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Abstract. A hereditary class on a set X is a nonempty collection of
subsets of X closed under the hereditary property. In this paper, we
define and study the notion of Lindelöfness in generalized topological
spaces with respect to a hereditary class called, µH-Lindelöf spaces
and discuss their properties.

1. Introduction

The Lindelöfness is an important and interesting concept in general
topology. This paper will not only study general topology, but also other
areas of mathematics. During the last few years several authors have been
working to formulate weak notions of open sets. In terms of these open sets
those authors have extended and generalized the concept of Lindelöfness.
The purpose of the present paper is to introduce and investigate the concept
of µ-Lindelöfness by using the notions of generalized topology and hered-
itary class which are introduced by Császár in [1] and [2], respectively.
Also some properties of µH-Lindelöfness spaces are obtained. The strategy
of using generalized topologies and hereditary classes to extend classical
topological concepts have been used by many authors such as [2, 9, 12, 17],
among others.

2. Preliminaries

Let X be a non-empty set and 2X denote the power set of X . We
call a class µ ⊆ 2X a generalized topology [1] (briefly, GT) if φ ∈ µ and
arbitrary union of elements of µ belongs to µ. A set X with a GT is called
a generalized topological space (briefly, GTS) and is denoted by (X,µ). For
a GTS (X,µ), the elements of µ are called µ-open sets and the complement
of µ-open sets are called µ-closed sets. For A ⊆ X , we denote by cµ(A) the
intersection of all µ-closed sets containing A, i.e., the smallest µ-closed set
containing A and by iµ(A) the union of all µ-open sets contained in A, i.e.,
the largest µ-open set contained in A (see [1, 3]). Let A ⊂ X . A family C
of subsets of X is called a µ-covering of A if C is a covering of A by µ-open
sets [8]. A subset A of X is said to be µ-Lindelöf relative to X if for every
µ-covering {Uλ : λ ∈ Λ} of A there exists a countable subfamily
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{Uλ : λ ∈ Λ0} such that it covers A. X is said to be µ-Lindelöf if X is
µ-Lindelöf as a subset [15].

A nonempty family H of subsets of X is called a hereditary class [2] if
A ∈ H and B ⊂ A imply that B ∈ H. Given a generalized topological space
(X,µ) with a hereditary class H, for a subset A of X , the generalized local
function of A with respect to H and µ [2] is defined as follows: A? = {x ∈
X : U ∩ A /∈ H for all U ∈ µx}, where µx = {U : x ∈ U and U ∈ µ};
and the following are defined: c?µ(A) = A ∪ A? and the family µ? = {A ⊂
X : X \ A = c?µ(X \ A)}. If the hereditary class H satisfies the additional
condition: if A,B ∈ H implies A ∪ B ∈ H, then H is called an ideal on
X [10]. We call (X,µ,H) a hereditary generalized topological space and
briefly we denote it by HGTS. If there is no confusion, we simply write A?

instead of A?(H, µ). It is clear that a subset A is µ?-closed if and only if
A? ⊂ A.

Definition 2.1. [1] Let (X,µ) and (Y, ν) be two GTSs, then a function f :
(X,µ) → (Y, ν) is said to be (µ, ν)-continuous if U ∈ ν implies f−1(U) ∈ µ.

Definition 2.2. [16] A function f : (X,µ) → (Y, ν) is (µ, ν)-open (or
µ-open) if U ∈ µ implies f(U) ∈ ν.

Definition 2.3. Let (X,µ) be a GTS. Then a subset A of X is said to be
µ-dense [6] if cµ(A) = X. The space (X,µ) is said to be µ-submaximal [7]
if every µ-dense subset is µ-open in X.

Definition 2.4. Let (X,µ) be a GTS. Then a subset A of X is called a µ-
generalized closed set (in short, a µg-closed set)[13] if cµ(A) ⊆ U whenever
A ⊆ U where U is µ-open in X. The complement of a µg-closed set is
called a µg-open set.

Definition 2.5. [4] A GTS (X,µ) is said to be µ-extremally disconnected
if the µ-closure of every µ-open set is µ-open.

Theorem 2.6. [2] Let (X,µ) be a GTS and H be a hereditary class on X
and A a subset of X, then A? ⊂ cµ(A).

Theorem 2.7. [2] Let (X,µ) be a GTS, H a hereditary class on X and A
be a subset of X. If A is µ?-open, then for each x ∈ A there exist U ∈ µx

and H ∈ H such that x ∈ U \H ⊂ A.

