$(\epsilon, \in \vee q)$-BIPOLAR FUZZY $B C K / B C I$-ALGEBRAS

CHIRANJIBE JANA, MADHUMANGAL PAL, AND
ARSHAM BORUMAND SAIED

Abstract

In this paper, the concept of quasi-coincidence of a bipolar fuzzy point within a bipolar fuzzy set is introduced. The notion of $(\in, \in \vee q)$-bipolar fuzzy subalgebras and ideals of $B C K / B C I$ algebras are introduced and their related properties are investigated by some examples. We study bipolar fuzzy $B C K / B C I$-subalgebras and bipolar fuzzy $B C K / B C I$-ideals by their level subalgebras and level ideals. We also provide the relationship between $(\in, \in \vee q)$ bipolar fuzzy $B C K / B C I$-subalgebras and bipolar fuzzy $B C K / B C I$ subalgebras, and $(\in, \in \vee q)$-bipolar fuzzy $B C K / B C I$-ideals and bipolar fuzzy $B C K / B C I$-ideals by counter examples.

1. Introduction

In 1965, the concept of fuzzy sets, a remarkable idea in mathematics, was proposed by Zadeh [45]. In this traditional concept of fuzzy set, the membership degree expresses belongingness of an element to a fuzzy set. The membership degree of an element ranges over the interval $[0,1]$. When the membership degree of an element is 1 , then the element completely belongs to its corresponding fuzzy set, and the membership degree of an element is 0 means an element does not belong to the fuzzy set. Based on this tool, different fuzzy algebraic structures have been developed by many researchers, fuzzy $B C K / B C I$-algebras is one of them. The $B C K / B C I$ algebras are two classes of algebras of logic which was initiated by Imai and Iseki [8] in 1966 as a generalization of the concept of set-theoretic difference and propositional calculi. The fuzzy structures of $B C K / B C I$ algebras worked out by many researchers such as Jun [18, 19, 23, 35], Liu [28], Lee [27], Bej and Pal [2], Jana et al. and others [8-16, 31] have done much investigations on $B C K / B C I / G / B$-algebras related to these algebras.

In 1994, the notion of bipolar fuzzy sets was proposed by Zhang [49, 50] as a generalization of fuzzy sets [45]. Bipolar-valued fuzzy sets [24, 25] are seen as an extension of fuzzy sets whose membership degree range is enlarged from the interval $[0,1]$ to $[-1,1]$. In a bipolar fuzzy set, the membership degree 0 of an element means that the element is irrelevant to the corresponding property, the membership degree $(0,1]$ of an element

C. JANA, M. PAL, AND A. B. SAIED

indicates that the element somewhat satisfies the property, and the membership degree $[-1,0)$ of an element indicates that the element somewhat satisfies the implicit counter-property. Although bipolar fuzzy sets and intuitionistic fuzzy sets are similar, they are different sets as introduced by Lee [25]. Bipolar fuzzy sets have various applications in fuzzy algebras. For example, bipolar fuzzy ideals [1] in $L A$-semigroups, bipolar fuzzy subalgebras and ideals [26] of $B C K / B C I$-algebras, bipolar fuzzy a-ideals in $B C K / B C I$-algebras [27] and bipolar valued fuzzy $B C K / B C I$-algebras [42] are some of them.

In 2004, Murali [38] introduced the definition of a fuzzy point belonging to a fuzzy subset under a natural equivalence on a fuzzy subset. The quasi-coincidence of a fuzzy point to a fuzzy subset, as mentioned by Pu [39] (1980), played a vital role to derive some types of fuzzy subsystems. Bhakat and Das $[3,4]$ utilized the concept of (α, β)-fuzzy subgroups by using the 'belongs to' relation (\in) and 'quasi-coincident with' relation (q) between a fuzzy point and a fuzzy subset. It is seen that $(\in, \in \vee q)$-fuzzy subgroups are an important generalization of Rosenfeld's [41] fuzzy subgroup. Similar types of generalizations have been made to the other algebraic structures by Zhan $[46,47,48]$. Jun et al. [14-16] introduced the concept of (α, β) fuzzy subalgebras and ideals and investigated their related properties. Ma et al. [29, 30, 31, 32] introduced some kinds of $(\in, \in \vee q)$-interval-valued fuzzy ideals of $B C I$-algebras. In 2015, Muhiuddin et al. [36, 37] studied subalgebras of $B C K / B C I$-algebras based on (α, β)-type fuzzy sets. These works are enough to motivate us and, to the best of our knowledge, no other works are available on $(\epsilon, \in \vee q)$-bipolar fuzzy subalgebras and ideals in $B C K / B C I$-algebras and other fuzzy algebraic structures. For this reason we have developed the theoretical study of $(\in, \in \vee q)$-bipolar fuzzy $B C K / B C I$-subalgebras and $(\in, \in \vee q)$-bipolar fuzzy ideals of $B C K / B C I$ algebras.

The remainder of this article is structured as follows: Section 2 proceeds with a recapitulation of all required definitions and properties. In Section 3, concepts and operations of $(\in, \in \vee q)$-bipolar fuzzy $B C K / B C I$-subalgebras are introduced and properties are investigated. In Section $4,(\in, \in \vee q)$ bipolar fuzzy ideals of $B C K / B C I$-algebras are proposed and their properties are discussed in detail. Finally, in Section 5, conclusions and the scope of future research is given.

2. Preliminaries

In this section, some elementary aspects necessary for this paper are included.

By a $B C I$-algebra we mean an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following axioms for all $x, y, z \in X$:
(i) $((x * y) *(x * z)) *(z * y)=0$
(ii) $(x *(x * y)) * y=0$
(iii) $x * x=0$
(iv) $\quad x * y=0$ and $y * x=0$ imply $x=y$.

We define a partial ordering " \leq " by $x \leq y$ if and only if $x * y=0$.
If a $B C I$-algebra X satisfies $0 * x=0$ for all $x \in X$, then we say X is a $B C K$-algebra. Any $B C K$-algebra X satisfies the following axioms for all $x, y, z \in X$:
(1) $(x * y) * z=(x * z) * y$
(2) $((x * z) *(y * z)) *(x * y)=0$
(3) $x * 0=x$
(4) $x * y=0 \Rightarrow(x * z) *(y * z)=0,(z * y) *(z * x)=0$.

Throughout this paper X always means a $B C K / B C I$-algebra without any specification.

A non-empty subset S of X is called a subalgebra of X if $x * y \in S$ for any $x, y \in S$. A nonempty subset I of X is called an ideal of X if it satisfies $\left(I_{1}\right) 0 \in I$ and,
$\left(I_{2}\right) x * y \in I$ and $y \in I$ imply $x \in I$.
We refer the reader to the books Huang [7] and Meng [34] for further information regarding $B C K / B C I$-algebras. A fuzzy set A in a set X is of the form

$$
\mu_{A}(y)= \begin{cases}t \in(0,1], & \text { if } y=x \\ 0, & \text { if } y \neq x\end{cases}
$$

We denote a fuzzy point with support x and value t as x_{t}. For a fuzzy point x_{t} and a fuzzy set A of a set X, Pu and Liu [39] gave meaning to the symbol $x_{t} \Phi A$, where $\Phi \in\{\in, q, \in \vee q, \wedge q\}$. To say that $x_{t} \in A$ (respectively, $x_{t} q \mu$) means that $\mu_{A}(x) \geq t$ (respectively, $\mu_{A}(x)+t>1$), and in this case, x_{t} is said to belong to (respectively, be quasi-coincident with) a fuzzy set A. To say that $x_{t} \in \vee q A$ (respectively, $x_{t} \in \wedge q A$) means that $x_{t} \in A$ or $x_{t} q A$ (respectively, $x_{t} \in A$ and $x_{t} q A$). To say that $x_{t} \bar{\phi} A$ means that $x_{t} \Phi A$ does not hold, where $\Phi \in\{\in, q, \in \vee q, \in \wedge q\}$.

A fuzzy set A in a $B C K / B C I$-algebra X is said to be a fuzzy subalgebra of X if it satisfies $\mu_{A}(x * y) \geq \min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$ for all $x, y \in X$.

A fuzzy set A of X is said to be a fuzzy ideal of X if it satisfies (i) $\left.\mu_{A}(0) \geq \mu_{A}(x)\right)$ and $(i i) \mu_{A}(x) \geq\left\{\mu_{A}(x * y), \mu_{A}(y)\right\}$, for all $x, y \in X$.

Proposition 2.1. [18] A fuzzy set A of X is called a fuzzy subalgebra of X if and only if it satisfies $x_{t} \in A, y_{s} \in A \Rightarrow(x * y)_{\min (t, s)} \in A$ for all $x, y \in X$ and $t, s \in(0,1]$.
Proposition 2.2. [20] A fuzzy set A of X is called a fuzzy ideal of X if and only if it satisfies $(i) x_{t} \in A \Rightarrow 0_{t} \in A,(i i)(x * y)_{t} \in A, y_{s} \in A \Rightarrow$ $x_{\min (t, s)} \in A$, for all $x, y \in X$ and $t, s \in(0,1]$.

MISSOURI J. OF MATH. SCI., FALL 2017

Definition 2.3. [24] A bipolar fuzzy set A of X is defined as

$$
A=\left\{\left(x, \mu_{A}^{P}(x), \mu_{A}^{N}(x)\right): x \in X\right\}
$$

where $\mu_{A}^{P}: X \rightarrow[0,1]$ and $\mu_{A}^{N}: X \rightarrow[-1,0]$ are mappings. The positive membership degree $\mu_{A}^{P}(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar fuzzy set $A=\left\{\left(x, \mu_{A}^{P}(x), \mu_{A}^{N}(x)\right.\right.$: $x \in X\}$ and the negative membership degree $\mu_{A}^{N}(x)$ denotes the satisfaction degree of an element x to some implicit counter property of $A=$ $\left\{\left(x, \mu_{A}^{P}(x), \mu_{A}^{N}(x): x \in X\right\}\right.$. If $\mu_{A}^{P}(x) \neq 0$ and $\mu_{A}^{N}(x)=0$, this case is regarded as having only a positive satisfaction degree for $A=\left\{\left(x, \mu_{A}^{P}(x), \mu_{A}^{N}(x)\right.\right.$: $x \in X\}$. If $\mu_{A}^{P}(x)=0$ and $\mu_{A}^{N}(x) \neq 0, x$ does not satisfy the property of $A=\left\{\left(x, \mu_{A}^{P}(x), \mu_{A}^{N}(x): x \in X\right\}\right.$, but somewhat satisfies the counterproperty of $A=\left\{\left(x, \mu_{A}^{P}(x), \mu_{A}^{N}(x): x \in X\right\}\right.$. In some cases it is possible for an element x to be $\mu_{A}^{P}(x) \neq 0$ and $\mu_{A}^{N}(x) \neq 0$ when the membership function of the property overlaps that of its counter-property of its portion of domain (Lee [25]). We shall simply use the symbol $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ for the bipolar fuzzy set $A=\left\{\left(x, \mu_{A}^{P}(x), \mu_{A}^{N}(x)\right) \mid x \in X\right\}$.
Definition 2.4. [49] For every two bipolar fuzzy sets $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ and $B=\left(\mu_{B}^{P}, \mu_{B}^{N}\right)$ in X, we define

$$
\begin{aligned}
(A \cup B)(x) & =\left\{\max \left\{\mu_{A}^{P}(x), \mu_{B}^{P}(x)\right\}, \min \left\{\mu_{A}^{N}(x), \mu_{B}^{N}(x)\right\}\right\} \\
(A \cap B)(x) & =\left\{\min \left\{\mu_{A}^{P}(x), \mu_{B}^{P}(x)\right\}, \max \left\{\mu_{A}^{N}(x), \mu_{B}^{N}(x)\right\}\right\}
\end{aligned}
$$

Proposition 2.5. [26] A bipolar fuzzy set $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ of X is called a bipolar fuzzy subalgebra of X if it satisfies $\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y)\right\}$ and $\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y)\right\}$ for all $x, y \in X$.

