AN ALTERNATE CAYLEY-DICKSON PRODUCT

JOHN W. BALES

ABSTRACT. Although the Cayley-Dickson algebras are twisted group algebras, little attention has been paid to the nature of the Cayley-Dickson twist. One reason is that the twist appears to be highly chaotic and there are other interesting things about the algebras to focus attention upon. However, if one uses a doubling product for the algebras different from yet equivalent to the ones commonly used, and if one uses a numbering of the basis vectors different from the standard basis a quite beautiful and highly periodic twist emerges. This leads easily to a simple closed form equation for the product of any two basis vectors of a Cayley-Dickson algebra.

1. INTRODUCTION

The purpose of this paper is to give a closed form formula for the product of any two basis vectors of a Cayley-Dickson algebra.

The complex numbers are constructed by a doubling product on the set of real numbers:

$$(a,b)(c,d) = (ac - bd, ad + bc)$$
 (1.1)

To produce the quaternions by a doubling product on the complex numbers requires that one take conjugation into consideration in such a way that, for real numbers the product reduces to the one above.

There are eight (and only eight) distinct Cayley-Dickson doubling products [4] which accomplish this. For each of the eight, the conjugate of an ordered pair (a, b) is defined recursively by

$$(a,b)^* = (a^*, -b) \tag{1.2}$$

The eight doubling products are:

$$P_0: (a,b)(c,d) = (ca - b^*d, da^* + bc)$$

$$P_1: (a,b)(c,d) = (ca - db^*, a^*d + cb)$$

$$P_2: (a,b)(c,d) = (ac - b^*d, da^* + bc)$$

$$P_3: (a,b)(c,d) = (ac - db^*, a^*d + cb)$$

MISSOURI J. OF MATH. SCI., VOL. 28, NO. 1

$$P_0^{\top} : (a,b)(c,d) = (ca - bd^*, ad + c^*b)$$

$$P_1^{\top} : (a,b)(c,d) = (ca - d^*b, da + bc^*)$$

$$P_2^{\top} : (a,b)(c,d) = (ac - bd^*, ad + c^*b)$$

$$P_3^{\top} : (a,b)(c,d) = (ac - d^*b, da + bc^*)$$

Only two of these eight, P_3 and P_3^{\top} have been investigated. The eight algebras resulting from these products are isomorphic [4] and all have the same elements and the same unit basis vectors $e_0, e_1, e_2, \ldots, e_n, \ldots$ The basis vectors will be defined below. The eight products may be arranged in four transpose pairs P_0 , P_0^{\top}, P_1 , P_1^{\top}, P_2 , P_2^{\top}, P_3 , P_3^{\top} . They are transposes in the sense that, given two basis vectors e_p , e_q , it is the case that $P(e_p, e_q) = P^{\top}(e_q, e_p)$. This holds for each of the four product pairs. So the multiplication table of the basis vectors for a product P is the transpose of the multiplication table of its transpose P^{\top} . Given a basis vector e_p and a basis vector e_q there is only one r for which it is the case that either $P(e_p, e_q) = e_r$ or $P(e_p, e_q) = -e_r$. For any p and q the value of r will be the same for all eight of the products and is denoted by $p \oplus q$ (which happens to also equal $q \oplus p$), but whether the product of e_p and e_q is $e_{p \oplus q}$ or $-e_{p \oplus q}$ will depend upon which of the eight products is used.

Let W denote the set of non-negative integers. For each of the eight products there is a corresponding *twist* function [7, 10, 11] $\omega : W \times W \rightarrow \{-1, 1\}$ such that for each $p, q \in W$, $P(e_p, e_q) = \omega(p, q)e_{p \oplus q}$.

Historically, researchers have been focused on the properties of the Cayley-Dickson algebras and not on the nature of the twist ω . One reason for this is that there seemed little rhyme or reason to ω . The fact that different researches numbered the basis vectors differently did not help the situation. Furthermore, for P_3 and P_3^{T} the function ω is particularly inscrutable. However, in [3] a heuristic *Cayley-Dickson tree* method was described for computing $\omega(p,q)$ for the product P_3 .

