OUTERPLANAR COARSENESS OF PLANAR GRAPHS

PAUL C. KAINEN

ABSTRACT. The (outer) planar coarseness of a graph is the largest number of pairwise-edge-disjoint non-(outer)planar subgraphs. It is shown that the maximum outerplanar coarseness, over all *n*-vertex planar graphs, lies in the interval $[\lfloor (n-2)/3 \rfloor, \lfloor (n-2)/2 \rfloor]$.

1. INTRODUCTION

A graph H is *outerplanar* if the graph $H * K_1$, consisting of the join of H with an isolated vertex, is planar. Some invariants related to outerplanarity are bounded on the family of all planar graphs; e.g., Yannakakis [6] showed that the book thickness of a planar graph is at most 4, and the famous CGH-conjecture [1], that every planar graph has outerplanar thickness at most 2, may have at last been proven by Goncalves [2].

However, the worst-case outerplanar crossing number grows quadratically with the number of vertices of the planar graph. Indeed, as the number of edges in a planar graph is less than 3 times the number n of vertices, the outerplanar crossing number is less than $(9/2)n^2$, and we showed in [5] that the family G_n of n-vertex planar graphs has outerplanar crossing number $cr_{op}(G_n)$ asymptotically equal to $n^2/4$, where G_n is the join of two isolated vertices with an (n-2)-cycle, i.e., $G_n = C_{n-2} * \bar{K}_2$. In fact, [5] gives an exact formula for $n \geq 5$,

$$cr_{op}(G_n) = \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor + 2n-8.$$

We show that worst-case outerplanar coarseness of planar graphs grows linearly with n.

2. Outerplanar coarseness of G_n

The outerplanar coarseness of a graph G is the largest number of pairwiseedge-disjoint non-outerplanar subgraphs of G. As G is outerplanar if and only if it has no subgraph homeomorphic to K_4 or $K_{2,3}$ [4, p. 107], it follows (Guy [3]) that G with m edges has outerplanar coarseness $\xi_{op}(G)$ at most m/6. This gives the upper bound for n-vertex planar graphs asserted in the abstract. The following theorem provides the lower bound.

MISSOURI J. OF MATH. SCI., SPRING 2016

97

P. C. KAINEN

Theorem 2.1. Let $n \ge 5$. Then $\xi_{op}(G_n) = \lfloor (n-2)/3 \rfloor$.

Proof. The ≥ inequality is obvious: Take any family of the form $\{\bar{K}_2 * W : W \in \mathcal{W}\}$, where \mathcal{W} is a maximal collection of pairwise-vertex-disjoint 3-element subsets of $V(C_{n-2})$ and \bar{K}_2 denotes the same pair of vertices given in the definition of G_n . For the reverse inequality, note that a K_4 -homeomorph in G_n includes the entire *n*-2-cycle so G_n contains only one such subgraph. Hence, for $n \geq 5$, to maximize the number of pairwise edge-disjoint non-outerplanar subgraphs, one can use homeomorphs of $K_{2,3}$ so \leq holds as well. □

We conjecture that G_n maximizes $cr_{op}(G)$ and $\xi_{op}(G)$ over all *n*-vertex planar graphs G.

References

- G. Chartrand, D. P. Geller, and S. Hedetniemi, *Graphs with forbidden subgraphs*, J. Comb. Th. B, **10** (1971), 12–41.
- [2] D. Goncalves, Edge partition of planar graphs into two outerplanar graphs, STOC, ACM, 2005, pp. 504–512.
- [3] R. K. Guy, Outerthickness and outercoarseness of graphs, Combinatorics, T. P. McDonough and V. Mavron, Eds., Cambridge Univ. Press, 1974, pp. 57–60.
- [4] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1970.
- [5] P. C. Kainen, Outerplanar crossing numbers of planar graphs, Bull. Inst. Combin. Appl., 61 (2011) 69–76.
- [6] M. Yannakakis, Embedding planar graphs in four pages, J. of Computer and Syst. Sci., 38 (1989), 36–67.

MSC2010: 05C10

Key words and phrases: Coarseness, crossing number, outerplanar invariants, planar graphs

Department of Mathematics and Statistics, Georgetown University, Washington, D.C. 20057-1233 $\,$

E-mail address: kainen@georgetown.edu

MISSOURI J. OF MATH. SCI., VOL. 28, NO. 1

98