Definition 2.6. [26] A bipolar fuzzy set $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ of X is called a bipolar fuzzy ideal of X if it satisfies the following assertions
(i) $\mu_{A}^{P}(0) \geq \mu_{A}^{P}(x)$ and $\mu_{A}^{N}(0) \leq \mu_{A}^{N}(x)$
(ii) $\mu_{A}^{P}(x) \geq \min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y)\right\}$
(iii) $\mu_{A}^{N}(x) \leq \max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y)\right\}$ for all $x, y \in X$.

3. $(\in, \in \vee q)$-Bipolar Fuzzy $B C K / B C I$-Subalgebras

In this section, $(\epsilon, \in \vee q)$-bipolar fuzzy subalgebras of $B C K / B C I$-algebras are defined and some important properties are presented.
Definition 3.1. Let $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ be a bipolar fuzzy set in a set X of the form

$$
\begin{gathered}
\mu_{A}^{P}(y)= \begin{cases}t \in(0,1], & \text { if } y=x \\
0, & \text { if } y \neq x\end{cases} \\
\mu_{A}^{N}(y)= \begin{cases}m \in[-1,0), & \text { if } y=x \\
0, & \text { if } y \neq x\end{cases}
\end{gathered}
$$

A bipolar fuzzy point with support x and values t and m is denoted by $\langle x, t, m\rangle$. For a bipolar fuzzy point $\langle x, t, m\rangle$ and a bipolar fuzzy set $A=$ $\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ in a set X, we give meaning to the symbol $\left(x_{t} \Phi \mu_{A}^{P}, x_{m} \Phi \mu_{A}^{N}\right)$, where $\Phi \in\{\in, q, \in \vee q, \in \wedge q\}$. To say that $x_{t} \in \mu_{A}^{P}$ (respectively, $x_{t} q \mu_{A}^{P}$) and $x_{m} \in \mu_{A}^{N}$ (respectively, $x_{m} q \mu_{A}^{N}$) means that $\mu_{A}^{P}(x) \geq t$ (respectively, $\mu_{A}^{P}(x)+t>1$) and $\mu_{A}^{N}(x) \leq m$ (respectively, $\left.\mu_{A}^{N}(x)+m<-1\right)$, and in this case we say that x_{t} is said to belong to (respectively, be quasi-coincident with) and x_{m} is said to belong to (respectively, be quasi-coincident with) a bipolar fuzzy set $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$. To say that $x_{t} \in \vee q$ (respectively, $x_{t} \in \wedge q$) and $x_{m} \in \vee q$ (respectively, $x_{m} \in \wedge q$) means that $x_{t} \in \mu_{A}^{P}$ or $x_{t} q \mu_{A}^{P}$ (respectively, $x_{t} \in \mu_{A}^{P}$ and $x_{t} q \mu_{A}^{P}$) and $x_{m} \in \mu_{A}^{N}$ or $x_{m} q \mu_{A}^{N}$ (respectively, $x_{m} \in \mu_{A}^{N}$ and $\left.x_{m} q \mu_{A}^{N}\right)$. To say that $\left(x_{t} \bar{\Phi} \mu_{A}^{P}, x_{m} \bar{\Phi} \mu_{A}^{N}\right)$ means that $x_{t} \Phi \mu_{A}^{P}$ does not hold and $x_{m} \Phi \mu_{A}^{N}$ does not hold, where $\Phi \in\{\in, q, \in \vee q, \in \wedge q\}$.
Definition 3.2. Let $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ be a bipolar fuzzy set of X and $(m, t) \in$ $[-1,0] \times[0,1]$, we define $U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)=\left\{x \in X \mid \mu_{A}^{P}(x) \geq t\right.$ and $\mu_{A}^{N}(x) \leq$ $m\}$ is called a t-level cut of μ_{A}^{P} and m-level cut of μ_{A}^{N} of the bipolar fuzzy set $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$.
Theorem 3.3. A bipolar fuzzy set $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ of X is called a bipolar fuzzy subalgebra of X if and only if the following assertion is valid $x_{t} \in \mu_{A}^{P}, y_{s} \in \mu_{A}^{P} \Rightarrow(x * y)_{\min (t, s)} \in \mu_{A}^{P}$ and $x_{m} \in \mu_{A}^{N}, y_{n} \in \mu_{A}^{N} \Rightarrow$ $(x * y)_{\max (m, n)} \in \mu_{A}^{N}$, for all $x, y \in X, t, s \in(0,1]$ and $m, n \in[-1,0)$.

Proof. Assume that Proposition 2.5 is valid. Let $x, y \in X$ and $t, s \in(0,1]$ and $m, n \in[-1,0)$ be such that $x_{t}, y_{s} \in \mu_{A}^{P}$ and $x_{m}, y_{n} \in \mu_{A}^{N}$. Then $\mu_{A}^{P}(x) \geq$ $t, \mu_{A}^{P}(y) \geq s$ and $\mu_{A}^{N}(x) \leq m, \mu_{A}^{N}(y) \leq n$ which imply, from Proposition 2.5, that $\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y)\right\} \geq \min \{t, s\}$ and $\mu_{A}^{N}(x * y) \leq$ $\max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y)\right\} \leq \max \{m, n\}$. Hence, $(x * y) \in \mu_{A}^{P}$ and $(x * y) \in \mu_{A}^{N}$.

Assume that $x_{\mu_{A}^{P}(x)} \in \mu_{A}^{P}$ and $y_{\mu_{A}^{P}(y)} \in \mu_{A}^{P}$, and $x_{\mu_{A}^{N}(x)} \in \mu_{A}^{N}$ and $y_{\mu_{A}^{N}(y)} \in \mu_{A}^{N}$ hold for all $x, y \in X$. Then $(x * y)_{\min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y)\right\}} \in \mu_{A}^{P}$ and $(x * y)_{\max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y)\right\}} \in \mu_{A}^{N}$ by Theorem 3.3. Thus, $\mu_{A}^{P}(x * y) \geq$ $\min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y)\right\}$ and $\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y)\right\}$ hold for all $x, y \in$ X. Hence, the proof is completed.

Definition 3.4. A bipolar fuzzy set $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ of X is called an $(\in, \in$ $\vee q)$-bipolar fuzzy subalgebras of X if it satisfies the following conditions
(i) $x_{t} \in \mu_{A}^{P}, y_{s} \in \mu_{A}^{P} \Rightarrow(x * y)_{\min (t, s)} \in \vee q \mu_{A}^{P}$, for all $x, y \in X$ and $t, s \in(0,1]$
(ii) $x_{m} \in \mu_{A}^{N}, y_{n} \in \mu_{A}^{N} \Rightarrow(x * y)_{\max (m, n)} \in \vee q \mu_{A}^{N}$, for all $x, y \in X$ and $m, n \in[-1,0)$.

Example 3.5. Let $X=\{0, a, b, c\}$ be a BCI-algebra with the following Caley Table 1 as follows.
C. JANA, M. PAL, AND A. B. SAIED

TABLE 1

$*$	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

Let A be a bipolar fuzzy set of X defined by $\mu_{A}^{P}(0)=0.6, \mu_{A}^{P}(a)=0.7$, $\mu_{A}^{P}(b)=\mu_{A}^{P}(c)=0.3$ and $\mu_{A}^{N}(0)=-0.8, \mu_{A}^{N}(a)=\mu_{A}^{N}(c)=-0.3, \mu_{A}^{N}(b)=$ -0.7. Then A is an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X but not a bipolar fuzzy subalgebra of X as $\mu_{A}^{P}(a * a)=0.6 \nsupseteq 0.7=\min \left\{\mu_{A}^{P}(a), \mu_{A}^{P}(a)\right\}$.
Corollary 3.6. Theorem 3.3 shows that every (\in, \in)-bipolar fuzzy subalgebra is precisely a bipolar fuzzy subalgebra and vice versa. Obviously, every (\in, \in)-bipolar fuzzy subalgebra is an $(\in, \in \vee q)$-bipolar fuzzy subalgebra.

In general, the converse of the corollary is not true, justified by the following example.
Example 3.7. Consider $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X which is given in example 3.5. It is seen that $A=\left(\mu_{A}^{P}, \mu^{N}\right)$ is not an (\in, \in) bipolar fuzzy subalgebra of X because $(a, 0.63) \in \mu_{A}^{P}$ and $(a, 0.68) \in \mu^{P}$, but $(a * a, 0.63 \wedge 0.68)=(0,0.63) \bar{\in} \mu_{A}^{P}$.
Theorem 3.8. Every (\in, q)-bipolar fuzzy subalgebra of X is an $(\in, \in \vee q)$ bipolar fuzzy subalgebra of X.
Proof. The proof of the theorem is straightforward.
In general, the converse of the theorem 3.8 is not true by the following example.
Example 3.9. Consider an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X given in Example 3.5 such that $(a, 0.6) \in \mu_{A}^{P}$ and $(c, 0.22) \in \mu^{P}$, but $(a * b, 0.6 \wedge$ $0.22)=(b, 0.22) \bar{q} \mu_{A}^{P}$ as $\mu_{A}^{P}(b)+0.22<1$. Again, $(b,-0.25) \in \mu_{A}^{N}$ and $(c,-0.45) \in \mu_{A}^{N}$, since $(b * c,-0.25 \vee-0.45)=(a,-0.25) \bar{q} \mu_{A}^{N}$ as $\mu_{A}^{N}(a)-$ $0.25>-1$. Therefore, $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ is not an (q, \in)-bipolar fuzzy subalgebra of X.
Theorem 3.10. A bipolar fuzzy set $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ of X is an $(\in, \in \vee q)$ bipolar fuzzy subalgebra of X if and only if it satisfies

$$
\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\}
$$

and

$$
\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\}
$$

for all $x, y \in X$.

Proof. Let A be an $(\in, \in \vee q)$-bipolar fuzzy subalgebras of X and $x, y \in$ X. If $\min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y)\right\}<0.5$ and $\max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y)\right\}>-0.5$, then $\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{N}(y)\right\}$ and $\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y)\right\}$. Assume that $\mu_{A}^{P}(x * y)<\min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(x)\right\}$ and $\mu_{A}^{N}(x * y)>\max \left\{\mu_{A}^{N}(x)\right.$, $\left.\mu_{A}^{N}(y)\right\}$. Let us choose $t \in A$ and $m \in \neg A$ such that $\mu_{A}^{P}(x * y)<t<$ $\min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y)\right\}$ and $\mu_{A}^{N}(x * y)>m>\max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y)\right\}$. Then $x_{t} \in \mu_{A}^{P}, y_{t} \in \mu_{A}^{P}$ and $x_{m} \in \mu_{A}^{N}, y_{m} \in \mu_{A}^{N}$ but $(x * y)_{\min (t, t)}=(x *$ $y)_{t} \overline{\in, \in \vee q} \mu_{A}^{P}$ and $(x * y)_{\max (m, m)}=(x * y)_{m} \overline{\in, \in \vee q} \mu^{N}$, a contradiction. Hence, $\mu_{A}^{P}(x * y) \geq\left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y)\right\}$ whenever $\min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y)\right\}<0.5$ and $\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y)\right\}$ whenever $\max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y)\right\}>-0.5$. Suppose that $\min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y)\right\} \geq 0.5$ and $\max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y)\right\} \leq-0.5$. Then, $x_{0.5} \in \mu_{A}^{P}, y_{0.5} \in \mu_{A}^{P}$ and $x_{-0.5} \in \mu_{A}^{N}, y_{-0.5} \in \mu_{A}^{N}$, which imply that

$$
\begin{aligned}
(x * y)_{\min (0.5,0.5)} & =(x * y)_{0.5} \in \vee q \mu_{A}^{P} \\
(x * y)_{\max (-0.5,-0.5)} & =(x * y)_{-0.5 \in \vee q \mu_{A}^{N}}
\end{aligned}
$$

