m+n+k with radius k

m+n+k . A given z ∈ C with Re(z) 6= 1 lies on a
unique Tα. The following lemma provides a method of calculating the
corresponding α-value.

Lemma 2.1 ([1]). Let z ∈ C with Re(z) 6= 1. We have z ∈ Tα if and only
if

1

α
= Re

(
1

1− z

)
.

A polynomial of the form

p(z) = (z − 1)k(z − r1)m(z − r2)n
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with |r1| = |r2| = 1; k,m, n ∈ N and n > m has k + m + n − 1 critical
points: k − 1 critical points at z = 1, m− 1 critical points at z = r1, n− 1
critical points at z = r2, and two additional critical points in the unit disk.
Differentiation gives

p′(z) = (z − 1)k−1(z − r1)m−1(z − r2)n−1q(z)

with

q(z) = (m+n+k)z2−((k + n)r1 + (k +m)r2 +m+ n) z+kr1r2+nr1+mr2.

Definition 2.2. Given p ∈ P (k,m, n), we say that c is a nontrivial critical
point of p(z) provided that q(c) = 0.

Example 1. Let p ∈ P (k,m, n) have a nontrivial critical point at z = 1.
Then, by the Gauss-Lucas Theorem, the root at z = 1 has multiplicity
greater than k. Therefore, p ∈ P (k,m, n) has a nontrivial critical point at
z = 1 if and only if p(z) = (z−1)k+m(z− r)n or p(z) = (z−1)k+n(z− r)m
for some r ∈ T2.

Since we know which p ∈ P (k,m, n) have a nontrivial critical point at
z = 1, we assume c 6= 1 as necessary throughout the paper.

To characterize the critical points of polynomials in P (k,m, n), we inves-
tigate how the roots are related to a nontrivial critical point. Suppose c is
a nontrivial critical point of p(z) = (z−1)k(z− r1)m(z− r2)n ∈ P (k,m, n).
Then,

0 = q(c)

= (k +m+ n)c2 − ((k + n)r1 + (k +m)r2 +m+ n) c+ kr1r2 + nr1 +mr2

and it follows that

r1 =
(m− (k +m)c)r2 + (k +m+ n)c2 − (m+ n)c

−kr2 + (k + n)c− n
and

r2 =
(n− (k + n)c)r1 + (k +m+ n)c2 − (m+ n)c

−kr1 + (k +m)c−m
.

Definition 2.3. Given c ∈ C, we define

f1,c(z) =
(m− (k +m)c)z + (k +m+ n)c2 − (m+ n)c

−kz + (k + n)c− n
and

f2,c(z) =
(n− (k + n)c)z + (k +m+ n)c2 − (m+ n)c

−kz + (k +m)c−m
.

Furthermore, we let S1 = f1,c(T2) and S2 = f2,c(T2).

For c ∈ C, f1,c and f2,c are Möbius transformations with f1,c(r2) = r1
and f2,c(r1) = r2. We have established the following theorem.
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Theorem 2.4. Suppose c ∈ C \ {1} and p(z) = (z − 1)k(z − r1)m(z −
r2)n ∈ P (k,m, n). Then, p has a nontrivial critical point at c if and only
if f1,c(r2) = r1 and f2,c(r1) = r2.

When c = 1, f1,c(z) = f2,c(z) =
−kz + k

−kz + k
= 1, and f1,c and f2,c are

degenerate. When c 6= 1, f1,c and f2,c are invertible with

(f1,c)
−1(z) =

((k + n)c− n)z − ((k +m+ n)c2 − (m+ n)c)

kz +m− (k +m)c

=
(n− (k + n)c)z + (k +m+ n)c2 − (m+ n)c

−kz + (k +m)c−m
= f2,c(z).

Furthermore, f1,c(r2) = r1 ∈ T2 so that r1 ∈ S1 ∩ T2, and f2,c(r1) = r2 so
that r2 ∈ S2 ∩ T2. To determine the polynomials in P (k,m, n) having a
critical point at c, we need to study S1 ∩T2 and S2 ∩T2. For c 6= 1, we will
show that |S1 ∩ T2| = |S2 ∩ T2| (Lemma 2.6) and that the cardinality of
S1∩T2 determines the number of polynomials in P (k,m, n) with a nontrivial
critical point at c (Lemma 2.7).

