# GEOMETRY OF POLYNOMIALS WITH THREE ROOTS 

CHRISTOPHER FRAYER


#### Abstract

Given a complex-valued polynomial of the form $p(z)=$ $(z-1)^{k}\left(z-r_{1}\right)^{m}\left(z-r_{2}\right)^{n}$ with $\left|r_{1}\right|=\left|r_{2}\right|=1 ; k, m, n \in \mathbb{N}$ and $m \neq n$, where are the critical points? The Gauss-Lucas Theorem guarantees that the critical points of such a polynomial will lie within the unit disk. This paper further explores the location and structure of these critical points. Surprisingly, the unit disk contains two 'desert' regions in which critical points cannot occur, and each $c$ inside the unit disk and outside of the desert regions is the critical point of exactly two such polynomials.


## 1. Introduction

Given a complex-valued polynomial $p(z)$, the Gauss-Lucas Theorem implies that its critical points lie in the convex hull of its roots. If the roots of $p(z)$ form the vertices of a triangle, then its critical points must lie in that triangle. Several recent papers $[1,2,3,4,6]$ have studied critical points of polynomials with three roots. If $p(z)$ is a complex-valued polynomial with roots $r_{1}, r_{2}$, and $r_{3}$, then there is a unique circle containing the roots. By changing coordinates, we can send this circle to the unit circle and fix $r_{3}=1$. The critical points of

$$
\left\{p: \mathbb{C} \rightarrow \mathbb{C}\left|p(z)=(z-1)\left(z-r_{1}\right)\left(z-r_{2}\right),\left|r_{1}\right|=\left|r_{2}\right|=1\right\}\right.
$$

are characterized in [1]. For this family of polynomials, a single critical point almost always determines a polynomial uniquely, and the unit disk contains a desert, $\left\{z \in \mathbb{C}:\left|z-\frac{2}{3}\right|<\frac{1}{3}\right\}$, in which critical points cannot occur.

For $k, m, n \in \mathbb{N}$, a natural extension of [1] is to study polynomials of the form

$$
\begin{aligned}
& P(k, m, n) \\
& =\left\{p: \mathbb{C} \rightarrow \mathbb{C}\left|p(z)=(z-1)^{k}\left(z-r_{1}\right)^{m}\left(z-r_{2}\right)^{n},\left|r_{1}\right|=\left|r_{2}\right|=1\right\} .\right.
\end{aligned}
$$

Critical points of polynomials in $P(1, k, k)$ and $P(k, m, m)$ are characterized in [2] and [4], respectively. In either case, similar to [1], a critical point


Figure 1. The desert region for $P(1,4,4)$ on the left, and $P(10,4,4)$ on the right.
almost always determines a polynomial uniquely, and the unit disk contains a desert in which critical points cannot occur. In Figure 1, the interior of the white disk is the desert region for $P(1,4,4)$ on the left, and $P(10,4,4)$ on the right. The structural similarity is due to the symmetry in the multiplicities of the roots located at $r_{1}$ and $r_{2}$.

This paper completes the characterization of the critical points of polynomials in $P(k, m, n)$ by analyzing the $m \neq n$ case. One can use GeoGebra to graphically investigate the critical points of these polynomials. Set $r_{1}$ and $r_{2}$ in motion around the unit circle and trace the loci of the critical points. See Figure 2. Due to the loss of symmetry in the multiplicities of the roots located at $r_{1}$ and $r_{2}$, the unit disk contains two desert regions in which critical points cannot occur. Furthermore, each $c$ inside the unit disk and outside of the desert regions is the critical point of exactly two polynomials in $P(k, m, n)$.


Figure 2. For the family of polynomials $P(9,3,8)$, the unit disk contains two desert regions in which critical points cannot occur.

## 2. Critical Points

In this paper, we study critical points of polynomials in $P(k, m, n)$ with $m \neq n$. Without loss of generality, we assume $m<n$. Our results can be applied to polynomials with three roots that lie elsewhere by changing the coordinate system.

We begin by introducing some notation. For $\alpha>0$, let $T_{\alpha}$ denote the circle tangent to $x=1$ with diameter $\alpha$ passing through 1 and $1-\alpha$ in the complex plane. That is,

$$
T_{\alpha}=\left\{z \in \mathbb{C}:\left|z-\left(1-\frac{\alpha}{2}\right)\right|=\frac{\alpha}{2}\right\}
$$

For example, $T_{2}$ is the unit circle and $T_{\frac{2 k}{m+n+k}}$ is a circle centered at $z=$ $\frac{m+n}{m+n+k}$ with radius $\frac{k}{m+n+k}$. A given $z \in \mathbb{C}$ with $\operatorname{Re}(z) \neq 1$ lies on a unique $T_{\alpha}$. The following lemma provides a method of calculating the corresponding $\alpha$-value.