In [4] the products P_0 , P_0^{\top} , P_1 , P_1^{\top} , P_2 , and P_2^{\top} were derived. Further investigation has shown that for the product P_2 (and its corresponding transpose) there is a simple closed form formula for ω . That is the subject of this paper.

2. Background

Each real number x is identified with the infinite sequence $x, 0, 0, \ldots$ and an ordered pair of two infinite sequences $x = x_0, x_1, x_2, x_3, \ldots$ and $y = y_0, y_1, y_2, y_3, \ldots$ is equated with the *shuffled sequence*

$$(x, y) = x_0, y_0, x_1, y_1, x_2, y_2, \dots$$

MISSOURI J. OF MATH. SCI., SPRING 2016

JOHN W. BALES

Only real number sequences terminating in a string of zeros are considered, that is, finite real sequences.

The basis for this space is chosen to be

$$e_0 = 1, 0, 0, 0, \dots$$

$$e_1 = 0, 1, 0, 0, 0, \dots$$

$$e_2 = 0, 0, 1, 0, 0, 0, \dots$$

$$\vdots$$

This basis differs from bases commonly used by other researchers. To distinguish this basis from others we call it the 'shuffle basis.' The shuffle basis vectors satisfy

$$e_0 = 1$$

 $e_{2k} = (e_k, 0)$
 $e_{2k+1} = (0, e_k).$

The conjugate of a sequence x is $x^* = x_0, -x_1, -x_2, -x_3, \dots$ Thus,

$$(x, y)^* = (x^*, -y).$$

If $p, q < 2^N$ are positive integers, let $p \oplus q$ denote the 'bit-wise exclusive or' of the binary representations of p and q. This is equivalent to the sum of p and q in \mathbb{Z}_2^N .

The non-negative integers are an abelian group with respect to the operation \oplus with identity 0.

The twist functions for each of the eight doubling products satify the following [4].

$$e_p e_q = \omega(p,q) e_{p \oplus q} \tag{2.1}$$

$$\omega(p,0) = 1 \tag{2.2}$$

$$\omega(0,q) = 1 \tag{2.3}$$

$$\omega(p,p) = -1 \text{ for } p > 0 \tag{2.4}$$

$$\omega(p,q) = -\omega(q,p) \text{ provided } 0 \neq p \neq q \neq 0.$$
(2.5)

3. Properties of ω_2

The following properties of ω are peculiar to the product P_2 .

If
$$2^N \le p < q < 2^{N+1}$$
 then $\omega_2(p,q) = 1.$ (3.1)

If
$$2^N \le p < 2^{N+1} \le q$$
 then $\omega_2(p,q) = (-1)^{\lfloor q/2^N \rfloor}$. (3.2)

MISSOURI J. OF MATH. SCI., VOL. 28, NO. 1

AN ALTERNATE CAYLEY-DICKSON PRODUCT

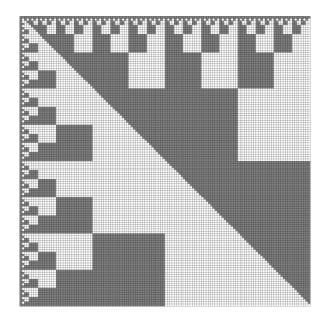


FIGURE 1. ω for $\mathbb{Z}_2^7 \times \mathbb{Z}_2^7$.

Figure 1 shows $\omega_2(p,q)$ for $\mathbb{Z}_2^7 \times \mathbb{Z}_2^7$. The rows and columns of the matrix are numbered 0 through 127 with gray cells representing $\omega(p,q) = 1$ and white cells representing $\omega(p,q) = -1$.

4. Traversing the Cayley-Dickson ω_2 Tree

In order to validate equations (3.1) and (3.2) we will traverse the ω -tree [3] in Figure 2 associated with the doubling product P_2 . Others have used such ω tree maps to research properties of Cayley-Dickson algebras [8].