As S1 and T2 are circles (or lines), S1 = T2 or |S1 ∩ T2| ≤ 2. To begin
discussing the cardinality of the set S1∩T2 we need an additional fact related

to Möbius transformations. Functions of the form f(z) = eiθ
z − α
αz − 1

with

|α| < 1 are the only one-to-one analytic mappings of the unit disk onto
itself [7, p. 334]. This leads to the following theorem.

Theorem 2.5. A Möbius transformation T sends the unit circle to the unit

circle if and only if T (z) =
ᾱz − β̄
βz − α

for some α, β ∈ C with
∣∣∣αβ ∣∣∣ 6= 1.

Example 2. For c ∈ C, S1 = T2 whenever f1,c satisfies Theorem 2.5.
Since

f1,c(z) =
(m− (k +m)c)z + (m+ n+ k)c2 − (m+ n)c

−kz + (k + n)c− n
,

Theorem 2.5 implies S1 = T2 if and only if

(m+ n)c− (m+ n+ k)c2 = −k and m− (k +m)c = n− (k + n)c.

The first equation reduces to (m+ n+ k)c2 − (m+ n)c− k = 0 so that

0 = ((m+ n+ k)c+ k)(c− 1)

and c ∈ {1, −k
m+n+k}. The hypothesis of Theorem 2.5 are not satisfied when

c = 1, and as m 6= n, c = −k
m+n+k does not satisfy m− (k +m)c = n− (k+

n)c. Therefore, there is no c ∈ C for which S1 = T2.
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Remark 1. When n = m, f1,c = f2,c which implies S1 = S2. In this case,

S1 = T2 precisely when c = −k
m+n+k . See [4].

The following two Lemmas are direct extensions of results in [3].

Lemma 2.6 ([3]). If c 6= 1, then |S1 ∩ T2| = |S2 ∩ T2| ∈ {0, 1, 2}.

Proof. Let c 6= 1. By Example 2, S1 6= T2, and as (f1,c)
−1 = f2,c, it

follows that S2 6= T2. Without loss of generality, suppose |S2 ∩ T2| = 1 and
S1∩T2 = {α, β} with α 6= β. By the definition of S1, there exist α0, β0 ∈ T2
with f1,c(α0) = α, f1,c(β0) = β and α0 6= β0. This implies

f2,c(α) = α0 and f2,c(β) = β0

so that |S2 ∩ T2| > 1; a contradiction. Therefore, |S1 ∩ T2| = |S2 ∩ T2|. �

Lemma 2.7 ([3]). Suppose n 6= m and c ∈ C \ {1}.
(1) If S1 and T2 are disjoint, then no p ∈ P (k,m, n) has a critical point

at c.
(2) If S1 and T2 are tangent, then c is the nontrivial critical point of

exactly one p ∈ P (k,m, n).
(3) If S1 and T2 intersect in two distinct points, then c is the nontrivial

critical point of exactly two polynomials in P (k,m, n).

Lemmas 2.6 and 2.7 imply that S1 is sufficient to characterize the non-
trivial critical points of p ∈ P (k,m, n).

2.1. Center and Radius of S1. According to Lemma 2.7, to further char-
acterize critical points of p ∈ P (k,m, n), we need a better understanding
of S1. Since

f1,c(z) =
(m− (k +m)c)z + (k +m+ n)c2 − (m+ n)c

−kz + (k + n)c− n
,

S1 is a line whenever there exists a z ∈ T2 with −kz + (k + n)c − n = 0.
That is,

k = |kz| = |(k + n)c− n| ←→ k

n+ k
=

∣∣∣∣c− n

n+ k

∣∣∣∣ . (2.1)

Therefore, S1 is a line if and only if c ∈ T 2k
n+k

.