Lemma 2.1 ([1]). Let $z \in \mathbb{C}$ with $\operatorname{Re}(z) \neq 1$. We have $z \in T_{\alpha}$ if and only if

$$
\frac{1}{\alpha}=R e\left(\frac{1}{1-z}\right)
$$

A polynomial of the form

$$
p(z)=(z-1)^{k}\left(z-r_{1}\right)^{m}\left(z-r_{2}\right)^{n}
$$

## C. FRAYER

with $\left|r_{1}\right|=\left|r_{2}\right|=1 ; k, m, n \in \mathbb{N}$ and $n>m$ has $k+m+n-1$ critical points: $k-1$ critical points at $z=1, m-1$ critical points at $z=r_{1}, n-1$ critical points at $z=r_{2}$, and two additional critical points in the unit disk. Differentiation gives

$$
p^{\prime}(z)=(z-1)^{k-1}\left(z-r_{1}\right)^{m-1}\left(z-r_{2}\right)^{n-1} q(z)
$$

with
$q(z)=(m+n+k) z^{2}-\left((k+n) r_{1}+(k+m) r_{2}+m+n\right) z+k r_{1} r_{2}+n r_{1}+m r_{2}$.
Definition 2.2. Given $p \in P(k, m, n)$, we say that $c$ is a nontrivial critical point of $p(z)$ provided that $q(c)=0$.
Example 1. Let $p \in P(k, m, n)$ have a nontrivial critical point at $z=1$. Then, by the Gauss-Lucas Theorem, the root at $z=1$ has multiplicity greater than $k$. Therefore, $p \in P(k, m, n)$ has a nontrivial critical point at $z=1$ if and only if $p(z)=(z-1)^{k+m}(z-r)^{n}$ or $p(z)=(z-1)^{k+n}(z-r)^{m}$ for some $r \in T_{2}$.

Since we know which $p \in P(k, m, n)$ have a nontrivial critical point at $z=1$, we assume $c \neq 1$ as necessary throughout the paper.

To characterize the critical points of polynomials in $P(k, m, n)$, we investigate how the roots are related to a nontrivial critical point. Suppose $c$ is a nontrivial critical point of $p(z)=(z-1)^{k}\left(z-r_{1}\right)^{m}\left(z-r_{2}\right)^{n} \in P(k, m, n)$. Then,

$$
\begin{aligned}
0 & =q(c) \\
& =(k+m+n) c^{2}-\left((k+n) r_{1}+(k+m) r_{2}+m+n\right) c+k r_{1} r_{2}+n r_{1}+m r_{2}
\end{aligned}
$$

and it follows that

$$
r_{1}=\frac{(m-(k+m) c) r_{2}+(k+m+n) c^{2}-(m+n) c}{-k r_{2}+(k+n) c-n}
$$

and

$$
r_{2}=\frac{(n-(k+n) c) r_{1}+(k+m+n) c^{2}-(m+n) c}{-k r_{1}+(k+m) c-m}
$$

Definition 2.3. Given $c \in \mathbb{C}$, we define

$$
f_{1, c}(z)=\frac{(m-(k+m) c) z+(k+m+n) c^{2}-(m+n) c}{-k z+(k+n) c-n}
$$

and

$$
f_{2, c}(z)=\frac{(n-(k+n) c) z+(k+m+n) c^{2}-(m+n) c}{-k z+(k+m) c-m}
$$

Furthermore, we let $S_{1}=f_{1, c}\left(T_{2}\right)$ and $S_{2}=f_{2, c}\left(T_{2}\right)$.
For $c \in \mathbb{C}, f_{1, c}$ and $f_{2, c}$ are Möbius transformations with $f_{1, c}\left(r_{2}\right)=r_{1}$ and $f_{2, c}\left(r_{1}\right)=r_{2}$. We have established the following theorem.

Theorem 2.4. Suppose $c \in \mathbb{C} \backslash\{1\}$ and $p(z)=(z-1)^{k}\left(z-r_{1}\right)^{m}(z-$ $\left.r_{2}\right)^{n} \in P(k, m, n)$. Then, $p$ has a nontrivial critical point at $c$ if and only if $f_{1, c}\left(r_{2}\right)=r_{1}$ and $f_{2, c}\left(r_{1}\right)=r_{2}$.

When $c=1, f_{1, c}(z)=f_{2, c}(z)=\frac{-k z+k}{-k z+k}=1$, and $f_{1, c}$ and $f_{2, c}$ are degenerate. When $c \neq 1, f_{1, c}$ and $f_{2, c}$ are invertible with

$$
\begin{aligned}
\left(f_{1, c}\right)^{-1}(z) & =\frac{((k+n) c-n) z-\left((k+m+n) c^{2}-(m+n) c\right)}{k z+m-(k+m) c} \\
& =\frac{(n-(k+n) c) z+(k+m+n) c^{2}-(m+n) c}{-k z+(k+m) c-m} \\
& =f_{2, c}(z)
\end{aligned}
$$