Thus, $\mu_{A}^{P}(x * y) \geq 0.5$ and $\mu_{A}^{N}(x * y) \leq-0.5$. Otherwise, $\mu_{A}^{P}(x * y)+0.5<$ $0.5+0.5=1$ and $\mu_{A}^{N}(x * y)-0.5>-0.5-0.5=-1$, a contradiction. Therefore,

$$
\begin{gathered}
\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\} \\
\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\}
\end{gathered}
$$

for all $x, y \in X$. Conversely, assume that the conditions of $(\in, \in \vee q)$ bipolar fuzzy subalgebras of X is valid. Let $x, y \in X$ and $t, s \in(0,1]$ and $m, n \in \neg A$ such that $x_{t} \in \mu_{A}^{P}, y_{s} \in \mu_{A}^{P}$ and $x_{m} \in \mu_{A}^{N}, y_{n} \in \mu_{A}^{N}$. Then, $\mu_{A}^{P}(x) \geq t, \mu_{A}^{P}(y) \geq s$ and $\mu_{A}^{N}(x) \leq m, \mu_{A}^{N}(y) \leq n$. If $\mu_{A}^{P}(x * y)<$ $\min \{t, s\}$ and $\mu_{A}^{N}(x * y)>\max \{m, n\}$, then $\min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y)\right\} \geq 0.5$ and $\max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y)\right\} \leq-0.5$. Otherwise, we get

$$
\begin{gathered}
\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\} \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y)\right\} \geq \min \{t, s\} \\
\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\} \leq \max \left\{\mu_{A}^{N}(X), \mu_{A}^{N}(y) \leq \max \{m, n\},\right.
\end{gathered}
$$

a contradiction. It follows that

$$
\mu_{A}^{P}(x * y)+\min \{t, s\}>2 \mu_{A}^{P}(x * y) \geq 2 \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\}=1
$$

$\mu_{A}^{N}(x * y)+\max \{m, n\}<2 \mu_{A}^{N}(x * y) \leq 2 \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\}=-1$.
Hence, $(x * y)_{\min (t, s)} \in \vee q \mu_{A}^{P}$ and $(x * y)_{\max (m, n)} \in \vee q \mu_{A}^{N}$. Therefore, the bipolar fuzzy set A is an $(\in, \in \vee q)$-bipolar fuzzy $B C K / B C I$-subalgebras of X. Hence, the proof is completed.

Theorem 3.11. A bipolar fuzzy set $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ of X is an $(\in, \in \vee q)$ bipolar fuzzy subalgebras of X if and only if the level subset

$$
U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)=\left\{x \in X \mid \mu_{A}^{P}(x) \geq t \text { and } \mu_{A}^{N}(x) \leq m\right\}
$$

C. JANA, M. PAL, AND A. B. SAIED

is a bipolar fuzzy subalgebras of X for all $m \in[-0.5,0)$ and for all $t \in$ ($0,0.5$].
Proof. Assume that a bipolar fuzzy set $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ is an $(\epsilon, \in \vee q)$-bipolar fuzzy subalgebra of X. Let $x, y \in U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$ with $m \in[-0.5,0)$ and $t \in(0,0.5]$. Then $\mu_{A}^{P}(x) \geq t, \mu_{A}^{P}(y) \geq t$ and $\mu_{A}^{N}(x) \leq m, \mu_{A}^{N}(y) \leq m$. Then from Theorem 3.10 that

$$
\begin{gathered}
\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\} \geq \min \{t, 0.5\}=t \\
\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\} \leq\{m,-0.5\}=m
\end{gathered}
$$

so that $x * y \in U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$. Therefore, $U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$ is a subalgebra of X.

Conversely, let A be a bipolar fuzzy set of X such that the set

$$
U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)=\left\{x \in X \mid \mu_{A}^{P}(x) \geq t \text { and } \mu_{A}^{N}(x) \leq m\right\}
$$

is a subalgebra of X for all $m \in[-0.5,0)$ and for all $t \in(0,0.5]$. If there exist $x, y \in X$ such that $\mu_{A}^{P}(x * y)<\min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\}$ and $\mu_{A}^{N}(x *$ $y)>\max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\}$, then we take $m \in(-1,0)$ and $t \in(0,1)$ such that $\mu_{A}^{P}(x * y)<t<\min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\}$ and $\mu_{A}^{N}(x * y)>m>$ $\max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\}$. Thus, $x, y \in U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$ with $t<0.5$ and $m>-0.5$, and so $x * y \in U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$ i.e. $\mu_{A}^{P}(x * y) \geq t$ and $\mu_{A}^{N}(x * y) \leq$ m which is a contradiction. Therefore,

$$
\begin{gathered}
\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\} \\
\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\},
\end{gathered}
$$

for all $x, y \in X$. Using Theorem 3.10, we conclude that A is an $(\in, \in \vee q)$ bipolar fuzzy subalgebra of X.

Corollary 3.12. Every bipolar fuzzy subalgebra of X is an $(\in, \in \vee q)$ bipolar fuzzy subalgebra of X.

In general, the converse of the corollary 3.12 is not true as seen in the following example.

Example 3.13. Consider a BCK/BCI-algebra $X=\{0, a, b, c, d\}$ with the following Caley Table 2. Let us define a bipolar fuzzy set A of X as follows: $\mu_{A}^{P}(0)=0.6, \mu_{A}^{P}(a)=\mu_{A}^{P}(c)=0.7, \mu_{A}^{P}(b)=\mu_{A}^{P}(d)=0.2$ and $\mu_{A}^{N}(0)=-0.7, \mu_{A}^{N}(a)=\mu_{A}^{N}(c)=-0.4, \mu_{A}^{N}(b)=-0.6$ and $\mu_{A}^{N}(d)=-0.3$. This example gives a $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X but not bipolar fuzzy subalgebra of X because $\mu_{A}^{P}(a * c)=0.6 \nsupseteq 0.7=\min \left\{\mu_{A}^{P}(a), \mu_{A}^{P}(c)\right\}$.

Let M be a subset of X. Let us consider a bipolar fuzzy set $A_{M}=$ $\left(\mu_{M}^{P}, \mu_{M}^{N}\right)$ in X defined as follows:

$$
\mu_{M}^{P}(x)= \begin{cases}1, & \text { if } x \in M \\ 0, & \text { if otherwise }\end{cases}
$$

TABLE 2

$*$	0	a	b	c	d
0	0	0	0	0	0
a	a	0	a	0	a
b	b	b	0	b	0
c	c	a	c	0	c
d	d	d	d	d	0

$$
\mu_{M}^{N}(x)= \begin{cases}-1, & \text { if } x \in M \\ 0, & \text { if otherwise }\end{cases}
$$

for all $x \in X$.
Theorem 3.14. Let M be a non-empty subset of X. Then M is a subalgebra of X if and only if the bipolar fuzzy set $A_{M}=\left(\mu_{M}^{P}, \mu_{M}^{N}\right)$ in X is an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X.
Proof. Let M be a subalgebra of X. Then $U\left(\mu_{M}^{P}, \mu_{M}^{N} ; t, m\right)$ is a subalgebra of X for all $t \in(0,0.5]$ and $m \in[-0.5,0)$ by the Theorem 3.11.

Conversely, let A_{M} be an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X. Let $x, y \in M$. Then

$$
\begin{gathered}
\mu_{M}^{P}(x * y) \geq \min \left\{\mu_{M}^{P}(x), \mu_{M}^{N}, 0.5\right\}=1 \wedge 0.5=0.5 \\
\mu_{M}^{N}(x * y) \leq \max \left\{\mu_{M}^{P}(x), \mu_{M}^{N}, 0.5\right\}=-1 \vee-0.5=-0.5
\end{gathered}
$$

Here, $\mu_{M}^{P}(x * y)=1$ and $\mu_{M}^{N}(x * y)=-1$ and thus, $x * y \in M$. Hence, M is a subalgebra of X.

Theorem 3.15. Let M be a subalgebra of X. Then for every $t \in(0,0.5]$ and every $m \in[-0.5,0)$, there exists a $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X such that $U\left(\mu_{M}^{P}, \mu_{M}^{N} ; t, m\right)=M$.
Proof. Let $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ be a bipolar fuzzy set in X defined as follows:
$\mu_{A}^{P}(x)=\left\{\begin{array}{ll}t, & \text { if } x \in M ; \\ 0, & \text { if otherwise; }\end{array} \quad\right.$ and $\mu_{A}^{N}(x)= \begin{cases}m, & \text { if } x \in M ; \\ 0, & \text { if otherwise } ;\end{cases}$
for all $x \in X$, where $t \in(0,0.5]$ and $m \in[-0.5,0)$. Then $U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)=$ M is obvious.

We assume that $\mu_{A}^{P}(p * q)<\min \left\{\mu_{A}^{P}(p), \mu_{A}^{N}(q), 0.5\right\}$ and $\mu_{A}^{N}(p * q)>$ $\max \left\{\mu_{A}^{N}(p), \mu_{A}^{N}(q),-0.5\right\}$ for some $p, q \in X$. Since $\operatorname{Im}(A)=2$. Then it follows that $\mu_{A}^{P}(p * q)=0$ and $\min \left\{\mu_{A}^{P}(p), \mu_{A}^{P}(q), 0.5\right\}=t$, and $\mu_{A}^{N}(p *$ $q)=0$ and $\max \left\{\mu_{A}^{N}(p), \mu_{A}^{N}(q),-0.5\right\}=m$. Thus, $\mu_{A}^{P}(p)=\mu_{A}^{P}(q)=t$ and $\mu_{A}^{N}(p)=\mu_{A}^{N}(q)=m$, and so $p, q \in M$. Since M is a subalgebra of $X, p * q \in M$. Then $\mu_{A}^{P}(p * q)=t$ and $\mu_{A}^{N}(p * q)=m$, these are the contradiction. Therefore, $\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\}$ and $\mu_{A}^{N}(x *$

C. JANA, M. PAL, AND A. B. SAIED

$y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\}$ for all $x, y \in X$. Using Theorem 3.10, we conclude that $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ is an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X.

Theorem 3.16. Let $A=\left(\mu_{A}^{P}, \mu^{N}\right)$ be an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X, where $\mu_{A}^{P}(x)<0.5$ and $\mu_{A}^{N}>-0.5$ for all $x \in X$. Then $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ is an (\in, \in)-bipolar fuzzy subalgebra of X.