3. µH-Lindelöf Spaces

Definition 3.1. Let (X,µ) be a GTS and H be a hereditary class on X.
A HGTS (X,µ,H) is said to be µH-Lindelöf or µ-Lindelöf with respect to
a hereditary class H if for every µ-covering {Uλ : λ ∈ Λ} of X there exists
a countable subset Λ0 of Λ such that X \ ∪{Uλ : λ ∈ Λ0} ∈ H.
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The following theorem gives a characterization of µH-Lindelöfness.

Theorem 3.2. The following are equivalent for a HGTS (X,µ,H):

(1) (X,µ,H) is µH-Lindelöf;
(2) For any family {Fλ : λ ∈ Λ} of µ-closed sets of X such that ∩{Fλ :

λ ∈ Λ} = φ, there exists a countable subset Λ0 of Λ such that
∩{Fλ : λ ∈ Λ0} ∈ H.

Proof. (1) ⇒ (2): Let {Fλ : λ ∈ Λ} be a family of µ-closed sets of X such
that ∩{Fλ : λ ∈ Λ} = φ. Then {X \ Fλ : λ ∈ Λ} is a µ-covering of X . By
(1) (X,µ,H) is µH-Lindelöf, there exists a countable subset Λ0 of Λ such
that X \ ∪{X \ Fλ : λ ∈ Λ0} ∈ H. This implies that ∩{Fλ : λ ∈ Λ0} ∈ H.
(2) ⇒ (1): Let {Uλ : λ ∈ Λ} be any µ-covering of X , then {X \Uλ : λ ∈ Λ}
is a family of µ-closed sets and ∩{X \Uλ : λ ∈ Λ} = φ. Hence, there exists
a countable subset Λ0 of Λ such that ∩{X \Uλ : λ ∈ Λ0} ∈ H. This implies
that ∩{X \ Uλ : λ ∈ Λ0} = X \ ∪{Uλ : λ ∈ Λ0} ∈ H. This shows that
(X,µ,H) is µH-Lindelöf. �

Theorem 3.3. Let (X,µ) be a GTS and H be a hereditary class on X.
Then, the following statements hold.

(1) If a HGTS (X,µ∗, H) is µ∗H-Lindelöf, then (X,µ,H) is µH-
Lindelöf.

(2) If a HGTS (X,µ,H) is µH-Lindelöf and the class H is closed under
countable union, then the HGTS (X,µ∗,H) is µ∗H-Lindelöf.

Proof. (1): The proof follows directly from the fact that every µ-closed set
is µ∗-closed set.
(2): Suppose that H is closed under countable union and X is µH-Lindelöf.
Given {Uλ : λ ∈ Λ} a µ?-covering of X , then for each x ∈ X , x ∈ Uλx

for
some λx ∈ Λ. By Theorem 2.6, there exist Vλx

∈ µx and Hλx
∈ H such

that x ∈ Vλx
\Hλx

⊂ Uλx
. Since the family {Vλx

: λx ∈ Λ} is a µ-covering
of X , it follows that there exists a countable subset Λ0 of Λ such that
H = X \ ∪{Vλx

: λx ∈ Λ0} ∈ H. Since H is closed under countable union,
then ∪{Hλx

: λx ∈ Λ0} ∈ H. Hence, H ∪ [∪{Hλx
: λx ∈ Λ0}] ∈ H. Observe

that X \ ∪{Uλ : λ ∈ Λ0} ⊂ H ∪ [∪{Hλx
: λx ∈ Λ0}] ∈ H. By the heredity

property of the class H we have X \ ∪{Uλ : λ ∈ Λ0} ∈ H and therefore,
(X,µ∗,H) is µ∗H-Lindelöf. �

Remark 3.4. To show that the assumption H is closed under countable
union in (2) of Theorem 3.3 is required in the hypotheses, we consider the
following example.

Example 3.5. Let R be the set of real numbers and µ be the generalized
topology defined as

µ = {A ⊂ R : A is an uncountable set} ∪ {φ}.
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The hereditary class on R is defined as

H = {R \A : A ∈ µ}.

Observe that H is not an ideal. To show that R is µH-Lindelöf, let {Uλ :
λ ∈ Λ} be any µ-covering of R. Any countable subfamily {Uλ : λ ∈ Λ0},
where Λ0 ⊂ Λ. We obtain, R \ ∪{Uλ : λ ∈ Λ0} ⊂ R \ Uλ ∈ H. It
follows that R is µH-Lindelöf. Observe that for each x ∈ R we have (R \
{x})? ⊂ R \ {x}. Thus, {x} is µ?-open for each x ∈ R. It then follows that
{{x} : x ∈ R} is a µ∗-covering of R. Suppose now that there exist countable

x1, x2, . . . , xn, . . . ∈ R such that R \
∞
⋃

i=1

{xi} ∈ H. But this is impossible.