Furthermore, $f_{1, c}\left(r_{2}\right)=r_{1} \in T_{2}$ so that $r_{1} \in S_{1} \cap T_{2}$, and $f_{2, c}\left(r_{1}\right)=r_{2}$ so that $r_{2} \in S_{2} \cap T_{2}$. To determine the polynomials in $P(k, m, n)$ having a critical point at $c$, we need to study $S_{1} \cap T_{2}$ and $S_{2} \cap T_{2}$. For $c \neq 1$, we will show that $\left|S_{1} \cap T_{2}\right|=\left|S_{2} \cap T_{2}\right|$ (Lemma 2.6) and that the cardinality of $S_{1} \cap T_{2}$ determines the number of polynomials in $P(k, m, n)$ with a nontrivial critical point at $c$ (Lemma 2.7).

As $S_{1}$ and $T_{2}$ are circles (or lines), $S_{1}=T_{2}$ or $\left|S_{1} \cap T_{2}\right| \leq 2$. To begin discussing the cardinality of the set $S_{1} \cap T_{2}$ we need an additional fact related to Möbius transformations. Functions of the form $f(z)=e^{i \theta} \frac{z-\alpha}{\bar{\alpha} z-1}$ with $|\alpha|<1$ are the only one-to-one analytic mappings of the unit disk onto itself [7, p. 334]. This leads to the following theorem.

Theorem 2.5. A Möbius transformation $T$ sends the unit circle to the unit circle if and only if $T(z)=\frac{\bar{\alpha} z-\bar{\beta}}{\beta z-\alpha}$ for some $\alpha, \beta \in \mathbb{C}$ with $\left|\frac{\alpha}{\beta}\right| \neq 1$.
Example 2. For $c \in \mathbb{C}, S_{1}=T_{2}$ whenever $f_{1, c}$ satisfies Theorem 2.5. Since

$$
f_{1, c}(z)=\frac{(m-(k+m) c) z+(m+n+k) c^{2}-(m+n) c}{-k z+(k+n) c-n}
$$

Theorem 2.5 implies $S_{1}=T_{2}$ if and only if

$$
\overline{(m+n) c-(m+n+k) c^{2}}=-k \text { and } \overline{m-(k+m) c}=n-(k+n) c .
$$

The first equation reduces to $(m+n+k) c^{2}-(m+n) c-k=0$ so that

$$
0=((m+n+k) c+k)(c-1)
$$

and $c \in\left\{1, \frac{-k}{m+n+k}\right\}$. The hypothesis of Theorem 2.5 are not satisfied when $c=1$, and as $m \neq n, c=\frac{-k}{m+n+k}$ does not satisfy $\overline{m-(k+m) c}=n-(k+$ $n) c$. Therefore, there is no $c \in \mathbb{C}$ for which $S_{1}=T_{2}$.

MISSOURI J. OF MATH. SCI., FALL 2017

## C. FRAYER

Remark 1. When $n=m, f_{1, c}=f_{2, c}$ which implies $S_{1}=S_{2}$. In this case, $S_{1}=T_{2}$ precisely when $c=\frac{-k}{m+n+k}$. See [4].

The following two Lemmas are direct extensions of results in [3].
Lemma 2.6 ([3]). If $c \neq 1$, then $\left|S_{1} \cap T_{2}\right|=\left|S_{2} \cap T_{2}\right| \in\{0,1,2\}$.
Proof. Let $c \neq 1$. By Example 2, $S_{1} \neq T_{2}$, and as $\left(f_{1, c}\right)^{-1}=f_{2, c}$, it follows that $S_{2} \neq T_{2}$. Without loss of generality, suppose $\left|S_{2} \cap T_{2}\right|=1$ and $S_{1} \cap T_{2}=\{\alpha, \beta\}$ with $\alpha \neq \beta$. By the definition of $S_{1}$, there exist $\alpha_{0}, \beta_{0} \in T_{2}$ with $f_{1, c}\left(\alpha_{0}\right)=\alpha, f_{1, c}\left(\beta_{0}\right)=\beta$ and $\alpha_{0} \neq \beta_{0}$. This implies

$$
f_{2, c}(\alpha)=\alpha_{0} \quad \text { and } \quad f_{2, c}(\beta)=\beta_{0}
$$

so that $\left|S_{2} \cap T_{2}\right|>1$; a contradiction. Therefore, $\left|S_{1} \cap T_{2}\right|=\left|S_{2} \cap T_{2}\right|$.
Lemma 2.7 ([3]). Suppose $n \neq m$ and $c \in \mathbb{C} \backslash\{1\}$.
(1) If $S_{1}$ and $T_{2}$ are disjoint, then no $p \in P(k, m, n)$ has a critical point at $c$.
(2) If $S_{1}$ and $T_{2}$ are tangent, then $c$ is the nontrivial critical point of exactly one $p \in P(k, m, n)$.
(3) If $S_{1}$ and $T_{2}$ intersect in two distinct points, then $c$ is the nontrivial critical point of exactly two polynomials in $P(k, m, n)$.