Proof. The proof is straightforward using Theorem 3.10.
Theorem 3.17. Let \bigwedge be an index set and $\left\{\left(\mu_{A_{i}}^{P}, \mu_{A_{i}}^{N}\right) \mid i \in \bigwedge\right\}$ be a family of $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X. Then $A=\bigcap_{i \in \Lambda}\left(\mu_{A_{i}}^{P}, \mu_{A_{i}}^{N}\right)$ is an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X.
Proof. Let us take $x, y \in X$ and $t_{1}, t_{2} \in(0,1]$, and $m_{1}, m_{2} \in[-1,0)$ be such that $\mu_{A}^{P}(x) \geq t_{1}$ and $\mu_{A}^{P}(y) \geq t_{2}$, and $\mu_{A}^{N}(x) \leq m_{1}$ and $\mu_{A}^{N}(y) \leq m_{2}$. Assume that $(x * y)_{\min \left(t_{1}, t_{2}\right)} \overline{\in \vee q} \mu^{P}$ and $(x * y)_{\max \left(m_{1}, m_{2}\right)} \overline{\in V q} \mu_{A}^{N}$. Then $\mu_{A}^{P}(x * y)<\min \left\{t_{1}, t_{2}\right\}$ and $\mu_{A}^{P}(x * y)+\min \left\{t_{1}, t_{2}\right\} \leq 1$, and $\mu_{A}^{N}(x * y)>$ $\max \left\{m_{1}, m_{2}\right\}$ and $\mu_{A}^{N}(x * y)+\max \left\{m_{1}, m_{2}\right\} \geq-1$, which implies

$$
\begin{equation*}
\mu_{A}^{P}(x * y)<0.5 \text { and } \mu_{A}^{N}(x * y)>-0.5 \tag{3.1}
\end{equation*}
$$

Now, we define $\Delta_{1}=\left\{i \in \bigwedge \mid(x * y)_{\min \left\{t_{1}, t_{2}\right\}} \in \mu_{A_{i}}^{P}\right.$ and $(x * y)_{\max \left\{m_{1}, m_{2}\right\}} \in$ $\left.\mu_{A_{i}}^{N}\right\}$ and $\Delta_{2}=\left\{\left[i \in \bigwedge \mid(x * y)_{\min \left\{t_{1}, t_{2}\right\}} q \mu_{A_{i}}^{P}\right\} \cap\left\{j \in \wedge \mid(x * y)_{\min \left\{t_{1}, t_{2}\right\}} \bar{\in} \mu_{j}^{P}\right]\right.$ and $\left[\left\{i \in \bigwedge \mid(x * y)_{\max \left\{m_{1}, m_{2}\right\}} q \mu_{A_{i}}^{N}\right\} \cap\left\{j \in \bigwedge \mid(x * y)_{\max \left\{m_{1}, m_{2}\right\}} \bar{\in} \mu_{j}^{N}\right]\right\}$. Then $\bigwedge=\Delta_{1} \cup \Delta_{2}$ and $\Delta_{1} \cap \Delta_{2}=\emptyset$. If $\Delta_{2}=\emptyset$, then $(x * y)_{\min \left\{t_{1}, t_{2}\right\}} \in \mu_{A_{i}}^{P}$ and $(x * y)_{\max \left\{m_{1}, m_{2}\right\}} \in \mu_{A_{i}}^{N}$ for all $i \in \Lambda$, i.e., $\mu_{A_{i}}^{P}(x * y) \geq \min \left\{t_{1}, t_{2}\right\}$ and $\mu_{A_{i}}^{N}(x * y) \leq \max \left\{m_{1}, m_{2}\right\}$ for all $i \in \Lambda$, which indicate $\mu_{A}^{P}(x * y) \geq$ $\min \left\{t_{1}, t_{2}\right\}$ and $\mu_{A}^{N}(x * y) \leq \max \left\{m_{1}, m_{2}\right\}$. This is a contradiction. Hence, $\Delta_{2} \neq \emptyset$, and so for every $i \in \Delta_{2}$ we have $\mu_{A_{i}}^{P}(x * y)<\min \left\{t_{1}, t_{2}\right\}$ and $\mu_{A_{i}}^{P}(x * y)+\min \left\{t_{1}, t_{2}\right\}>1$, and $\mu_{A_{i}}^{N}(x * y)>\max \left\{m_{1}, m_{2}\right\}$ and $\mu_{A_{i}}^{N}(x * y)+$ $\max \left\{m_{1}, m_{2}\right\}<-1$. It follows that $\min \left\{t_{1}, t_{2}\right\}>0.5$ and $\max \left\{m_{1}, m_{2}\right\}<$ -0.5. Now, $x_{t_{1}} \in \mu_{A}^{P}$ and $x_{m_{1}} \in \mu_{A}^{N}$ implies that $\mu_{A}^{P}(x) \geq t_{1}$ and $\mu_{A}^{N}(x) \leq$ m_{1}, and thus, $\mu_{A_{i}}^{P}(x) \geq \mu_{A}^{P}(x) \geq t_{1} \geq \min \left\{t_{1}, t_{2}\right\}>0.5$ and $\mu_{A_{i}}^{N}(x) \leq$ $\mu_{A}^{N}(x) \leq m_{1} \leq \max \left\{m_{1}, m_{2}\right\}<-0.5$ for all $i \in \bigwedge$. Similarly, we get $\mu_{A_{i}}^{P}(y)>0.5$ and $\mu_{A_{i}}^{N}(y)<-0.5$ for all $i \in \Lambda$. We suppose that $t=\mu_{A_{i}}^{P}(x *$ $y)<0.5$ and $m=\mu_{A_{i}}^{N}(x * y)>-0.5$. Taking that $t<r<0.5$ and $m>n>$ -0.5 , we get $x_{r} \in \mu_{A_{i}}^{P}$ and $y_{r} \in \mu_{A_{i}}^{P}$, but $(x * y)_{\min (r, r)}=(x * y)_{r} \overline{\in \vee q} \mu_{A_{i}}^{P}$ and $x_{n} \in \mu_{A_{i}}^{N}$ and $y_{n} \in \mu_{A_{i}}^{N}$, but $(x * y)_{\max (n, n)}=(x * y)_{n} \overline{\in \vee q} \mu_{A_{i}}^{N}$. This contradicts that $A=\left(\mu_{A_{i}}^{P}, \mu_{A_{i}}^{N}\right)$ is an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X. Hence, $\mu_{A_{i}}^{P}(x * y) \geq 0.5$ and $\mu_{A_{i}}^{N}(x * y) \leq-0.5$ for all $i \in \Lambda$, so $\mu_{A}^{P}(x * y) \geq 0.5$ and $\mu_{A}^{N}(x * y) \leq-0.5$ which contradicts (3.1). Therefore,

$(\epsilon, \in \vee q)$-BIPOLAR FUZZY $B C K / B C I$-ALGEBRAS

$(x * y)_{\min \left\{t_{1}, t_{2}\right\}} \in \vee q \mu^{P}$ and $(x * y)_{\max \left\{m_{1}, m_{2}\right\}} \in \vee q \mu_{A}^{N}$ and consequently, $A=\left(\mu_{A_{i}}^{P}, \mu_{A_{i}}^{N}\right)$ is an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X.
Corollary 3.18. Let $\left\{\left(\mu_{A_{i}}^{P}, \mu_{A_{i}}^{N}\right) \mid i \in \bigwedge\right\}$ be a family of $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X. Then $\mu=\bigcap_{i \in \Lambda}\left(\mu_{A_{i}}^{P}, \mu_{A_{i}}^{N}\right)$ is a bipolar fuzzy subalgebra of X.

The following example shows that the union of two $(\epsilon, \in \vee q)$-bipolar fuzzy subalgebras of X may not be an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X.

Example 3.19. Let $X=\{0, a, b, c\}$ be a BCI-algebra with the Caley Table 1 given in Example 3.5, and let $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ be an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X is defined as $\mu_{A}^{P}(0)=0.6, \mu_{A}^{P}(a)=0.7$ and $\mu_{A}^{P}(b)=$ $\mu_{A}^{P}(c)=0.3$, and $\mu_{A}^{N}(0)=-0.8, \mu_{A}^{N}(b)=-0.7$ and $\mu_{A}^{N}(a)=\mu_{A}^{N}(c)=-0.3$. Then

$$
\begin{gathered}
F\left[\mu_{A}^{P}\right](t)= \begin{cases}X, & \text { if } t \in(0,0.3] ; \\
\{0, a\}, & \text { if } t \in(0.3,0.4] .\end{cases} \\
F\left[\mu_{A}^{N}\right](s)= \begin{cases}X, & \text { if } s \in[-0.3,0) \\
\{0, b\}, & \text { if } s \in(-0.3,-0.4] .\end{cases}
\end{gathered}
$$

Here $X,\{0, a\}$ and $\{0, b\}$ are subalgebra of X.
Let $B=\left(\mu_{B}^{P}, \mu_{B}^{N}\right)$ be an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X is defined as $\mu_{B}^{P}(0)=0.4, \mu_{B}^{P}(a)=\mu_{B}^{P}(c)=0.3$ and $\mu_{B}^{P}(b)=0.5$, and $\mu_{B}^{N}(0)=-0.7$, $\mu_{B}^{N}(a)=\mu_{B}^{N}(b)=-0.3$ and $\mu_{B}^{N}(c)=-0.6$. Then

$$
\begin{gathered}
F\left[\mu_{B}^{P}\right](t)= \begin{cases}X, & \text { if } t \in(0,0.3] ; \\
\{0, b\}, & \text { if } t \in(0.3,0.4]\end{cases} \\
F\left[\mu_{B}^{N}\right](s)= \begin{cases}X, & \text { if } s \in[-0.3,0) \\
\{0, c\}, & \text { if } s \in(-0.3,-0.4] .\end{cases}
\end{gathered}
$$

Here $X,\{0, b\}$ and $\{0, c\}$ are bipolar fuzzy subalgebra of X.
Now, the union $(A \cup B)$ [where $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ and $\left.B=\left(\mu_{B}^{P}, \mu_{B}^{N}\right)\right]$ of A and B, respectively is given by $\left(\mu_{A \cup B}^{P}\right)(0)=0.6,\left(\mu_{A \cup B}^{P}\right)(a)=0.7,\left(\mu_{A \cup B}^{P}\right)(b)=$ 0.5 and $\left(\mu_{A \cup B}^{P}\right)(c)=0.3$, and $\left(\mu_{A \cup B}^{N}\right)(0)=-0.8,\left(\mu_{A \cup B}^{N}\right)(a)=-0.3$, $\left(\mu_{A \cup B}^{N}\right)(b)=-0.7$ and $\left(\mu_{A \cup B}^{N}\right)(c)=-0.6$. Hence,

$$
\begin{gathered}
F\left[\mu_{A \cup B}^{P}\right](t)= \begin{cases}X, & \text { if } t \in(0,0.3] \\
\{0, a, b\}, & \text { if } t \in(0.3,0.4] .\end{cases} \\
F\left[\mu_{A \cup B}^{N}\right](s)= \begin{cases}X, & \text { if } s \in[-0.3,0) \\
\{0, b, c\}, & \text { if } s \in(-0.3,-0.4] .\end{cases}
\end{gathered}
$$

Since $\{0, a, b\}$ and $\{0, b, c\}$ are not bipolar fuzzy subalgebra of X. Therefore, $(A \cup B)$ is not an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X.

For any bipolar fuzzy set A in X, where $t \in(0,1]$ and $m \in[-1,0)$, we denote

$$
\mu_{t}^{P}=\left\{x \in X \mid x_{t} \in q \mu_{A}^{P}\right\}
$$

and

$$
\mu_{m}^{N}=\left\{x \in X \mid x_{m} \in q \mu_{A}^{N}\right\},
$$

and

$$
[A]_{(t, m)}=\left\{x \in X \mid x_{t} \in \vee q \mu_{A}^{P} \quad \text { and } \quad x_{m} \in \vee q \mu_{A}^{N}\right\} .
$$

Then it is obvious that $[A]_{(t, m)}=U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right) \cup \mu_{t}^{P} \cup \mu_{m}^{N}$. Here, $[A]_{(t, m)}$ is an $(\in \vee q)$-level subalgebra of A.