In order to find $\omega_2(p,q)$ for non-negative integers p and q it will be necessary to shuffle their bits. In order not to confuse this process with the shuffling (x, y) of sequences x and y, the shuffle of integers p and q will be denoted using square brackets. So, for example, [111, 101] = 11, 10, 11 and [11, 11101] = [00011, 11101] = 01, 01, 01, 10, 11. Notice that the shuffled binary numbers have been rendered as a sequence of binary doublets. Each doublet, beginning with the leftmost, is an instruction for traversing the ω_2 -tree beginning with the top **C** node. A 0 is an instruction to move down a left branch and a 1 is an instruction to move down a right branch of the tree.

MISSOURI J. OF MATH. SCI., SPRING 2016

JOHN W. BALES

To find $\omega_2(p,q)$ by this method, traverse the tree using instruction sequence [p,q]. Terminating at -1 or $-\mathbf{D}$ means that $\omega(p,q) = -1$. Terminating at any other node means that $\omega_2(p,q) = 1$. An important property of ω_2 is that once either 1 or -1 is reached it is unnecessary to continue traversing the tree and it will always be the case that $\omega_2(p,q) = 1$ or $\omega_2(p,q) = -1$, respectively.

As an example of how one traverses the ω_2 -tree, let us find the basis vector product e_3e_{14} . First, $3 = 0011_B$ and $14 = 1110_B$. So $3 \oplus 14 =$ $1101_B = 13$. So $e_3e_{14} = \omega_2(3, 14)e_{13}$. Now [3, 14] = 01, 01, 11, 10. Using this sequence of doublets to traverse the ω -tree gives us $\mathbf{T}, \mathbf{T}, -1, -1$. So $e_3e_{14} = -e_{13}$. One may stop, of course, with the first -1 encountered.

Next, it will be seen how to use the ω_2 -tree in Figure 2 to validate equations (3.1) and (3.2).

Begin with equation (3.1), suppose $2^N \leq p < q < 2^{N+1}$. Then $[p,q] = 11, \ldots$ The doublets following the first will be either 00,01,10, or 11. The first doublet 11 moves to node $-\mathbf{D}$. Subsequent doublets of either 00 or 11 remain at node $-\mathbf{D}$. Since p < q there must occur a doublet 01 and it must occur prior to any potential doublet 10. But 01 moves from node $-\mathbf{D}$ to node 1. Thus, $\omega_2(p,q) = 1$ verifying equation (3.1).

For equation (3.2) suppose $2^N \leq p < 2^{N+1} \leq q$. Then it is either the case that $[p,q] = 01, \ldots, 10, \ldots$ or it is the case that $[p,q] = 01, \ldots, 11, \ldots$ (where the 10 and 11 doublets are the bits of p and q corresponding to 2^N). In either case the first ellipsis consists of binary doublets of the form 00 or 01 so we are at a **T** node until arriving at either the doublet 10 in which case $\omega(p,q) = 1$ or we arrive at the doublet 11 in which case $\omega(p,q) = -1$. In the first case, $\lfloor q/2^N \rfloor$ is even and in the second case $\lfloor q/2^N \rfloor$ is odd. So in either case $\omega(p,q) = (-1)^{\lfloor q/2^N \rfloor}$ verifying equation (3.2).

Let us illustrate the use of equations (3.1) and (3.2) with a couple of examples.

Find $e_{35}e_{55}$.

Since $35 = 100011_B$ and $55 = 110111_B$ then $35 \oplus 55 = 10100_B = 20$. So $e_{35}e_{55} = \omega_2(35, 55)e_{20}$. And since $2^5 \le 35 < 55 < 2^6$ it follows from equation 3.2 that $\omega_2(35, 55) = 1$. So $e_{35}e_{55} = e_{20}$.

Find $e_{87}e_{340}$.