Lemmas 2.6 and 2.7 imply that $S_{1}$ is sufficient to characterize the nontrivial critical points of $p \in P(k, m, n)$.
2.1. Center and Radius of $S_{1}$. According to Lemma 2.7, to further characterize critical points of $p \in P(k, m, n)$, we need a better understanding of $S_{1}$. Since

$$
f_{1, c}(z)=\frac{(m-(k+m) c) z+(k+m+n) c^{2}-(m+n) c}{-k z+(k+n) c-n}
$$

$S_{1}$ is a line whenever there exists a $z \in T_{2}$ with $-k z+(k+n) c-n=0$. That is,

$$
\begin{equation*}
k=|k z|=|(k+n) c-n| \longleftrightarrow \frac{k}{n+k}=\left|c-\frac{n}{n+k}\right| \tag{2.1}
\end{equation*}
$$

Therefore, $S_{1}$ is a line if and only if $c \in T_{\frac{2 k}{n+k}}$.
Example 3. Let $c \in T_{\frac{2 k}{n+k}}$. Then $S_{1}$ is a line passing through
$f_{1, c}(1)=\frac{(m+n+k) c-m}{n+k}$ and $f_{1, c}(-1)=\frac{(m+n+k) c^{2}-(n-k) c-m}{(n+k) c-(n-k)}$
with

$$
\begin{equation*}
f_{1, c}(1)-f_{1, c}(-1)=\frac{-2 m n c+2 m n}{(n+k)((n+k) c-(n-k))} \tag{2.2}
\end{equation*}
$$

Since $c \in T_{\frac{2 k}{n+k}}, c=\frac{n}{n+k}+\frac{k}{n+k} e^{i \theta}$ for some $\theta \in[0,2 \pi]$. Substituting into equation (2.2), we obtain $\operatorname{Re}\left(f_{1, c}(1)-f_{1, c}(-1)\right)=0$. Therefore, $S_{1}$ is a vertical line through $f_{1, c}(1)$. For future use, we observe that if $c \in T_{\frac{2 k}{n+k}}$, then $f_{1, c}(1) \in T_{\frac{2 k(m+n+k)}{(n+k)^{2}}}$.

For $c \in \mathbb{C} \backslash\{1\}$, we use methods from [3] and [4] to determine the center and radius of $S_{1}$. By the definition of $S_{1}, z \in S_{1}$ if and only if there exists a $w \in T_{2}$ with $f_{1, c}(w)=z$. As $\left(f_{1, c}\right)^{-1}=f_{2, c}$, it follows that $z \in S_{1}$ if and only if $\left|f_{2, c}(z)\right|=|w|=1$. That is,

$$
\left|\frac{(n-(k+n) c) z+(m+n+k) c^{2}-(m+n) c}{-k z+(k+m) c-m}\right|=1
$$

which implies

$$
\begin{aligned}
& \left|z-\left(\frac{(k+m) c-m}{k}\right)\right| \\
& =\left|\frac{n-(n+k) c}{k}\right|\left|z-\left(\frac{(m+n) c-(m+n+k) c^{2}}{n-(n+k) c}\right)\right|
\end{aligned}
$$

Applying the change of variables $z=W+f_{1, c}(1)=W+\frac{(m+n+k) c-m}{n+k}$ gives

$$
\begin{equation*}
\left|W-\frac{m n(c-1)}{k(n+k)}\right|=\left|\frac{n-(n+k) c}{k}\right|\left|W-\frac{m n(1-c)}{(n+k)(n-(n+k) c)}\right| . \tag{2.3}
\end{equation*}
$$

For $\lambda \neq 1$, it follows from introductory complex analysis that the solution set of

$$
|z-u|=\lambda|z-v|
$$

is a circle with center $C=v+\frac{v-u}{\lambda^{2}-1}$ and radius $R$ satisfying $R^{2}=|C|^{2}-$ $\frac{\lambda^{2}|v|^{2}-|u|^{2}}{\lambda^{2}-1}$. In (2.3), when $\lambda=\left|\frac{n-(n+k) c}{k}\right|=1$, equation (2.1) implies $c \in T_{\frac{2 k}{n+k}}$ and by Example 3, $S_{1}$ is a line. When $c \notin T_{\frac{2 k}{n+k}}$, it follows that $\left|\frac{n-(n+k) c}{k}\right| \neq 1$ and the solution set of (2.3) is a circle with center

$$
\begin{aligned}
C & =\frac{m n(1-c)}{(n+k)(n-(n+k) c)}+\frac{\frac{m n(1-c)}{(n+k)(n-(n+k) c)}+\frac{m n(1-c)}{k(n+k)}}{\left|\frac{n-(n+k) c}{k}\right|^{2}-1} \\
& =\frac{\left(\frac{1}{k}\right)^{2}|n-(n+k) c|^{2} \frac{m n(1-c)}{(n+k)(n-(n+k) c)}+\frac{m n(1-c)}{k(n+k)}}{\left|\frac{n-(n+k) c}{k}\right|^{2}-1} .
\end{aligned}
$$