Example 3. Let c ∈ T 2k
n+k

. Then S1 is a line passing through

f1,c(1) =
(m+ n+ k)c−m

n+ k
and f1,c(−1) =

(m+ n+ k)c2 − (n− k)c−m
(n+ k)c− (n− k)

with

f1,c(1)− f1,c(−1) =
−2mnc+ 2mn

(n+ k)((n+ k)c− (n− k))
. (2.2)
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Since c ∈ T 2k
n+k

, c = n
n+k + k

n+ke
iθ for some θ ∈ [0, 2π]. Substituting into

equation (2.2), we obtain Re(f1,c(1)− f1,c(−1)) = 0. Therefore, S1 is a
vertical line through f1,c(1). For future use, we observe that if c ∈ T 2k

n+k
,

then f1,c(1) ∈ T 2k(m+n+k)

(n+k)2
.

For c ∈ C \ {1}, we use methods from [3] and [4] to determine the center
and radius of S1. By the definition of S1, z ∈ S1 if and only if there exists
a w ∈ T2 with f1,c(w) = z. As (f1,c)

−1 = f2,c, it follows that z ∈ S1 if and
only if |f2,c(z)| = |w| = 1. That is,∣∣∣∣ (n− (k + n)c)z + (m+ n+ k)c2 − (m+ n)c

−kz + (k +m)c−m

∣∣∣∣ = 1

which implies∣∣∣∣z − ( (k +m)c−m
k

)∣∣∣∣
=

∣∣∣∣n− (n+ k)c

k

∣∣∣∣ ∣∣∣∣z − ( (m+ n)c− (m+ n+ k)c2

n− (n+ k)c

)∣∣∣∣ .
Applying the change of variables z = W +f1,c(1) = W + (m+n+k)c−m

n+k gives∣∣∣∣W − mn(c− 1)

k(n+ k)

∣∣∣∣ =

∣∣∣∣n− (n+ k)c

k

∣∣∣∣ ∣∣∣∣W − mn(1− c)
(n+ k)(n− (n+ k)c)

∣∣∣∣ . (2.3)

For λ 6= 1, it follows from introductory complex analysis that the solution
set of

|z − u| = λ |z − v|

is a circle with center C = v+
v − u
λ2 − 1

and radius R satisfying R2 = |C|2 −
λ2|v|2 − |u|2

λ2 − 1
. In (2.3), when λ = |n−(n+k)ck | = 1, equation (2.1) implies

c ∈ T 2k
n+k

and by Example 3, S1 is a line. When c /∈ T 2k
n+k

, it follows that

|n−(n+k)ck | 6= 1 and the solution set of (2.3) is a circle with center

C =
mn(1− c)

(n+ k)(n− (n+ k)c)
+

mn(1−c)
(n+k)(n−(n+k)c) + mn(1−c)

k(n+k)∣∣∣n−(n+k)ck

∣∣∣2 − 1

=

(
1
k

)2 |n− (n+ k)c|2 mn(1−c)
(n+k)(n−(n+k)c) + mn(1−c)

k(n+k)∣∣∣n−(n+k)ck

∣∣∣2 − 1
.
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Using |n− (n+ k)c|2 = (n− (n+ k)c)(n− (n+ k)c) yields

C =
mn
n+k ((n− (n+ k)c)(1− c) + k(1− c))

|n− (n+ k)c|2 − k2

=
mn|1− c|2

|n− (n+ k)c|2 − k2

=
mn∣∣∣n+ k − k

1−c

∣∣∣2 − ∣∣∣ k
1−c

∣∣∣2 .
By Lemma 2.1, k

1−c = k
α + iky for some real value y, and it follows that

C =
αmn

(n+ k)2α− 2k(n+ k)
.

Moreover,

R2 = |C|2 −

∣∣∣n−(n+k)ck

∣∣∣2 ∣∣∣ mn(1−c)
(n+k)(n−(n+k)c)

∣∣∣2 − ∣∣∣mn(c−1)k(n+k)

∣∣∣2∣∣∣n−(n+k)ck

∣∣∣2 − 1
= |C|2

implies R = |C|. Resubstituting z = W + (m+n+k)c−m
n+k establishes the

following result.