Theorem 3.20. Let $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ be a bipolar fuzzy set in X. Then A is an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X if and only if $[A]_{(t, m)}$ is a subalgebra of X for all $t \in(0,1]$ and for all $m \in[-1,0)$.
Proof. Suppose that $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ is an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X and let $x, y \in[A]_{(t, m)}$ for $t \in(0,1], m \in[-1,0)$. Then, $x_{t} \in \vee q \mu_{A}^{P}$, $y_{t} \in \vee q \mu_{A}^{P}$ and $x_{m} \in \vee q \mu_{A}^{N}, y_{m} \in \vee q \mu_{A}^{N}$, i.e., $\mu_{A}^{P}(x) \geq t$ or $\mu_{A}^{P}(x)+t>1$, and $\mu_{A}^{P}(y) \geq t$ or $\mu_{A}^{P}(y)+t>1$, and also $\mu_{A}^{N}(x) \leq m$ or $\mu_{A}^{N}(x)+m<-1$, and $\mu_{A}^{N}(y) \leq m$ or $\mu_{A}^{N}(y)+m<-1$. Using the Theorem 3.10, we get, $\mu_{A}^{P}(x *$ $y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\}$ and $\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\}$.
Case 1. $\mu_{A}^{P}(x) \geq t$ and $\mu_{A}^{P}(y) \geq t$, and $\mu_{A}^{N}(x) \leq m$ and $\mu_{A}^{N}(y) \geq m$. If $t>0.5$ and $m<-0.5$, then

$$
\begin{aligned}
\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\} & =0.5 \\
\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\} & =-0.5
\end{aligned}
$$

Hence, $\mu_{A}^{P}(x * y)+t>0.5+0.5=1$ and $\mu_{A}^{N}(x * y)+m<-0.5-0.5=-1$, and so $x * y \in q \mu_{A}^{P}$ and $x * y \in q \mu_{A}^{N}$. If $t \leq 0.5$ and $m \geq-0.5$, then

$$
\begin{gathered}
\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\} \geq t \\
\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\} \leq m,
\end{gathered}
$$

thus $(x * y)_{t} \in \vee q \mu_{A}^{P}$ and $(x * y)_{m} \in \vee q \mu_{A}^{P}$. Therefore, $x * y \in[A]_{(t, m)}$.
Case 2. Let $\mu_{A}^{P}(x) \geq t$ and $\mu_{A}^{P}(y)+t>1$, and $\mu_{A}^{N}(x) \leq m$ and $\mu_{A}^{N}(y)+m<$ -1 . If $t>0.5$ and $m<-0.5$, then

$$
\begin{aligned}
\mu_{A}^{P}(x * y) & \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\}=\mu_{A}^{P}(y) \wedge 0.5=1-t \wedge 0.5=1-t \\
\mu_{A}^{N}(x * y) & \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\}=\mu^{N}(y) \vee-0.5 \\
& =-1-m \vee-0.5=-1-m
\end{aligned}
$$

and so $(x * y) \in q \mu_{A}^{P}$, and $(x * y)_{m} \in q \mu_{A}^{N}$. If $t \leq 0.5$ and $m \geq-0.5$, then

$$
\begin{gathered}
\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\} \geq \min \{t, 1-t, 0.5\}=t \\
\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\} \geq \max \{m,-1-m,-0.5\}=m .
\end{gathered}
$$

Hence, $(x * y)_{t} \in \vee q \mu_{A}^{P}$ and $(x * y)_{m} \in \vee q \mu_{A}^{N}$. Thus, $x * y \in[A]_{(t, m)}$.
Case 3. $\mu_{A}^{P}(x)+t>1$ and $\mu_{A}^{P}(y) \geq t$, and $\mu_{A}^{N}(x)+m<-1$ and $\mu_{A}^{N}(y) \leq m$. If $t>0.5$ and $m<-0.5$, then

$$
\begin{aligned}
\mu_{A}^{P}(x * y) & \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\}=\mu_{A}^{P}(x) \wedge 0.5=1-t \wedge 0.5=1-t \\
\mu_{A}^{N}(x * y) & \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\}=\mu^{N}(x) \vee-0.5 \\
& =-1-m \vee-0.5=-1-m
\end{aligned}
$$

and so $(x * y)_{t} \in q \mu_{A}^{P}$, and $(x * y)_{m} \in q \mu_{A}^{N}$. If $t \leq 0.5$ and $m \geq-0.5$, then

$$
\begin{gathered}
\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\} \geq \min \{1-t, t, 0.5\}=t \\
\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\} \geq \max \{-1-m, m,-0.5\}=m .
\end{gathered}
$$

Hence, $(x * y)_{t} \in \vee q \mu_{A}^{P}$ and $(x * y)_{m} \in \vee q \mu_{A}^{N}$. Thus, $x * y \in[A]_{(t, m)}$.
Case 4. $\mu_{A}^{P}(x)+t>1$ and $\mu_{A}^{P}(y)+t>1$, and $\mu_{A}^{N}(x)+m<-1$ and $\mu_{A}^{N}(y)+m<-1$. If $t>0.5$ and $m<-0.5$, then

$$
\begin{gathered}
\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\}>1-t \wedge 0.5=1-t \\
\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\}<-1-m \vee-0.5=-1-m .
\end{gathered}
$$

Thus, $(x * y)_{t} q \mu_{A}^{P}$ and $(x * y)_{m} q \mu_{A}^{N}$. If $t \leq 0.5$ and $m \geq-0.5$, then

$$
\begin{gathered}
\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\} \geq 1-t \wedge 0.5=0.5 \geq t \\
\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\} l e q-1-m \vee-0.5=-0.5 \leq m
\end{gathered}
$$

Therefore, $(x * y)_{t} \in \mu_{A}^{P}$ and $(x * y)_{m} \in \mu_{A}^{N}$. Hence, $(x * y)_{t} \in \vee q \mu_{A}^{P}$ and $(x * y)_{m} \in \vee q \mu_{A}^{N}$, i.e., $x * y \in[A]_{(t, m)}$. Therefore, $[A]_{(t, m)}$ is a subalgebra of X.

Conversely, let $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ is a bipolar fuzzy set of X and $t \in(0,1]$ and $m \in[-1,0)$ be such that $[A]_{(t, m)}$ is a subalgebra of X. If possible, let

$$
\begin{gathered}
\mu_{A}^{P}(x * y)<t \leq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\} \\
\mu_{A}^{N}(x * y)>m \geq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\}
\end{gathered}
$$

for some $t \in(0, t)$ and $m \in(-1,0)$. Then, $x, y \in U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right) \subseteq[A]_{(t, m)}$, which indicate $x * y \in[A]_{(t, m)}$. Thus, $\mu_{A}^{P}(x * y) \geq t$ or $\mu_{A}^{P}(x * y)+t>1$, and $\mu_{A}^{N}(x * y) \leq m$ or $\mu_{A}^{N}(x * y)+m<-1$, and these are a contradiction. Hence,

$$
\begin{gathered}
\mu_{A}^{P}(x * y) \geq \min \left\{\mu_{A}^{P}(x), \mu_{A}^{P}(y), 0.5\right\} \\
\mu_{A}^{N}(x * y) \leq \max \left\{\mu_{A}^{N}(x), \mu_{A}^{N}(y),-0.5\right\}
\end{gathered}
$$

for all $x, y \in X$. Now, by using the Theorem 3.10, we conclude that $A=$ $\left(\mu_{A}^{p}, \mu_{A}^{N}\right)$ is an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X.

MISSOURI J. OF MATH. SCI., FALL 2017

C. JANA, M. PAL, AND A. B. SAIED

A bipolar fuzzy set $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ in X is said to be proper if $\operatorname{Im}(A)$ has at least two elements. Two bipolar fuzzy sets are said to be equivalent if they have the same family of level subsets, otherwise they are nonequivalent.

Theorem 3.21. Let $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ be an $(\in, \in \vee q)$-bipolar fuzzy subalgebra of X, where $\left\{A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right) \mid \mu_{A}^{P}(x)<0.5\right.$ and $\left.\mu_{A}^{N}(x)>-0.5\right\} \geq 2$. Then there exists two proper non-equivalent $(\in, \in \vee q)$-bipolar fuzzy subalgebras of X such that A can be expressed as the union of them.

Proof. Let $\left\{\mu_{A}^{P}(x) \mid \mu_{A}^{P}(x)<0.5\right\}=\left\{t_{1}, t_{2}, \ldots, t_{r}\right\}$ such that $t_{1}>t_{2}>\cdots>$ t_{r}, where $r \geq 2$, and $\left\{\mu_{A}^{N}(x) \mid \mu_{A}^{N}(x)>-0.5\right\}=\left\{m_{1}, m_{2}, \ldots, m_{r}\right\}$ such that $m_{1}>m_{2}>\cdots>m_{r}$, where $r \geq 2$. Then the chain of $(\in \vee q)$-level subalgebras of $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ are given as follows:

$$
[A]_{(0.5,-0.5)} \subseteq[A]_{\left(t_{1}, m_{1}\right)} \subseteq[A]_{\left(t_{2}, m_{2}\right)} \subseteq \cdots \subseteq[A]_{\left(t_{r}, m_{r}\right)}=X
$$

i.e.,

$$
\begin{gathered}
{\left[\mu_{A}^{P}\right]_{0.5} \subseteq\left[\mu_{A}^{P}\right]_{t_{1}} \subseteq\left[\mu_{A}^{P}\right]_{t_{2}} \subseteq \cdots \subseteq\left[\mu_{A}^{P}\right]_{t_{r}}} \\
{\left[\mu_{A}^{N}\right]_{-0.5} \supseteq\left[\mu_{A}^{N}\right]_{m_{1}} \supseteq\left[\mu_{A}^{N}\right]_{m_{2}} \supseteq \cdots \supseteq\left[\mu_{A}^{N}\right]_{m_{r}}}
\end{gathered}
$$

Let $\left(\nu_{A}^{P}, \xi_{A}^{P}\right)$, and $\left(\nu_{A}^{N}, \xi_{A}^{N}\right)$ be fuzzy sets defined in X as follows:

$$
\nu_{A}^{P}(x)= \begin{cases}t_{1} & \text { if } x \in\left[\mu_{A}^{P}\right]_{t_{1}} \\ t_{2} & \text { if } x \in\left[\mu_{A}^{P}\right]_{t_{2}} \backslash\left[\mu_{A}^{P}\right]_{t_{1}} \\ \cdots & \\ t_{r} & \text { if } x \in\left[\mu_{A}^{P}\right]_{t_{r}} \backslash\left[\mu_{A}^{P}\right]_{t_{r-1}}\end{cases}
$$

and

$$
\begin{gathered}
\xi_{A}^{P}(x)= \begin{cases}\mu_{A}^{P}(x) & \text { if } x \in\left[\mu_{A}^{P}\right]_{(0.5)} ; \\
0 & \text { if } x \in\left[\mu_{A}^{P}\right]_{t_{2}} \backslash\left[\mu_{A}^{P}\right]_{(0.5)} ; \\
t_{3} & \text { if } x \in\left[\mu_{A}^{P}\right]_{t_{3}} \backslash\left[\mu_{A}^{P}\right]_{t_{2}} \\
\cdots & \text { if } x \in\left[\mu_{A}^{P}\right]_{t_{r}} \backslash\left[\mu_{A}^{P}\right]_{t_{r-1}} \\
t_{r} & \text { if }\end{cases} \\
\nu_{A}^{N}(x)= \begin{cases}m_{r} & \text { if } x \in\left[\mu_{A}^{N}\right]_{m_{r}} ; \\
m_{r-1} & \text { if } \left.x \in\left[\mu_{A}^{N}\right]_{m_{r}-} \backslash \mu_{A}^{N}\right]_{m_{r}} ; \\
m_{r} & \text { if } x \in\left[\mu_{A}^{N}\right]_{m_{r}} \backslash\left[\mu_{A}^{N}\right]_{m_{r-1}} \\
\cdots & \text { if } x \in\left[\mu_{A}^{N}\right]_{m_{3}} \backslash\left[\mu_{A}^{N}\right]_{m_{2}} \\
m_{3} & \text { if } x \in\left[\mu_{A}^{N}\right]_{m_{2}} \backslash\left[\mu_{A}^{N}\right]_{(-0.5)} \\
0 & \text { if } x \in\left[\mu_{A}^{N}\right]_{(-0.5)}\end{cases}
\end{gathered}
$$

and

$$
\xi_{A}^{N}(x)= \begin{cases}m_{r} & \text { if } x \in\left[\mu_{A}^{N}\right]_{m_{r}} \backslash\left[\mu_{A}^{N}\right]_{m_{r-1}} \\ m_{r-1} & \text { if } x \in\left[\mu_{A}^{P}\right]_{m_{r-1}} \backslash\left[\mu_{A}^{P}\right]_{m_{r}} \\ \cdots & \text { if } x \in\left[\mu_{A}^{N}\right]_{m_{2}} \backslash\left[\mu_{A}^{N}\right]_{m_{1}} \\ m_{2} & \text { if } x \in\left[\mu_{A}^{N}\right]_{m_{1}}\end{cases}
$$