## C. FRAYER

Using $|n-(n+k) c|^{2}=(n-(n+k) c)(\overline{n-(n+k) c})$ yields

$$
\begin{aligned}
C & =\frac{\frac{m n}{n+k}((\overline{n-(n+k) c})(1-c)+k(1-c))}{|n-(n+k) c|^{2}-k^{2}} \\
& =\frac{m n|1-c|^{2}}{|n-(n+k) c|^{2}-k^{2}} \\
& =\frac{m n}{\left|n+k-\frac{k}{1-c}\right|^{2}-\left|\frac{k}{1-c}\right|^{2}}
\end{aligned}
$$

By Lemma 2.1, $\frac{k}{1-c}=\frac{k}{\alpha}+i k y$ for some real value $y$, and it follows that

$$
C=\frac{\alpha m n}{(n+k)^{2} \alpha-2 k(n+k)}
$$

Moreover,

$$
R^{2}=|C|^{2}-\frac{\left|\frac{n-(n+k) c}{k}\right|^{2}\left|\frac{m n(1-c)}{(n+k)(n-(n+k) c)}\right|^{2}-\left|\frac{m n(c-1)}{k(n+k)}\right|^{2}}{\left|\frac{n-(n+k) c}{k}\right|^{2}-1}=|C|^{2}
$$

implies $R=|C|$. Resubstituting $z=W+\frac{(m+n+k) c-m}{n+k}$ establishes the following result.

Lemma 2.8. Let $c \in T_{\alpha} \backslash\{1\}$ with $\alpha \neq \frac{2 k}{n+k}$. Then, $S_{1}$ is a circle with center $\gamma$ and radius $r$ given by

$$
\begin{aligned}
\gamma & =\frac{(m+n+k) c-m}{n+k}+\frac{\alpha m n}{(n+k)^{2} \alpha-2 k(n+k)} \\
\text { and } r & =\left|\frac{\alpha m n}{(n+k)^{2} \alpha-2 k(n+k)}\right| .
\end{aligned}
$$

We investigate an example for future reference.
Example 4. For $c \in T_{2} \backslash\{1\}, S_{1}$ is a circle with center

$$
\gamma=\frac{(m+n+k) c-m}{n+k}+\frac{2 m n}{2(n+k)^{2}-2 k(n+k)}=\frac{m+n+k}{n+k} c
$$

and radius

$$
r=\left|\frac{2 m n}{2(n+k)^{2}-2 k(n+k)}\right|=\frac{m}{n+k} .
$$

Therefore, when $c \in T_{2} \backslash\{1\}, S_{1}$ is externally tangent to $T_{2}$ at $c$.

## GEOMETRY OF POLYNOMIALS WITH THREE ROOTS



Figure 3. If $S_{1}$ is internally tangent to $T_{2}$, then $|\gamma|+r=1$.
2.2. Identifying the Desert Regions. For $p \in P(k, m, n)$ with $n>m$, we use methods from [3] to locate the desert regions. According to Lemma 2.7, if $c$ is located within a desert region, then $S_{1} \cap T_{2}=\emptyset$. To better understand the desert regions we identify their boundaries by determining where $S_{1}$ is tangent to $T_{2}$. We begin with $S_{1}$ internally tangent to $T_{2}$. For $c \in T_{\alpha} \backslash\{1\}$ with $\alpha \in(0,2]$, if $S_{1}$ is internally tangent to $T_{2}$, then

$$
\begin{equation*}
|\gamma|+r=1 \tag{2.4}
\end{equation*}
$$

See Figure 3.
For $1 \neq c \in T_{\alpha}$ and $R=\frac{\alpha m n}{\alpha(n+k)^{2}-2 k(n+k)}, S_{1}$ is a circle with center $\gamma=\frac{(m+n+k) c-m}{n+k}+R$ and radius $r=|R|$. Substituting into equation (2.4) and setting $c=x+i y$ yields

$$
\begin{equation*}
((m+n+k) x-m+(n+k) R)^{2}+(m+n+k)^{2} y^{2}=(n+k)^{2}(1-|R|)^{2} . \tag{2.5}
\end{equation*}
$$

We let $I_{\alpha}$ denote the set of all $(x, y)$ which satisfy equation (2.5). Since $r>0$, equation (2.4) is satisfied if and only if $S_{1}$ is internally tangent to $T_{2}$ or $S_{1}=T_{2}$. Recalling, from Example 2, that $S_{1}$ is never equal to $T_{2}$, we obtain the following lemma.

Lemma 2.9. Let $c \neq 1$ and $\alpha \in(0,2]$. Then, $S_{1}$ is internally tangent to $T_{2}$ if and only if $c \in I_{\alpha} \cap T_{\alpha}$.