Lemma 2.8. Let c ∈ Tα \ {1} with α 6= 2k

n+ k
. Then, S1 is a circle with

center γ and radius r given by

γ =
(m+ n+ k)c−m

n+ k
+

αmn

(n+ k)2α− 2k(n+ k)

and r =

∣∣∣∣ αmn

(n+ k)2α− 2k(n+ k)

∣∣∣∣ .
We investigate an example for future reference.

Example 4. For c ∈ T2 \ {1}, S1 is a circle with center

γ =
(m+ n+ k)c−m

n+ k
+

2mn

2(n+ k)2 − 2k(n+ k)
=
m+ n+ k

n+ k
c

and radius

r =

∣∣∣∣ 2mn

2(n+ k)2 − 2k(n+ k)

∣∣∣∣ =
m

n+ k
.

Therefore, when c ∈ T2 \ {1}, S1 is externally tangent to T2 at c.

168 MISSOURI J. OF MATH. SCI., VOL. 29, NO. 2



GEOMETRY OF POLYNOMIALS WITH THREE ROOTS

Figure 3. If S1 is internally tangent to T2, then |γ|+ r = 1.

2.2. Identifying the Desert Regions. For p ∈ P (k,m, n) with n > m,
we use methods from [3] to locate the desert regions. According to Lemma
2.7, if c is located within a desert region, then S1 ∩ T2 = ∅. To better
understand the desert regions we identify their boundaries by determining
where S1 is tangent to T2. We begin with S1 internally tangent to T2. For
c ∈ Tα \ {1} with α ∈ (0, 2], if S1 is internally tangent to T2, then

|γ|+ r = 1. (2.4)

See Figure 3.

For 1 6= c ∈ Tα and R =
αmn

α(n+ k)2 − 2k(n+ k)
, S1 is a circle with

center γ =
(m+ n+ k)c−m

n+ k
+ R and radius r = |R|. Substituting into

equation (2.4) and setting c = x+ iy yields

((m+ n+ k)x−m+ (n+ k)R)
2

+ (m+ n+ k)
2
y2 = (n+ k)2(1− |R|)2.

(2.5)

We let Iα denote the set of all (x, y) which satisfy equation (2.5). Since
r > 0, equation (2.4) is satisfied if and only if S1 is internally tangent to
T2 or S1 = T2. Recalling, from Example 2, that S1 is never equal to T2, we
obtain the following lemma.

Lemma 2.9. Let c 6= 1 and α ∈ (0, 2]. Then, S1 is internally tangent to
T2 if and only if c ∈ Iα ∩ Tα.

To use Lemma 2.9, we need to find the values of α for which Iα and
Tα intersect, and the corresponding points of intersection. Observe that R
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is undefined when α = 2k
n+k , negative when α < 2k

n+k , and positive when

α > 2k
n+k . With this in mind, we consider three cases:

(1) 0 < α < 2k
n+k ;

(2) α = 2k
n+k ;

(3) 2k
n+k < α ≤ 2.

In the first case, |R| = −R and equation (2.5) becomes(
x−

(
1− (n+ k) + (n+ k)R

m+ n+ k

))2

+ y2 =

(
(n+ k) + (n+ k)R

m+ n+ k

)2

.

(2.6)

For

ρ =
(n+ k) + (n+ k)R

m+ n+ k
=

((n+ k)2 + nm)α− 2k(n+ k)

(n+ k)(m+ n+ k)α− 2k(m+ n+ k)
, (2.7)

Iα is a circle tangent to x = 1, centered at x = 1−ρ with radius |ρ|. Circles
Iα and Tα intersect (at 1 6= c) precisely when Iα = Tα. This occurs when

((n+ k)2 +mn)α− 2k(n+ k)

(n+ k)(m+ n+ k)α− 2k(m+ n+ k)
=
α

2
.

After simplification, this becomes

((m+ n+ k)α− 2k)((n+ k)α− 2(n+ k)) = 0,

which implies α =
2k

m+ n+ k
or α = 2 /∈

(
0, 2k

n+k

)
. By Lemma 2.9, when

c ∈ T 2k
m+n+k

, S1 is internally tangent to T2.