Then $\left(\nu_{A}^{P}, \nu_{A}^{N}\right)$ and $\left(\xi_{A}^{P}, \xi_{A}^{N}\right)$ are $(\in, \in \vee q)$-bipolar fuzzy subalgebras of X, and $\nu_{A}^{P}, \xi_{A}^{P} \leq \mu_{A}^{P}$ and $\nu_{A}^{N}, \xi_{A}^{N} \leq \mu_{A}^{N}$. The chain of $(\in \vee q)$-level subalgebras of ν_{A}^{P}, ξ_{A}^{P} and ν_{A}^{N}, ξ_{A}^{N} are respectively given by

$$
\left[\mu_{A}^{P}\right]_{0.5} \subseteq\left[\mu_{A}^{P}\right]_{t_{1}} \subseteq\left[\mu_{A}^{P}\right]_{t_{2}} \subseteq \cdots \subseteq\left[\mu_{A}^{P}\right]_{t_{r}}
$$

and

$$
\left[\mu_{A}^{P}\right]_{t_{1}} \subseteq\left[\mu_{A}^{P}\right]_{t_{2}} \subseteq \cdots \subseteq\left[\mu_{A}^{P}\right]_{t_{r}}
$$

and

$$
\left[\mu_{A}^{N}\right]_{-0.5} \supseteq\left[\mu_{A}^{N}\right]_{m_{1}} \supseteq\left[\mu_{A}^{N}\right]_{m_{2}} \supseteq \cdots \supseteq\left[\mu_{A}^{N}\right]_{m_{r}}
$$

and

$$
\left[\mu_{A}^{N}\right]_{m_{1}} \supseteq\left[\mu_{A}^{N}\right]_{m_{2}} \supseteq \cdots \supseteq\left[\mu_{A}^{N}\right]_{m_{r}}
$$

Therefore, $\left(\nu_{A}^{P}, \xi_{A}^{P}\right)$ and $\left(\nu_{A}^{N}, \xi_{A}^{N}\right)$ are non-equivalent, and thus $A=\left(\nu_{A}^{P} \cup\right.$ $\left.\xi_{A}^{P}, \nu_{A}^{N} \cup \xi_{A}^{N}\right)$.

$$
\text { 4. }(\in, \in \vee q) \text {-Bipolar Fuzzy } B C K / B C I \text {-Ideals }
$$

In this section, $(\in, \in \vee q)$-bipolar fuzzy ideals of $B C K / B C I$-algebras are defined and some important properties are presented.
Definition 4.1. A bipolar fuzzy set $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ of X is called an $(\in, \in$ $\vee q)$-bipolar fuzzy ideal of X if it satisfies the following conditions:
(i) $x_{t} \in \mu_{A}^{P} \Rightarrow 0_{t} \in \vee q \mu_{A}^{P}$ and $0_{m} \in \mu_{A}^{N} \Rightarrow x_{m} \in \vee q \mu_{A}^{N}$, for all $x \in X$, $t \in(0,1], m \in[-1,0)$
(ii) $(x * y)_{t} \in \mu_{A}^{P}, y_{s} \in \mu_{A}^{P} \Rightarrow x_{\min (t, s)} \in \vee q \mu_{A}^{P}$ for all $x, y \in X, t, s \in(0,1]$ (iii) $(x * y)_{m} \in \mu_{A}^{N}, y_{n} \in \mu_{A}^{N} \Rightarrow x_{\max (m, n)} \in \vee q \mu_{A}^{N}$ for all $x, y \in X$, $m, n \in[-1,0)$.
Example 4.2. Let $X=\{0, a, b, c, d\}$ be a BCK-algebra in Example 3.13 and a bipolar fuzzy set A of X defined by $\mu_{A}^{P}(0)=0.7, \mu_{A}^{P}(a)=\mu_{A}^{P}(c)=0.3$, $\mu_{A}^{P}(b)=\mu_{A}^{P}(d)=0.2$ and $\mu_{A}^{N}(0)=-0.9, \mu_{A}^{N}(a)=-0.6, \mu_{A}^{N}(b)=-0.4$, $\mu_{A}^{N}(c)=-0.7$ and $\mu_{A}^{N}(d)=-0.3$ is an $(\in, \in \vee q)$-bipolar fuzzy ideal as well as a bipolar fuzzy ideal of X.
Theorem 4.3. A bipolar fuzzy set $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ of X is called a bipolar fuzzy ideal of X if and only if the following assertions are valid
(i) $x_{t} \in \mu_{A}^{P} \Rightarrow 0_{t} \in \mu_{A}^{P}$ and $x_{m} \in \mu_{A}^{N} \Rightarrow 0_{m} \in \mu_{A}^{N}$, for all $x \in X, t \in[0,1]$, $m \in[-1,0])$
(ii) $(x * y)_{t} \in \mu_{A}^{P}, y_{s} \in \mu_{A}^{P} \Rightarrow x_{\min (t, s)} \in \mu_{A}^{P}$, for all $x, y \in X, t, s \in[0,1]$

MISSOURI J. OF MATH. SCI., FALL 2017
(iii) $(x * y)_{m} \in \mu_{A}^{N}, y_{n} \in \mu_{A}^{N} \Rightarrow x_{\max (m, n)} \in \mu_{A}^{N}$, for all $x, y \in X, m, n \in$ $[-1,0])$.
Proof. Assume that Definition 2.6 (i) is valid and $x \in X, t \in[0,1], m \in$ $[-1,0]$ such that $x_{t} \in \mu_{A}^{P}$ and $x_{m} \in \mu_{A}^{N}$. Then $\mu_{A}^{P}(0) \geq \mu_{A}^{P}(x) \geq t$ and $\mu_{A}^{N}(0) \leq \mu_{A}^{N}(x) \leq m$, and so $0_{t} \in \mu_{A}^{P}$ and $0_{m} \in \mu_{A}^{N}$. Since $x_{\mu(x)} \in \mu_{A}^{P}$ and $x_{\mu(x)} \in \mu_{A}^{N}$ for all $x \in X$, it follows from (i) that $0_{\mu(x)} \in \mu_{A}^{P}$ and $0_{\mu(x)} \in \mu_{A}^{N}$ so that $\mu_{A}^{P}(0) \geq \mu_{A}^{P}(x)$ and $\mu_{A}^{N}(0) \leq \mu_{A}^{N}(x)$ for all $x \in X$. Assume that the condition (ii) and (iii) of Definition 2.6 holds. Let $x, y \in X$ and $t, s \in[0,1]$, $m, n \in[-1,0]$ be such that $(x * y)_{t} \in \mu_{A}^{P}, y_{s} \in \mu_{A}^{P}$ and $(x * y)_{m} \in \mu_{A}^{N}$, $y_{n} \in \mu_{A}^{N}$. Then $\mu_{A}^{P}(x * y) \geq t, \mu_{A}^{P}(y) \geq s$ and $\mu_{A}^{N}(x * y) \leq m, \mu_{A}^{N}(y) \leq n$. It follows from (ii) and (iii) of Definition 2.6 that

$$
\begin{gathered}
\mu_{A}^{P}(x) \geq \min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y)\right\} \geq \min \{t, s\} \\
\mu_{A}^{N}(x) \leq \max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y)\right\} \leq \max \{m, n\} .
\end{gathered}
$$

So, that $x_{\min (t, s)} \in \mu_{A}^{P}$ and $x_{\max (m, n)} \in \mu_{A}^{N}$. Again, suppose that (ii) and (iii) are valid. Also, for every $x, y \in X,(x * y)_{\mu_{A}^{P}(x * y)} \in \mu_{A}^{P}, y_{\mu_{A}^{P}(y)} \in \mu_{A}^{P}$ and $(x * y)_{\mu_{A}^{N}(x * y)} \in \mu_{A}^{N}, y_{\mu_{A}^{N}(y)} \in \mu_{A}^{N}$. Hence, $x_{\min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y)\right\}} \in \mu_{A}^{P}$ and $x_{\max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y)\right\}} \in \mu_{A}^{N}$ by (ii) and (iii), respectively and thus,

$$
\begin{array}{r}
\mu_{A}^{P}(x) \geq \min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y)\right\} \\
\mu_{A}^{N}(x) \leq \max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y)\right\} .
\end{array}
$$

Hence, the proof is completed.
Remark 4.4. Theorem 4.3 shows that every (\in, \in)-bipolar fuzzy ideal is precisely a bipolar fuzzy ideal and vice versa. Obviously, every (ϵ, \in)-bipolar fuzzy ideal is an $(\in, \in \vee q)$-bipolar fuzzy ideal.
Theorem 4.5. A bipolar fuzzy set $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ of X is an $(\in, \in \vee q)$ bipolar fuzzy ideal of X if and only if it satisfies the following conditions:
(i) $\mu_{A}^{P}(0) \geq \min \left\{\mu_{A}^{P}(x), 0.5\right\}$ and $\mu_{A}^{N}(0) \leq \max \left\{\mu_{A}^{N}(x),-0.5\right\}$ for all $x \in X$
(ii) $\mu_{A}^{P}(x) \geq \min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y), 0.5\right\}$ for all $x, y \in X$
(iii) $\mu_{A}^{N}(x) \leq \max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y),-0.5\right\}$ for all $x, y \in X$.