To use Lemma 2.9, we need to find the values of $\alpha$ for which $I_{\alpha}$ and $T_{\alpha}$ intersect, and the corresponding points of intersection. Observe that $R$

## C. FRAYER

is undefined when $\alpha=\frac{2 k}{n+k}$, negative when $\alpha<\frac{2 k}{n+k}$, and positive when $\alpha>\frac{2 k}{n+k}$. With this in mind, we consider three cases:
(1) $0<\alpha<\frac{2 k}{n+k}$;
(2) $\alpha=\frac{2 k}{n+k}$;
(3) $\frac{2 k}{n+k}<\alpha \leq 2$.

In the first case, $|R|=-R$ and equation (2.5) becomes

$$
\begin{equation*}
\left(x-\left(1-\frac{(n+k)+(n+k) R}{m+n+k}\right)\right)^{2}+y^{2}=\left(\frac{(n+k)+(n+k) R}{m+n+k}\right)^{2} \tag{2.6}
\end{equation*}
$$

For

$$
\begin{equation*}
\rho=\frac{(n+k)+(n+k) R}{m+n+k}=\frac{\left((n+k)^{2}+n m\right) \alpha-2 k(n+k)}{(n+k)(m+n+k) \alpha-2 k(m+n+k)}, \tag{2.7}
\end{equation*}
$$

$I_{\alpha}$ is a circle tangent to $x=1$, centered at $x=1-\rho$ with radius $|\rho|$. Circles $I_{\alpha}$ and $T_{\alpha}$ intersect (at $1 \neq c$ ) precisely when $I_{\alpha}=T_{\alpha}$. This occurs when

$$
\frac{\left((n+k)^{2}+m n\right) \alpha-2 k(n+k)}{(n+k)(m+n+k) \alpha-2 k(m+n+k)}=\frac{\alpha}{2} .
$$

After simplification, this becomes

$$
((m+n+k) \alpha-2 k)((n+k) \alpha-2(n+k))=0
$$

which implies $\alpha=\frac{2 k}{m+n+k}$ or $\alpha=2 \notin\left(0, \frac{2 k}{n+k}\right)$. By Lemma 2.9, when $c \in T_{\frac{2 k}{m+n+k}}, S_{1}$ is internally tangent to $T_{2}$.

Before proceeding to the second case, we pause for a result.
Theorem 2.10. No polynomial in $P(k, m, n)$ has a critical point strictly inside $T_{\frac{2 k}{m+n+k}}$.

Proof. Let $c \in T_{\alpha} \backslash\{1\}$ with $0<\alpha<\frac{2 k}{m+n+k}$. Equations (2.6) and (2.7) imply $I_{\alpha}=T_{\beta}$ with

$$
\beta=\frac{2\left[\left((n+k)^{2}+m n\right) \alpha-2 k(n+k)\right]}{(n+k)(m+n+k) \alpha-2 k(m+n+k)} .
$$

Furthermore, $\beta=\alpha$ when $\alpha=\frac{2 k}{m+n+k}$ or $\alpha=2, \beta>0$ when $\alpha=0$, and $\beta$ is undefined when $\alpha=\frac{2 k}{n+k}$. Therefore, if $0<\alpha<\frac{2 k}{m+n+k}$, then $\beta>\alpha$ and it follows that $T_{\alpha}$ lies inside $T_{\beta}=I_{\alpha}$. See Figure 4. For $c=x+i y$, equation (2.6) implies

$$
\left(x-\left(1-\frac{(n+k)+(n+k) R}{m+n+k}\right)\right)^{2}+y^{2}<\left(\frac{(n+k)+(n+k) R}{m+n+k}\right)^{2}
$$

## GEOMETRY OF POLYNOMIALS WITH THREE ROOTS



Figure 4. When $0<\alpha<\frac{2 k}{m+n+k}, T_{\alpha}$ lies inside $I_{\alpha}$.

Equivalently, equations (2.4) and (2.5) imply $|\gamma|+r<1$. Therefore, $S_{1} \cap$ $T_{2}=\emptyset$ and by Lemma 2.7, no $p \in P(k, m, n)$ has a critical point strictly inside $T_{\frac{2 k}{m+n+k}}$.

In the second case, $\alpha=\frac{2 k}{n+k}$ and by Example 3, $S_{1}$ is a vertical line passing through $f_{1, c}(1)=\frac{(m+n+k) c-m}{n+k}$ which is not tangent to $T_{2}$.