Therefore, R is not µ∗H-Lindelöf.

Given a generalized topological space (X,µ), we denote by Hc the hered-
itary class of countable subsets of X . The following proposition is obvious
and thus the proof are omitted.

Proposition 3.6. Let (X,µ) be a GTS and H be a hereditary class on X.
Then the following statements are equivalent:

(1) (X,µ) is µ-Lindelöf;
(2) (X,µ,Hc) is µHc-Lindelöf;
(3) (X,µ, {φ}) is µ{φ}-Lindelöf.

Corollary 3.7. If the HGTS (X,µ,Hc) is µHc-compact, then (X,µ) is
µHc-Lindelöf.

Proof. Let {Uλ : λ ∈ Λ} be a µ-covering of X . Since (X,µ,Hc) is µHc-
compact, there exists a finite subset Λ0 of Λ such that X \ {Uλ : λ ∈
Λ0} ∈ HC This shows that X has a countable subcover and the proof is
completed. �

Proposition 3.8. Let H1 and H2 be two hereditary classes on a GTS
(X,µ) with H1 ⊆ H2. If (X,µ,H1) is µH1-Lindelöf, then (X,µ,H2) is
µH2-Lindelöf.

Proof. Suppose that (X,µ,H1) is µH1-Lindelöf. Let {Uλ : λ ∈ Λ} be
any µ-covering of X . There exits a countable subset Λ0 of Λ such that
X\∪{Uλ : λ ∈ Λ0} ∈ H1 ⊂ H2. This implies that X\∪{Uλ : λ ∈ Λ0} ∈ H2.
Hence, X is µH2-Lindelöf. �

Remark 3.9. The intersection of any two hereditary classes on a non-
empty set X is a heredity class. To prove this, let H1 and H2 be any two
hereditary classes on X. If A ∈ H1 ∩ H2 and B ⊂ A then B ⊂ A ∈ H1

and B ⊂ A ∈ H2. By the hypotheses on H1 and H2 we have B ∈ H1 and
B ∈ H2. It then follows that B ∈ H1 ∩H2.
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Corollary 3.10. If (X, τ,H1∩H2) is µ(H1∩H2)- Lindelöf, then (X,µ,H1)
is µH1-Lindelöf and (X,µ,H2) is µH2-Lindelöf.

A subset A of GTS is said to be µ-semi-open if A ⊂ cµ(iµ(A)) and we
denote by σ(µ) the class of all µ-semi-open sets [3].

Definition 3.11. A HGTS (X,µ,H) is said to be µH-semi-Lindelöf if for
every µ-semi-open cover {Uλ : λ ∈ Λ} of X there exists a countable subset
Λ0 of Λ such that X \ ∪{Uλ : λ ∈ Λ0} ∈ H.

Proposition 3.12. Every µH-semi-Lindelöf space is µH-Lindelöf.

Proof. The proof is obvious since every µ-open set is µ-semi-open. �

Proposition 3.13. If (X,µ) is µ-submaximal and extremally disconnected,
then µH-Lindelöf and µH-semi-Lindelöf are equivalent.

Proof. The proof comes immediately from the fact that in the extremely
disconnected µ-submaximal space µ = σ(µ). �

The following lemma is very useful in studying the preservation of µH-
Lindelöfness by certain classes of functions.

Lemma 3.14. [5] Let f : (X,µ,H) → (Y, ν) be a function. If H is a
hereditary class on X, then f(H) = {f(E) : E ∈ H} is a hereditary class
on Y .

Theorem 3.15. If f : (X,µ,H) → (Y, ν) is a (µ, ν)-continuous surjection
and (X,µ,H) is µH-Lindelöf, then (Y, ν, f(H)) is νf(H)-Lindelöf.

Proof. Let {Vλ : λ ∈ Λ} be a ν-covering of Y . Then {f−1(Vλ) : λ ∈ Λ} is a
µ-covering ofX and hence, there exists a countable subset Λ0 of Λ such that
X \ ∪{f−1(Vλ) : λ ∈ Λ0} ∈ H. Since f is a surjective function, by Lemma
3.14 we have Y \ ∪{Vλ : λ ∈ Λ0} ⊂ f(X \ ∪{f−1(Vλ) : λ ∈ Λ0}) ∈ f(H)
implying thereby that Y is νf(H)-Lindelöf. �

By taking H = {φ} in the above theorem, we get the well-known result
that µ-Lindelöf is preserved by (µ, ν)-continuous surjections. We also have
the following results concerning the pre-images.