Proof. Suppose $A=\left(\mu_{A}^{P}, \mu_{A}^{N}\right)$ is an $(\in, \in \vee q)$-bipolar fuzzy ideal of X. Let $x \in X$ be such that $\mu_{A}^{P}(x)<0.5$ and $\mu_{A}^{N}(x)>-0.5$. If $\mu_{A}^{P}(0)<\mu_{A}^{P}(x)$ and $\mu_{A}^{N}(0)>\mu_{A}^{N}(x)$, then $\mu_{A}^{P}(0)<t<\mu_{A}^{P}(x)$ and $\mu_{A}^{N}(0)>m>\mu_{A}^{N}(x)$ for some $t \in(0,0.5)$ and for some $m \in(-0.5,0)$, so we get $x_{t} \in \mu_{A}^{P}$ and $0_{t} \bar{\in} \mu_{A}^{P}$, and $x_{m} \in \mu_{A}^{N}$ and $0_{m} \bar{\in} \mu_{A}^{N}$. Since $\mu_{A}^{P}(0)+t<1$ and $\mu_{A}^{N}(0)+m>-1$, so we have $0_{t} \bar{q} \mu_{A}^{P}$ and $0_{m} \bar{q} \mu_{A}^{N}$. It follows that $0_{t} \overline{\in \vee q} \mu_{A}^{P}$ and $0_{m} \overline{\in \vee q} \mu_{A}^{N}$, a contradiction. Hence, $\mu_{A}^{P}(0) \geq \mu_{A}^{P}(x)$ and $\mu_{A}^{N}(0) \leq \mu_{A}^{N}(x)$. Now if $\mu_{A}^{P}(x) \geq 0.5$ and $\mu_{A}^{N}(x) \leq-0.5$, then $x_{0.5} \in \mu_{A}^{P}$ and $x_{-0.5} \in \mu_{A}^{N}$ and thus, $0_{0.5} \in \vee q \mu_{A}^{P}$ and $0_{-0.5} \in \vee q \mu_{A}^{N}$. Thus, $\mu_{A}^{P}(0) \geq 0.5$ and $\mu_{A}^{N}(0) \leq-0.5$. Otherwise,
$\mu_{A}^{P}(x)+0.5<0.5+0.5=1$ and $\mu_{A}^{N}(x)+(-0.5)>-0.5-0.5=-1$, a contradiction. Consequently, $\mu_{A}^{P}(0) \geq\left\{\mu_{A}^{P}(x), 0.5\right\}$ and $\mu_{A}^{N}(0) \leq\left\{\mu_{A}^{N}(x),-0.5\right\}$ for all $x \in X$. Let $x, y \in X$. Suppose that $\min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y)\right\}<0.5$ and $\max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y)\right\}>-0.5$. Then $\mu_{A}^{P}(x) \geq \min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y)\right\}$ and $\mu_{A}^{N}(x) \leq \max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y)\right\}$. If not, then $\mu_{A}^{P}(x)<t<\min \left\{\mu_{A}^{P}(x *\right.$ $\left.y), \mu_{A}^{P}(y)\right\}$ for some $t \in(0,0.5)$ and $\mu_{A}^{N}(x)>m>\max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y)\right\}$ for some $m \in(-0.5,0)$. It follows that $(x * y)_{t} \in \mu_{A}^{P}$ and $y_{t} \in \mu_{A}^{P}$ but $x_{\min (t, t)}=$ $x_{t} \overline{\in \vee} q \mu_{A}^{P}$ and $(x * y)_{m} \in \mu_{A}^{N}$ and $y_{m} \in \mu_{A}^{N}$ but $x_{\max (m, m)}=x_{m} \overline{\in \vee} q \mu_{A}^{N}$ which is a contradiction. Hence, $\mu_{A}^{P}(x) \geq \min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y)\right\}$ whenever $\min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y)\right\}<0.5$ and $\mu_{A}^{N}(x) \leq \max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y)\right\}$ whenever $\max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y)\right\}>-0.5$. If $\min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y)\right\} \geq 0.5$, then $(x * y)_{0.5} \in \mu_{A}^{P}$ and $y_{0.5} \in \mu_{A}^{P}$, which imply that $x_{0.5}=x_{\min (0.5,0.5)} \in \vee q \mu_{A}^{P}$ and if $\max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y) \leq-0.5\right.$, then $(x * y)_{-0.5} \in \mu_{A}^{N}$ and $y_{-0.5} \in \mu_{A}^{N}$, which imply that $x_{-0.5}=x_{\max (-0.5,-0.5)} \in \vee q \mu_{A}^{N}$. Therefore, $\mu_{A}^{P}(x) \geq 0.5$ and $\mu_{A}^{N}(x) \leq-0.5$, because if $\mu_{A}^{P}(x)<0.5$ and $\mu_{A}^{N}(x)>-0.5$ then $\mu_{A}^{P}(x)+0.5<0.5+0.5=1$ and $\mu_{A}^{N}(x)+(-0.5)>-0.5-0.5=-1$, which is a contradiction. Hence,

$$
\begin{gathered}
\mu_{A}^{P}(x) \geq \min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y), 0.5\right\} \\
\mu_{A}^{N}(x) \leq \max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y),-0.5\right\}
\end{gathered}
$$

for all $x, y \in X$.
Conversely, assume that A satisfies the conditions $(i),(i i)$, and (iii). Let $x \in X, t \in(0,1]$ and $m \in[-1,0)$ be such that $x_{t} \in \mu_{A}^{P}$ and $x_{m} \in \mu_{A}^{N}$. Then $\mu_{A}^{P}(x) \geq t$ and $\mu_{A}^{N}(x) \leq m$. Suppose that $\mu_{A}^{P}(0)<t$ and $\mu_{A}^{N}(0)>m$. If $\mu_{A}^{P}(x)<0.5$ and $\mu_{A}^{N}(x)>-0.5$, then $\mu_{A}^{P}(0) \geq \min \left\{\mu_{A}^{P}(x), 0.5\right\}=\mu_{A}^{P}(x) \geq$ t and $\mu_{A}^{N}(0) \leq \max \left\{\mu_{A}^{N}(x),-0.5\right\}=\mu_{A}^{N}(x) \leq m$, a contradiction. Hence, we know that $\mu_{A}^{P}(x) \geq 0.5$ and $\mu_{A}^{N}(x) \leq-0.5$ and so we get

$$
\begin{gathered}
\mu_{A}^{P}(0)+t>2 \mu_{A}^{P}(0) \geq \min \left\{\mu_{A}^{P}(x), 0.5\right\}=1 \\
\mu_{A}^{N}(0)+m<2 \mu_{A}^{N}(0) \leq \max \left\{\mu_{A}^{N}(x) .-0.5\right\}=-1 .
\end{gathered}
$$

Thus, $0_{t} \in \vee q \mu_{A}^{P}$ and $0_{m} \in \vee q \mu_{A}^{N}$. Let $x, y \in X, t, s \in(0,1]$ and $m, n \in$ $[-1,0)$ be such that $(x * y)_{t} \in \mu_{A}^{P}$ and $y_{s} \in \mu_{A}^{P}$, and $(x * y)_{m} \in \mu_{A}^{N}$, $y_{n} \in \mu_{A}^{N}$. Then $\mu_{A}^{P}(x * y) \geq t$ and $\mu_{A}^{P}(y) \geq s$, and $\mu_{A}^{N}(x * y) \leq m$ and $\mu_{A}^{N}(y) \leq n$. Suppose that $\mu_{A}^{P}(x)<\min \{t, s\}$ and $\mu_{A}^{N}(x)>\max \{m, n\}$. If $\min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y)\right\}<0.5$ and if $\max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y)\right\}>-0.5$. Then $\mu_{A}^{P}(x) \geq \min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y), 0.5\right\}=\min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y)\right\} \geq \min \{t, s\}$ $\mu_{A}^{N}(x) \leq \max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y),-0.5\right\}=\max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y)\right\} \leq\{m, n\}$. This is a contradiction. Hence, $\min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y)\right\} \geq 0.5$ and $\max \left\{\mu_{A}^{N}(x *\right.$ $\left.y), \mu_{A}^{N}(y)\right\} \leq-0.5$. It follows that

$$
\mu_{A}^{P}(x)+\min \{t, s\}>2 \mu_{A}^{P}(x) \geq \min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y), 0.5\right\}=1
$$

C. JANA, M. PAL, AND A. B. SAIED

$$
\mu_{A}^{N}(x)+\max \{m, n\}<2 \mu_{A}^{N}(x) \leq \max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y),-0.5\right\}=-1
$$

so that $x_{\min (t, s)} \in \vee q \mu_{A}^{P}$ and $x_{\max (m, n)} \in \vee q \mu_{A}^{N}$. Consequently, A is an $(\in, \in \vee q \mu)$-bipolar fuzzy ideal of a $B C K / B C I$-algebra of X.

Theorem 4.6. A bipolar fuzzy set A of X is an $(\in, \in \vee q)$-bipolar fuzzy ideal of X if and only if the set

$$
U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)=\left\{x \in X \mid \mu_{A}^{P}(x) \geq t \text { and } \mu_{A}^{N}(x) \leq m\right\}
$$

is a bipolar fuzzy ideal of X for all $m \in[-0.5,0)$ and for all $t \in(0,0.5]$.
Proof. Assume that bipolar fuzzy set A is a bipolar $(\in, \in \vee q)$-fuzzy ideal of X with $m \in[-0.5,0)$ and $t \in(0,0.5]$. Now, using Theorem 4.5(i), we have $\mu_{A}^{P}(0) \geq \min \left\{\mu_{A}^{P}(x), 0.5\right\}$ and also $\mu_{A}^{N}(0) \leq \max \left\{\mu_{A}^{N}(x),-0.5\right\}$ for any $x \in U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$. It follows that $\mu_{A}^{P}(0) \geq \min \{t, 0.5\}=t$ and $\mu_{A}^{N}(0) \leq \max \{m,-0.5\}=m$. This implies that $0 \in U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$. Let $x, y \in X$ be such that $x * y \in U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$ and $y \in U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$ for $m \in[-0.5,0)$ and for $t \in(0,0.5]$. Then $\mu_{A}^{P}(x * y) \geq t$ and $\mu_{A}^{P}(y) \geq t$, and $\mu_{A}^{N}(x * y) \leq m$ and $\mu_{A}^{N}(y) \leq m$. Now using Theorem 4.5 (ii) and (iii), we get

$$
\begin{gathered}
\mu_{A}^{P}(x) \geq \min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y), 0.5\right\} \geq \min \{t, 0.5\}=t \\
\mu_{A}^{N}(x) \leq \max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y),-0.5\right\} \leq \max \{m,-0.5\}=m
\end{gathered}
$$

and so $x \in U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$. Hence, $U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$ for $m \in[-0.5,0)$ and for $t \in(0,0.5]$, is a bipolar fuzzy ideal of X.

Conversely, let A be a bipolar fuzzy set of X such that $U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)=$ $\left\{x \in X \mid \quad \mu_{A}^{P}(x) \geq t\right.$ and $\left.\mu_{A}^{N}(x) \leq m\right\}$ is a bipolar fuzzy ideal of X for all $m \in[-0.5,0)$ and for all $t \in(0,0.5]$. If there is $a \in X$ such that $\mu_{A}^{P}(0)<\min \left\{\mu_{A}^{P}(a), 0.5\right\}$ and $\mu_{A}^{N}(0)>\max \left\{\mu_{A}^{N}(a),-0.5\right\}$, then $\mu_{A}^{P}(0)<$ $t<\min \left\{\mu_{A}^{P}(a), 0.5\right\}$ and $\mu_{A}^{N}(0)>m>\max \left\{\mu_{A}^{N}(a),-0.5\right\}$ for some $t \in$ $(0,0.5)$ and for some $m \in(-0.5,0)$, so $0 \notin U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$. This is a contradiction. Hence, $\mu_{A}^{P}(0) \geq \min \left\{\mu_{A}^{P}(x), 0.5\right\}$ and $\mu_{A}^{N}(0) \leq \max \left\{\mu_{A}^{N}(x),-0.5\right\}$ for all $x \in X$. Assume that there exist $a^{\prime}, b^{\prime} \in X$ such that $\mu_{A}^{P}\left(a^{\prime}\right)<$ $\min \left\{\mu_{A}^{P}\left(a^{\prime} * b^{\prime}\right), \mu_{A}^{P}\left(b^{\prime}\right), 0.5\right\}$ and $\mu_{A}^{N}\left(a^{\prime}\right)>\max \left\{\mu_{A}^{N}\left(a^{\prime} * b^{\prime}\right), \mu_{A}^{N}\left(b^{\prime}\right),-0.5\right\}$. We take

$$
t_{0}=\frac{1}{2}\left(\mu_{A}^{P}\left(a^{\prime}\right)+\min \left\{\mu_{A}^{P}\left(a^{\prime} * b^{\prime}\right), \mu_{A}^{P}\left(b^{\prime}\right), 0.5\right\}\right)
$$

and

$$
m_{0}=\frac{1}{2}\left(\mu_{A}^{N}\left(a^{\prime}\right)+\max \left\{\mu_{A}^{N}\left(a^{\prime} * b^{\prime}\right), \mu_{A}^{N}\left(b^{\prime}\right),-0.5\right\}\right)
$$

We get $t_{0} \in(0,0.5)$ and $m_{0} \in(-0.5,0)$, so that $\mu_{A}^{P}\left(a^{\prime}\right)<t_{0}<\min \left\{\mu_{A}^{P}\left(a^{\prime} *\right.\right.$ $\left.\left.b^{\prime}\right), \mu_{A}^{P}\left(b^{\prime}\right), 0.5\right\}$, and $\mu_{A}^{N}\left(a^{\prime}\right)>m_{0}>\max \left\{\mu_{A}^{N}\left(a^{\prime} * b^{\prime}\right), \mu_{A}^{N}\left(b^{\prime}\right),-0.5\right\}$. Thus, $a^{\prime} * b^{\prime} \in U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$ and $b^{\prime} \in U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$, but $a^{\prime} \notin U\left(\mu_{A}^{P}, \mu_{A}^{N} ; t, m\right)$. This is a contradiction. Hence,

$$
\mu_{A}^{P}(x) \geq \min \left\{\mu_{A}^{P}(x * y), \mu_{A}^{P}(y), 0.5\right\}
$$

$$
\mu_{A}^{N}(x) \leq \max \left\{\mu_{A}^{N}(x * y), \mu_{A}^{N}(y),-0.5\right\}
$$

for all $x, y \in X$. It follows from Theorem 4.5 that A is an $(\in, \in \vee q)$-bipolar fuzzy ideal of X.