In the third case, $|R|=R$ and equation (2.5) becomes
$\left(x-\left(\frac{m-n-k}{m+n+k}+\frac{(n+k)-(n+k) R}{m+n+k}\right)\right)^{2}+y^{2}=\left(\frac{(n+k)-(n+k) R}{m+n+k}\right)^{2}$.
For

$$
\rho=\frac{(n+k)-(n+k) R}{m+n+k}=\frac{\left((n+k)^{2}-m n\right) \alpha-2 k(n+k)}{(n+k)(m+n+k) \alpha-2 k(m+n+k)},
$$

$I_{\alpha}$ is a circle tangent to $x=\frac{m-n-k}{m+n+k}$, centered at $x=\frac{m-n-k}{m+n+k}+\rho$ with radius $|\rho|$. Furthermore, $I_{\alpha}$ and $T_{\alpha}$ intersect on the real axis if and only if

$$
\begin{equation*}
\frac{m-n-k}{m+n+k}+\frac{2(n+k)-2(n+k) R}{m+n+k}=1-\alpha \quad \text { or } \quad \frac{m-n-k}{m+n+k}=1-\alpha \tag{2.8}
\end{equation*}
$$

The second equation implies $\alpha=\frac{2(n+k)}{m+n+k}$ and the first equation reduces to

$$
(n+k)(m+n+k) \alpha^{2}-(2 k(m+n+k)+2 m n) \alpha=0
$$

which has solutions $\alpha=\frac{2(m+k)}{m+n+k}$ and $\alpha=0$. We set

$$
\alpha_{1}=\frac{2(m+k)}{m+n+k}<\frac{2(n+k)}{m+n+k}=\alpha_{2} .
$$

## C. FRAYER

When $\alpha \in\left(\frac{2 k}{n+k}, \alpha_{1}\right) \cap\left(\alpha_{2}, 2\right], I_{\alpha} \cap T_{\alpha}=\emptyset$ and by Lemma 2.9, $S_{1}$ is not internally tangent to $T_{2}$.

When $\alpha_{1}<\alpha<\alpha_{2},\left|I_{\alpha} \cap T_{\alpha}\right|=2$. See Figure 5. To determine the values of $c$ where $S_{1}$ is internally tangent to $T_{2}$, we need to find the intersection of $I_{\alpha}$ and $T_{\alpha}$. Upon simplification, these equations become:

$$
\begin{aligned}
\left(x-\frac{m-(n+k) R}{m+n+k}\right)^{2}+y^{2} & =\left(\frac{(n+k)-(n+k) R}{m+n+k}\right)^{2} \\
\alpha(1-x)-(1-x)^{2} & =y^{2}
\end{aligned}
$$

By setting $R=\frac{\alpha m n}{(n+k)^{2} \alpha-2 k(n+k)}$ and using substitution, we eventually obtain
$x=\frac{(m+n+k)^{2} \alpha^{2}-[2(m+n+k)(m+n+2 k)-4 m n] \alpha+4 k(m+n+k)}{(m+n+k)((m+n+k) \alpha-2 k)(\alpha-2)}$
and

$$
y^{2}=(1-x)(\alpha-1+x)
$$

As $\alpha$ varies from $\alpha_{1}$ to $\alpha_{2}$, a parametric curve is formed. See Figure 5. After some tedious algebra the parametric equations combine to form the implicit equation

$$
\begin{align*}
& 2 k(m+n)\left((-1+x) x+y^{2}\right)\left(-1+x^{2}+y^{2}\right)+k^{2}\left(-1+x^{2}+y^{2}\right)^{2}+\left((-1+x)^{2}\right. \\
& \left.+y^{2}\right)\left(m^{2}\left(-1+x^{2}+y^{2}\right)+n^{2}\left(-1+x^{2}+y^{2}\right)+2 m n\left(1+x^{2}+y^{2}\right)\right)=0 . \tag{2.10}
\end{align*}
$$

Equation (2.10) represents the boundary of the second desert region which we denote by $D$.

Theorem 2.11. No polynomial in $P(k, m, n)$ has a critical point strictly inside $D$.

Proof. Let $c=x+i y \in T_{\alpha}$ with $\alpha \in\left[\alpha_{1}, \alpha_{2}\right]$. Then, $c$ lies inside $D$ whenever

$$
\left(x-\frac{m-(n+k) R}{m+n+k}\right)^{2}+y^{2}<\left(\frac{(n+k)-(n+k) R}{m+n+k}\right)^{2} .
$$

Equivalently, equations (2.4) and (2.5) imply $|\gamma|+r<1$. Therefore, $S_{1}$ and $T_{2}$ are disjoint and by Lemma 2.7, $c$ is not the critical point of any $p \in P(k, m, n)$.

Remark 2. When $n=m$, direct calculations give $\alpha_{1}=\alpha_{2}$. This observation explains why the family $P(k, m, m)$ has only one desert region. See [4].


Figure 5. Left, when $\alpha_{1}<\alpha<\alpha_{2},\left|I_{\alpha} \cap T_{\alpha}\right|=2$. Right, as $\alpha$ varies from $\alpha_{1}$ to $\alpha_{2}$, parametric equations (2.9) trace the boundary of the second desert region.