Before proceeding to the second case, we pause for a result.

Theorem 2.10. No polynomial in P (k,m, n) has a critical point strictly
inside T 2k

m+n+k
.

Proof. Let c ∈ Tα \ {1} with 0 < α < 2k
m+n+k . Equations (2.6) and (2.7)

imply Iα = Tβ with

β =
2[((n+ k)2 +mn)α− 2k(n+ k)]

(n+ k)(m+ n+ k)α− 2k(m+ n+ k)
.

Furthermore, β = α when α = 2k
m+n+k or α = 2, β > 0 when α = 0, and

β is undefined when α = 2k
n+k . Therefore, if 0 < α < 2k

m+n+k , then β > α
and it follows that Tα lies inside Tβ = Iα. See Figure 4. For c = x + iy,
equation (2.6) implies(

x−
(

1− (n+ k) + (n+ k)R

m+ n+ k

))2

+ y2 <

(
(n+ k) + (n+ k)R

m+ n+ k

)2

.
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Figure 4. When 0 < α < 2k
m+n+k , Tα lies inside Iα.

Equivalently, equations (2.4) and (2.5) imply |γ| + r < 1. Therefore, S1 ∩
T2 = ∅ and by Lemma 2.7, no p ∈ P (k,m, n) has a critical point strictly
inside T 2k

m+n+k
. �

In the second case, α = 2k
n+k and by Example 3, S1 is a vertical line

passing through f1,c(1) = (m+n+k)c−m
n+k which is not tangent to T2.

In the third case, |R| = R and equation (2.5) becomes(
x−

(
m− n− k
m+ n+ k

+
(n+ k)− (n+ k)R

m+ n+ k

))2

+y2 =

(
(n+ k)− (n+ k)R

m+ n+ k

)2

.

For

ρ =
(n+ k)− (n+ k)R

m+ n+ k
=

((n+ k)2 −mn)α− 2k(n+ k)

(n+ k)(m+ n+ k)α− 2k(m+ n+ k)
,

Iα is a circle tangent to x = m−n−k
m+n+k , centered at x =

m− n− k
m+ n+ k

+ ρ with

radius |ρ|. Furthermore, Iα and Tα intersect on the real axis if and only if

m− n− k
m+ n+ k

+
2(n+ k)− 2(n+ k)R

m+ n+ k
= 1− α or

m− n− k
m+ n+ k

= 1− α.
(2.8)

The second equation implies α = 2(n+k)
m+n+k and the first equation reduces to

(n+ k)(m+ n+ k)α2 − (2k(m+ n+ k) + 2mn)α = 0

which has solutions α = 2(m+k)
m+n+k and α = 0. We set

α1 =
2(m+ k)

m+ n+ k
<

2(n+ k)

m+ n+ k
= α2.
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When α ∈ ( 2k
n+k , α1) ∩ (α2, 2], Iα ∩ Tα = ∅ and by Lemma 2.9, S1 is not

internally tangent to T2.
When α1 < α < α2, |Iα∩Tα| = 2. See Figure 5. To determine the values

of c where S1 is internally tangent to T2, we need to find the intersection
of Iα and Tα. Upon simplification, these equations become:(

x− m− (n+ k)R

m+ n+ k

)2

+ y2 =

(
(n+ k)− (n+ k)R

m+ n+ k

)2

α(1− x)− (1− x)2 = y2.

By setting R =
αmn

(n+ k)2α− 2k(n+ k)
and using substitution, we eventu-

ally obtain

x =
(m+ n+ k)2α2 − [2(m+ n+ k)(m+ n+ 2k)− 4mn]α+ 4k(m+ n+ k)

(m+ n+ k)((m+ n+ k)α− 2k)(α− 2)
(2.9)

and

y2 = (1− x)(α− 1 + x).

As α varies from α1 to α2, a parametric curve is formed. See Figure 5.
After some tedious algebra the parametric equations combine to form the
implicit equation

2k(m+ n)((−1 + x)x+ y2)(−1 + x2 + y2) + k2(−1 + x2 + y2)2 + ((−1 + x)2

+y2)(m2(−1 + x2 + y2) + n2(−1 + x2 + y2) + 2mn(1 + x2 + y2)) = 0.
(2.10)

Equation (2.10) represents the boundary of the second desert region which
we denote by D.