Corollary 3.16. If f : (X,µ) → (Y, ν,H) is a µ-open bijection and (Y, ν,H)
is νH- Lindelöf, then (X,µ, f−1(H)) is µf−1(H)-Lindelöf.

Proof. Since f : (X,µ) → (Y, ν,H) is a µ-open bijection, f−1 : (Y, ν,H) →
(X,µ) is a (ν, µ)-continuous surjection. Since (Y, ν,H) is νH- Lindelöf, by
Theorem 3.15 we obtain (X,µ, f−1(H)) is µf−1(H)-Lindelöf. �
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4. Sets µH-Lindelöf Relative to a Space

Definition 4.1. Let (X,µ) be a GTS and H be a hereditary class on X.
A subset A of X is said to be µH-Lindelöf or µ-Lindelöf with respect to
(X,µ,H) if for every µ-covering {Uλ : λ ∈ Λ} of A there exists a countable
subset Λ0 of Λ such that A \ ∪{Uλ : λ ∈ Λ0} ∈ H.

Definition 4.2. A subset A of GTS (X,µ) is said to be ω-µ-open if for each
x ∈ A, there exists Ux ∈ µ containing x such that Ux \A is a countable set.
The complement of an ω-µ-open set is said to be ω-µ-closed. The family of
all ω-µ-open sets of (X,µ) is denoted by µω.

Lemma 4.3. For any GTS (X,µ), the family µω is GT.

Proof. It is obvious that φ,X ∈ µω. Let {Aλ : λ ∈ Λ} be any subfamily
of µω . Then for each x ∈

⋃

λ∈Λ

Aλ, there exists λ0 ∈ Λ such that x ∈ Aλ0
.

Since Aλ0
∈ µω, there exists Ux ∈ µ containing x such that Ux \ Aλ0

is a
countable set. Since Ux \ (

⋃

λ∈Λ

Aλ) ⊂ Ux \Aλ0
, Ux \ (

⋃

λ∈Λ

Aλ) is a countable

set. Therefore,
⋃

λ∈Λ

Aλ ∈ µω. This shows that (X,µω) is GTS. �

Theorem 4.4. A subset A of a HGTS (X,µ,H) is µH-Lindelöf relative to
µ if and only if A is µωH-Lindelöf relative to µω.

Proof. Necessity. Suppose that a subset A of a HGTS (X,µ,H) is µH-
Lindelöf relative to µ. Let {Uλ : λ ∈ Λ} be any µω-covering of A. For
each x ∈ A there exists λ(x) ∈ Λ such that x ∈ Uλ(x). Since Uλ(x) is
µω-open, there exists a µ-open set Vλ(x) such that x ∈ Vλ(x) and Vλ(x) \
Uλ(x) is countable. The collection {Vλ(x) : x ∈ A} is a µ-covering of
A. Since A is µH-Lindelöf relative to µ, there exists a countable sub-
set, λ(x1), λ(x2), . . . , λ(xn), . . . such that A \ ∪

{

Vλ(xi) : i ∈ N
}

∈ H. On
the other hand, we have

A \ ∪
i∈N

{(

Vλ(xi) \ Uλ(xi)

)

∪ Uλ(xi)

}

⊂ A \ ∪
{

Vλ(xi) : i ∈ N
}

and hence,

A \ [ ∪
i∈N

(Vλ(xi) \ Uλ(xi)) ∩ A) ∪ ( ∪
i∈N

Uλ(xi))] ⊂ A \ ∪
{

Vλ(xi) : i ∈ N
}

.

For each λ(xi), the set (Vλ(xi) \ Uλ(xi)) ∩ A is a countable set and there
exists a countable subset Λλ(xi) of Λ such that (Vλ(xi) \ Uλ(xi)) ∩ A ⊆
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∪
{

Uλ : λ ∈ Λλ(xi)

}

. Therefore, we have

A \

[(

∪
i∈N

(

∪
{

Uλ : λ ∈ Λλ(xi)

})

)

∪

(

∪
i∈N

Uλ(xi)

)]

⊂ A \

[(

∪
i∈N

(Vλ(xi) \ Uλ(xi)) ∩ A

)

∪

(

∪
i∈N

Uλ(xi)

)]

⊂ A \ ∪
{

Vλ(xi) : i ∈ N
}

∈ H.

By the hereditary property of the class H, we have

A \

[(

∪
i∈N

(

∪
{

Uλ : λ ∈ Γλ(xi)

})

)

∪

(

∪
i∈N

Uλ(xi)

)]

∈ H.