Example 5. Setting $k=1, m=1$, and $n=2$ in Theorem 2.10 and equation (2.10) identifies

$$
2\left(x^{2}+y^{2}\right)^{2}-3 x\left(x^{2}+y^{2}\right)+x=0
$$

and $T_{\frac{1}{2}}$ as the boundaries of the desert regions in $P(1,1,2)$, which constitutes the results of [3]. See Figure 6.

The GeoGebra notebook used to create the images in Figure 6 is located at http://www.uwplatt.edu/~frayerc/deserts.html. One can use this to explore the boundary of the desert regions for different values of $k, m$, or $n$ !

The analysis of $I_{\alpha}$ has established the following result.
Lemma 2.12. Let $c \in \mathbb{C} \backslash\{1\}$. Then, $S_{1}$ is internally tangent to $T_{2}$ if and only if $c \in T_{\frac{2 k}{m+n+k}} \cup D$.

Furthermore, for $c \in T_{\alpha}$ with $0<\alpha \leq 2, S_{1}$ will be externally tangent to $T_{2}$ if and only if

$$
|\gamma|-r=1
$$

A less involved analysis establishes the following lemma.
Lemma 2.13. Let $c \in \mathbb{C} \backslash\{1\}$. Then, $S_{1}$ is externally tangent to $T_{2}$ if and only if $c \in T_{2}$.
C. FRAYER



Figure 6. The boundary of the desert regions in $P(1,1,2)$, to the left, and $P(6,2,17)$ to the right.
2.3. Main Result. For $n \neq m$, we are now ready to characterize the critical points of polynomials in $P(k, m, n)$. Let $O$ represent the region strictly inside $T_{2}$ and outside of $T_{\frac{2 k}{m+n+k}}$ and $D$. Observe that $O$ is the interior of the grey region in Figure 2. We denote the closure of $O$ by $\bar{O}$.

Theorem 2.14. Let $c \in \mathbb{C}$ and $n \neq m$.
(1) For $p \in P(k, m, n)$, $p$ has a nontrivial critical point at $c=1$ if and only if $p(z)=(z-1)^{k+m}(z-r)^{n}$ or $p(z)=(z-1)^{k+n}(z-r)^{m}$ for some $r \in T_{2}$.
(2) If $c \notin \bar{O}$, then no $p \in P(k, m, n)$ has a critical point at $c$.
(3) If $1 \neq c \in \bar{O} \backslash O$, then a unique $p \in P(k, m, n)$ has a nontrivial critical point at $c$.
(4) If $c \in O$, then exactly two polynomials in $P(k, m, n)$ have a nontrivial critical point at $c$.

Proof. Parts 1-3 follow directly from Example 1 and Lemmas 2.7, 2.12, and 2.13.

For part 4, we use a 'root dragging' argument similar to [1]. By Lemma 2.12 and Example 2, for $c \in O,\left|S_{1} \cap T_{2}\right| \in\{0,2\}$. We will show that $\left|S_{1} \cap T_{2}\right|=2$. Without loss of generality, suppose $S_{1} \cap T_{2}=\emptyset$ with $S_{1}$ contained inside $T_{2}$. As we 'drag' $c$ to $T_{2}$ along a smooth curve contained in $O, S_{1}$ is continuously transformed into a circle externally tangent to $T_{2}$. By the Intermediate Value Theorem, there exists a $c_{0}$ on the curve with $S_{1}$ internally tangent to $T_{2}$. As $c$ never leaves $O$, this contradicts Lemma 2.12. Therefore, $\left|S_{1} \cap T_{2}\right|=2$ and by Lemma 2.7 , there are exactly two polynomials in $P(k, m, n)$ with a nontrivial critical point at $c$.

## GEOMETRY OF POLYNOMIALS WITH THREE ROOTS

## References

[1] C. Frayer, M. Kwon, C. Schafhauser, and J. Swenson, The geometry of cubic polynomials, Math. Magazine, 87 (2014), 113-124.
[2] C. Frayer, The geometry of a class of generalized cubic polynomials, International Journal of Analysis and Applications, 8 (2015), 93-99.
[3] C. Frayer and L. Gauthier, A tale of two circles: Geometry of a class of quartic polynomials, Involve a Journal of Mathematics, (to appear).
[4] C. Frayer, A tour of extremes: Geometry of a family of polynomials with three roots, Universal Journal of Mathematics and Mathematical Sciences, (to appear).
[5] M. Marden, Geometry of Polynomials, Second edition, Mathematical Surveys, No. 3, American Mathematical Society, Providence, RI, 1966.
[6] S. Northshield, Geometry of cubic polynomials, Math. Magazine, 86 (2013), 136143.
[7] E. Saff and A. Snider, Fundamentals of Complex Analysis for Mathematics, Science, and Engineering, Prentice-Hall, Anglewood Cliffs, New Jersey, 1993.

MSC2010: 30C15
Key words and phrases: geometry of polynomials, critical points, GaussLucas Theorem

Department of Mathematics, University of Wisconsin-Platteville, Platteville, WI 53818

E-mail address: frayerc@uwplatt.edu