Theorem 2.11. No polynomial in P (k,m, n) has a critical point strictly
inside D.

Proof. Let c = x+iy ∈ Tα with α ∈ [α1, α2]. Then, c lies inside D whenever(
x− m− (n+ k)R

m+ n+ k

)2

+ y2 <

(
(n+ k)− (n+ k)R

m+ n+ k

)2

.

Equivalently, equations (2.4) and (2.5) imply |γ| + r < 1. Therefore, S1

and T2 are disjoint and by Lemma 2.7, c is not the critical point of any
p ∈ P (k,m, n). �

Remark 2. When n = m, direct calculations give α1 = α2. This obser-
vation explains why the family P (k,m,m) has only one desert region. See
[4].
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Figure 5. Left, when α1 < α < α2, |Iα ∩ Tα| = 2. Right,
as α varies from α1 to α2, parametric equations (2.9) trace
the boundary of the second desert region.

Example 5. Setting k = 1, m = 1, and n = 2 in Theorem 2.10 and
equation (2.10) identifies

2(x2 + y2)2 − 3x(x2 + y2) + x = 0

and T 1
2

as the boundaries of the desert regions in P (1, 1, 2), which consti-

tutes the results of [3]. See Figure 6.

The GeoGebra notebook used to create the images in Figure 6 is located
at http://www.uwplatt.edu/∼frayerc/deserts.html. One can use this
to explore the boundary of the desert regions for different values of k, m,
or n!

The analysis of Iα has established the following result.

Lemma 2.12. Let c ∈ C \ {1}. Then, S1 is internally tangent to T2 if and
only if c ∈ T 2k

m+n+k
∪D.

Furthermore, for c ∈ Tα with 0 < α ≤ 2, S1 will be externally tangent to
T2 if and only if

|γ| − r = 1.

A less involved analysis establishes the following lemma.

Lemma 2.13. Let c ∈ C \ {1}. Then, S1 is externally tangent to T2 if and
only if c ∈ T2.
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Figure 6. The boundary of the desert regions in
P (1, 1, 2), to the left, and P (6, 2, 17) to the right.

2.3. Main Result. For n 6= m, we are now ready to characterize the
critical points of polynomials in P (k,m, n). Let O represent the region
strictly inside T2 and outside of T 2k

m+n+k
and D. Observe that O is the

interior of the grey region in Figure 2. We denote the closure of O by O.

Theorem 2.14. Let c ∈ C and n 6= m.

(1) For p ∈ P (k,m, n), p has a nontrivial critical point at c = 1 if and
only if p(z) = (z − 1)k+m(z − r)n or p(z) = (z − 1)k+n(z − r)m for
some r ∈ T2.

(2) If c /∈ O, then no p ∈ P (k,m, n) has a critical point at c.
(3) If 1 6= c ∈ O \ O, then a unique p ∈ P (k,m, n) has a nontrivial

critical point at c.
(4) If c ∈ O, then exactly two polynomials in P (k,m, n) have a non-

trivial critical point at c.

Proof. Parts 1–3 follow directly from Example 1 and Lemmas 2.7, 2.12, and
2.13.

For part 4, we use a ‘root dragging’ argument similar to [1]. By Lemma
2.12 and Example 2, for c ∈ O, |S1 ∩ T2| ∈ {0, 2}. We will show that
|S1 ∩ T2| = 2. Without loss of generality, suppose S1 ∩ T2 = ∅ with S1

contained inside T2. As we ‘drag’ c to T2 along a smooth curve contained
in O, S1 is continuously transformed into a circle externally tangent to T2.
By the Intermediate Value Theorem, there exists a c0 on the curve with
S1 internally tangent to T2. As c never leaves O, this contradicts Lemma
2.12. Therefore, |S1 ∩ T2| = 2 and by Lemma 2.7, there are exactly two
polynomials in P (k,m, n) with a nontrivial critical point at c. �
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