Convert 87 = 001010111_B and 340 = 101010100_B, so 87 \oplus 340 = 1000000011_B = 259. So $e_{87}e_{340} = \omega_2(87, 340)e_{259}$. Since $64 \le 87 < 128$, and $128 \le 340$ and $\lfloor \frac{340}{64} \rfloor = 5$ then $\omega_2(87, 340) = (-1)^5 = -1$. So $e_{87}e_{340} = -e_{259}$

Find $e_{51}e_{12}$.

First, $e_{51}e_{12} = -e_{12}e_{51}$. $12 = 001100_B$ and $51 = 110011_B$ so $12 \oplus 51 = 111111_B = 63$. So $e_{51}e_{12} = -e_{12}e_{51} = -\omega_2(12,51)e_{63}$. Since $8 \le 12 < 16 \le 51$ and $\lfloor \frac{51}{8} \rfloor = 6$, $\omega_2(12,51) = (-1)^6 = 1$. So $e_{51}e_{12} = -e_{63}$.

MISSOURI J. OF MATH. SCI., VOL. 28, NO. 1

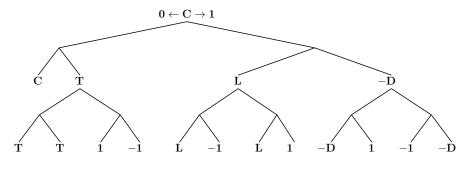


FIGURE 2. Twist tree for ω_2 .

Lest the reader get eye strain from trying to verify the results for $\mathbb{Z}_2^7 \times \mathbb{Z}_2^7$ using Figure 1 on page 91, the ω_2 table for $\mathbb{Z}_2^5 \times \mathbb{Z}_2^5$ is provided in Figure 3 on page 94. Recall that gray cells denote $\omega_2(p,q) = 1$ and white cells denote $\omega_2(p,q) = -1$.

To give a better indication of the fractal nature of ω_2 , Figure 4 is the 1024×1024 bit-mapped image of ω_2 for $\mathbb{Z}_2^{10} \times \mathbb{Z}_2^{10}$. For comparison we also provide the corresponding image of the 'inscrutable' ω_3 for $\mathbb{Z}_2^{10} \times \mathbb{Z}_2^{10}$ in Figure 5 to give a visual indication of why no one has searched for a simple formula for it.

5. Conclusion

The problem historically with finding a simple closed form equation for the product of two Cayley-Dickson basis vectors has been caused by various approaches to the algebras. One issue is that only two of the eight Cayley-Dickson doubling products have been used [12, 6, 2, 3, 5] each of which is the transpose of the other.

$$(a,b)(c,d) = (ac - db^*, a^*d + cb).$$
(5.1)

$$(a,b)(c,d) = (ac - d^*b, da + bc^*).$$
(5.2)

Unfortunately, the ω matrix of these two is sufficiently chaotic to dissuade further investigation. Furthermore, a different way of numbering the basis vectors has traditionally been used which further scrambles the ω matrix. These issues have conspired to inhibit investigation into ω .

Now we see that if the doubling product

$$P_2: (a,b)(c,d) = (ac - b^*d, da^* + bc)$$

is used and if the basis vectors are indexed over the group (W, \oplus) (the 'shuffle' basis) a natural inverse fractal pattern emerges leading to the simple result in the following theorem.

MISSOURI J. OF MATH. SCI., SPRING 2016

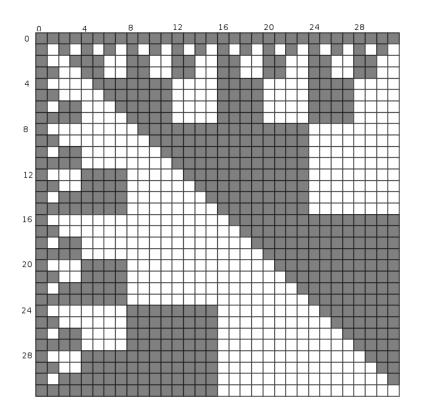


FIGURE 3. ω_2 for $\mathbb{Z}_2^5 \times \mathbb{Z}_2^5$.