Corollary 4.7. Every bipolar fuzzy ideal of X is an $(\in, \in \vee q)$-bipolar fuzzy ideal of X. The converse of Corollary 4.7 is not true in general, justified in the following example.

Example 4.8. Consider a BCI-algebra $X=\{0, a, b, c\}$ with Caley Table 1 given in Example 3.5, we define a bipolar fuzzy set A as follows $\mu_{A}^{P}(0)=0.8$, $\mu_{A}^{P}(a)=\mu_{A}^{P}(b)=0.7, \mu_{A}^{P}(c)=0.6$ and $\mu_{A}^{N}(0)=-0.8, \mu_{A}^{N}(b)=-0.7$, and $\mu_{A}^{N}(a)=\mu_{A}^{N}(c)=-0.3$ is an $(\in, \in \vee q)$-bipolar fuzzy ideal of X but is not bipolar fuzzy ideal of X because $\mu_{A}^{P}(c)=0.6 \nsupseteq 0.7=\min \left\{\mu_{A}^{P}(c * a), \mu_{A}^{P}(a)\right\}$.

5. Conclusions

In this paper, the notion of $(\epsilon, \in \vee q)$-bipolar fuzzy $B C K / B C I$-subalgebras and $(\epsilon, \in \vee q)$-bipolar fuzzy $B C K / B C I$-ideals are introduced on $B C K / B C I$ algebras and characterized their useful properties. We investigated the relationship between $(\epsilon, \in \vee q)$-bipolar fuzzy $B C K / B C I$-subalgebras and bipolar fuzzy $B C K / B C I$-subalgebras, and also the relation of their corresponding ideals.

In our future study of bipolar fuzzy structure of $B C K / B C I$-algebra, we may consider the following topics: (i) bipolar (T, S)-fuzzy soft $B C K / B C I$ algebra, where T and S are triangular norm and co-norm respectively, (ii) bipolar $(\bar{\epsilon}, \bar{\epsilon} \vee \bar{q})$-fuzzy soft $B C K / B C I$-algebra, (iii) $(\epsilon, \in \vee q)$-bipolar fuzzy soft (p-, a - and q-)ideals and their relations. (iv) $(\epsilon, \in \vee q)$-bipolar fuzzy relations.

6. Acknowledgement

The authors are highly grateful to the referees and editors, for their valuable comments and suggestions for improving the paper.

References

[1] S. Abdullah and M. M. M. Aslam, Bipolar fuzzy ideals in LA-semigroups, World Appl. Sci. J., 17.12 (2012), 1769-1782.
[2] T. Bej and M. Pal, Doubt Atanassovs intuitionistic fuzzy sub-implicative ideals in BCI-algebras, Int. J. Comput. Int. Sys., 8.2 (2015), 240-249.
[3] S. K. Bhakat and P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems, 51 (1992), 235-241.
[4] S. K. Bhakat and P. Das, $(\in, \in \vee q)$-fuzzy subgroup, Fuzzy Sets and Systems, 80 (1996), 359-368.
[5] L. Carlitz, Some identities of Bruckman, The Fibonacci Quarterly, 13.2 (1975), 121-126.

C. JANA, M. PAL, AND A. B. SAIED

[6] A. Erdélyi et al., Higher Transcendental Functions, Vol. 1, McGraw-Hill Book Company, Inc., New York, 1953.
[7] Y. S. Huang, BCI-algebra, Science Press, Beijing, 2006.
[8] Y. Imai and K. Iseki, On axiom system of propositional calculi, XIV Proc. of the Japan Aceademy, 42 (1966), 19-22.
[9] C. Jana and T. Senapati, Cubic G-subalgebras of G-algebras, Annals of Pure and Applied Mathematics, 10.1 (2015), 105-115.
[10] C. Jana, T. Senapati, M. Bhowmik and M. Pal, On intuitionistic fuzzy G-subalgebras of G-algebras, Fuzzy Inf. Eng., 7.2 (2015), 195-209.
[11] C. Jana, M. Pal, T. Senapati, and M. Bhowmik, Atanassov's intutionistic L-fuzzy G-subalgebras of G-algebras, The Journal of Fuzzy Mathematics, 23.2 (2015), 195209.
[12] C. Jana, T. Senapati, and M. Pal, Derivation, f-derivation and generalized derivation of KUS-algebras, Cogent Mathematics, 2 (2015), 1-12.
[13] C. Jana and M. Pal, Applications of new soft intersection set on groups, Ann. Fuzzy Math. Inform., 11.6 (2016), 923-944.
[14] C. Jana, T. Senapati, and M. Pal, $(\in, \in \vee q)$-intuitionistic fuzzy BCI-subalgebras of BCI-algebra, J. Int. Fuzzy Syst., 31 (2016), 613-621.
[15] C. Jana, Generalized (Γ, Υ)-derivation on subtraction algebras, Journal of Mathematics and Informatics, 4 (2015), 71-80.
[16] C. Jana and M. Pal, Application of (α, β)-soft intersectional sets on $B C K / B C I-$ algebras, Int. J. of Intelligent Systems Technologies and Applications, (to appear).
[17] C. Jana, T. Senapati, and M. Pal, On t-derivation of complicated subtraction algebras, Journal of Discrete Mathematical Science and Cryptography, (to appear).
[18] Y. B. Jun, On (α, β)-fuzzy subalgebras of $B C K / B C I$-algebras, Bull. Korean Math. Soc., 42.4 (2005), 703-711.
[19] Y. B. Jun and X. L. Xin, Involutory and invertible fuzzy BCK-algebras, Fuzzy Sets and Systems, 117 (2001), 463-469.
[20] Y. B. Jun, On (α, β)-fuzzy ideals of $B C K / B C I$-algebrs, Scientiae Math. Jpn., (2004), 101-105.
[21] Y. B. Jun, M. A. Öztürk, and G. Muhiuddin, A generalization of $(\in, \in \vee q)$-fuzzy subgroups, International Journal of Algebra and Statistics, 5.1 (2016), 7-18.
[22] Y. B. Jun and W. H. Shim, Fuzzy strong implicative hyper BCK-ideals of hyper BCK-algebras, Inform. Scie., 170 (2005), 351-361.
[23] Y. B. Jun, G. Muhiuddin, and A. Al-roqi, Ideal theory of BCK/BCI-algebras based on double-framed soft sets, Applied Mathematics and Information Sciences, 7.5 (2013), 1879-1887.
[24] K. M. Lee, Bipolar-valued fuzzy sets and their basic operations, Proc. Int. Conf., Bangkok, Thailand, 2007, 307-317.
[25] K. M. Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolar-valued fuzzy sets, Journal of Fuzzy Logic and Intelligent Systems, 14 (2004), 125-129.
[26] K. J. Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull. Malays. Math. Sci. Soc., 32.3 (2009), 361-373.
[27] K. J. Lee and Y. B. Jun, Bipolar fuzzy a-ideals of BCI-algebras, Commun. Korean Math. Soc., 26.4 (2011), 531-542.
[28] Y. L. Liu, Y. Xu, and J. Meng, BCI-implicative ideals of BCI-algebras, Inform. Scie., 177 (2009), 4987-4996.
[29] X. Ma, J. Zhan, B. Davvaz, and Y. B. Jun, Some kinds of $(\in, \in \vee q)$-interval-valued fuzzy ideals of BCI-algebras, Inform. Scie., 178 (2008), 3738-3754.
[30] X. Ma, J. Zhan, and Y. B. Jun, Some types of $(\in, \in \vee q)$-interval-valued fuzzy ideals of BCI algebras, Iranian J. Fuzzy Syst., 6.3 (2009), 53-63.
[31] X. Ma, J. Zhan, and Y. B. Jun, Some kinds of $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy ideals of BCIalgebras, Comput. Math. Appl., 61.4 (2011), 1005-1015.
[32] X. Ma, J. Zhan, and Y. B. Jun, New types of fuzzy ideals of BCI-algebras, Neural Comput. Applic., 21 (2012), S19-S27.
[33] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Third Edition, Springer-Verlag, Berlin, 1966.
[34] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co. Seoul., 1994.
[35] J. Meng and X. Guo, On fuzzy ideals in BCK/BCI-algebras, Fuzzy Sets and Systems, 149.3 (2005), 509-525.
[36] G. Muhiuddin, H. S. Kim, S. Z. Song, and Y. B. Jun, Hesitant fuzzy translations and extensions of subalgebras and ideals in BCK/BCI-algebras, J. Int. Fuzzy Syst., 32 (2017), 43-48.
[37] G. Muhiuddin and A. Al-roqi, Subalgebras of BCK/BCI-algebras based on (α, β) type fuzzy sets, Journal of Computational Analysis and Applications, 18.6 (2015), 1057-1064.
[38] V. Murali, Fuzzy points of equivalent fuzzy subsets, Inform. Scie., 158 (2004), 277288.
[39] P. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76 (1980), 571-599.
[40] E. D. Rainville, Special Functions, Chelsea Publ. Co., Bronx, New York, 1971.
[41] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
[42] A. B. Saied, Bipolar valued fuzzy BCK/BCI-algebras, World Applied Sci. J., 7.11 (2009), 1404-1411.
[43] T. Senapati, C. Jana, M. Bhowmik, and M. Pal, L-fuzzy G-subalgebras of Galgebras, J. Egyptian Math. Soc., 23(2) (2015), 219-223.
[44] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.
[45] L. A. Zadeh, Fuzzy sets, Information Control, 8 (1965), 338-353.
[46] J. Zhan, Y. B. Jun, and B. Davvaz, On $(\in, \in \vee q)$-fuzzy ideals of BCI-algebras, Iranian J. Fuzzy Syst., 6 (2009), 81-94.
[47] J. Zhan and Y. B. Jun, Generalized fuzzy ideals of BCI-algebras, Bulletin of the Malaysian Mathematical Sciences Society, (2) 32.2 (2009), 119-130.
[48] J. Zhan, Y. Liu, and Y. B. Jun, On characterizations of generalized fuzzy ideals of BCI-algebras, International Journal of Computer Mathematics, 86 (2009), 19892007.
[49] W. R. Zhang, Bipolar fuzzy sets, Part I, Proc. of FUZZ-IEEE., 2 (1998), 835-840.
[50] W. R. Zhang, L. Zhang and Y. Yang, Bipolar logic and bipolar fuzzy logic, Inform. Sci., 165 (2004), 265-287.

C. JANA, M. PAL, AND A. B. SAIED

MSC2010: 06F35, 03G25, 08A72
Key words and phrase: $B C K / B C I$-algebras, bipolar fuzzy $B C K / B C I$ algebras, bipolar fuzzy points, $(\in, \in \vee q)$-bipolar fuzzy subalgebras, $(\in, \in$ $\vee q$)-bipolar fuzzy $B C K / B C I$-ideals.

Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, India

E-mail address: jana.chiranjibe7@gmail.com
Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, India

E-mail address: mmaplvu@gmail.com
Department of pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

E-mail address: arsham@mail.uk.ac.ir