Theorem 5.1. If $2^N \le p < q < 2^{N+1}$ then $e_p e_q = e_{p \oplus q}$. If $2^N \le p < 2^{N+1} \le q$ then $e_p e_q = (-1)^{\lfloor q/2^N \rfloor} e_{p \oplus q}$.

Combined with $e_0 = 1$, $e_p^2 = -1$ for p > 0 and $e_p e_q = -e_q e_p$ for $0 \neq p \neq q \neq 0$ we have a simple closed formulation for the product of any two Cayley-Dickson basis vectors.

MISSOURI J. OF MATH. SCI., VOL. 28, NO. 1

AN ALTERNATE CAYLEY-DICKSON PRODUCT

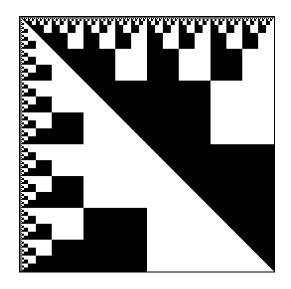


FIGURE 4. ω_2 for $\mathbb{Z}_2^{10} \times \mathbb{Z}_2^{10}$.

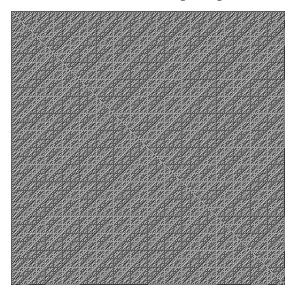


FIGURE 5. ω_3 for $\mathbb{Z}_2^{10} \times \mathbb{Z}_2^{10}$.

References

 W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc., 57 (1945), 364–386.

MISSOURI J. OF MATH. SCI., SPRING 2016

JOHN W. BALES

- [2] J. Baez, The Octonions, Bul. Am. Math. Soc., 39.2 (2001), 145–205.
- [3] J. Bales, A tree for computing the Cayley-Dickson twist, Missouri J. of Math. Sci., 21.2 (2009), 83–93.
- [4] J. Bales, The eight Cayley-Dickson doubling products, Adv. in Appl. Clifford Alg., 25.4 (2015), 1–23.
- [5] D. Biss, J. Christensen, D. Dugger, and D. Isaksen, Eigentheory of Cayley-Dickson algebras in Forum Mathematicum, 21.5 (2009), 833–851.
- [6] R. Brown, On generalized Cayley-Dickson algebras, Pacific J. Math., 20.3 (1967), 415–422.
- [7] R. Busby and H. Smith, Representations of twisted group algebras, Trans. Am. Math. Soc., 149.2 (1970), 503–537.
- [8] C. Flaut and V. Shpakivskyi, Holomorphic Functions in Generalized Cayley-Dickson Algebras, Springer Basel, Adv. in Appl. Clifford Algebras, 25.1 (2015), 95–112.
- [9] L. E. Dickson, On quaternions and their generalization and the history of the eight square theorem, Annals of Mathematics 20.3 (1919), 155–171.
- [10] C. M. Edwards and J. T. Lewis, *Twisted group algebras I*, Communications in Mathematical Physics, 13.2 (1969), 119–130.
- [11] W. F. Reynolds, Twisted group algebras over arbitrary fields, Illinois J. Math., 15.1 (1971), 91–103.
- [12] R. Schafer, On the algebras formed by the Cayley-Dickson process, Amer. J. Math., 76 (1954), 435–446.

MSC2010: 16S99, 16W99

Key words and phrases: Cayley-Dickson, doubling product, twisted group product, fractal, twist tree

DEPARTMENT OF MATHEMATICS, TUSKEGEE UNIVERSITY, TUSKEGEE, AL 36088 *E-mail address*: john.w.bales@gmail.com

MISSOURI J. OF MATH. SCI., VOL. 28, NO. 1