Sufficiency. Since µ ⊂ µω the proof is obvious. �

Corollary 4.5. A HGTS (X,µ,H) is µH-Lindelöf if and only if the HGTS
(X,µω,H) is µωH-Lindelöf.

By taking H = {φ} in the Corollary 4.5, we obtain the following result
established in Theorem 4.4.

Theorem 4.6. A GTS (X,µ) is µ-Lindelöf if and only if (X,µω) is µω-
Lindelöf.

Definition 4.7. [5] Let (X,µ) be a GTS and H be a hereditary class on
X. A subset A of X is said to be µH-compact if for every µ-covering
{Uλ : λ ∈ Λ} of A there exists a finite subcollection {Uλ : λ ∈ Λ0} such
that A \ ∪{Uλ : λ ∈ Λ0} ∈ H. X is said to be a µH-compact space if X is
µH-compact as a subset.

A GTS (X,µ) is said to be µ-Hausdroff [14] for each pair of distinct
points x and y in X , there exist µ-open sets Ux and Vy containing x and y,
respectively, such that U ∩ V = φ.

Lemma 4.8. x /∈ A∗ if and only if (Ux \H)∩A = φ, where Ux ∈ µ(x) and
H ∈ H.

Proof. Let x /∈ A∗. Then there exist Ux ∈ µ(x) such that A∩Ux = H ∈ H.
It follows that (Ux \H)∩A = φ. Conversely, suppose that (Ux \H)∩A = φ
for some Ux ∈ µ(x) andH ∈ H. Then Ux∩(X\H)∩A = (A∩Ux)∩(X\H) =
φ. This implies that (A ∩ Ux) ⊂ H ∈ H. Hence, x /∈ A∗. �

Theorem 4.9. Every µH-compact subset of a µ-Hausdorff HGTS (X,µ,H)
is µ∗-closed.

Proof. Let A be a µH-compact subset of a µ-Hausdroff HGTS (X,µ,H).
Let x /∈ A then x ∈ X \A. For each y ∈ A, there exist two µ-open sets Uy

and Vy containing x and y, respectively, such that Uy ∩ Vy = φ. Note that
x /∈ cµ(Vy). Then {Vy : y ∈ A} is a µ-covering of A which is µH- compact.
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Therefore, there exists a finite subset Λ0 of A such that A\∪{Vy : y ∈ Λ0} ∈
H. Now x /∈ cµ(Vy) for each y ∈ A implies x /∈

⋃

y∈Λ0

cµ(Vy) = cµ(
⋃

y∈Λ0

Vy).

Let U = X \ cµ(
⋃

y∈Λ0

Vy) and let H = A \ cµ(
⋃

y∈Λ0

Vy) ⊂ A \
⋃

y∈Λ0

Vy = H1,

where H1 ∈ H. Since U ∈ µx and H ∈ H, by Theorem 2.7 U \ H is a
µ∗-open set containing x and (U \H) ∩ A = ∅. This implies that x /∈ A∗

(by Lemma 4.8). Hence, A∗ ⊂ A, so A is µ∗-closed. �

Theorem 4.10. Let (X,µ) be a GTS and H be an ideal on X, then a
finite union of sets which are µH- Lindelöf relative to a space (X,µ,H) is
a µH-Lindelöf relative to X.

Proof. Let A1 and A2 be two subsets which are µH-Lindelöf relative to
X and let A = A1 ∪ A2. Let {Uλ : λ ∈ Λ} be a µ-covering of A. Hence,
{Uλ : λ ∈ Λ} is a µ-covering ofA1 and A2. Since A1 and A2 are µH-Lindelöf
relative to X , there exist finite subfamily {H1, H2} ⊂ H and countable
subsets Λ0 and Λ1 of Λ such that A1 \ ∪{Uλi

: λi ∈ Λ0} = H1 and A2 \
∪{Uλk

: λk ∈ Λ1} = H2. Now we have

A = A1 ∪ A2

⊂ (∪{Uλi
: λi ∈ Λ0}) ∪ (∪{Uλk

: λk ∈ Λ1}) ∪ (H1 ∪H2).

This implies (A1 ∪ A2) \ (∪{Uλi
: λi ∈ Λ0}) ∪ (∪{Uλk

: λk ∈ Λ1}) ⊂
H1 ∪H2 ∈ H. Therefore, A = A1 ∪ A2 is µH- Lindelöf relative to X . This
proves that the union of two µH-Lindelöf sets is µH-Lindelöf. For finite
unions, the proof proceeds by induction on the number of sets. �

Remark 4.11. If the class H is not an ideal then the union of finite subsets
which are µH-Lindelöf relative to X is not µH-Lindelöf relative to X.

Let (X,µ,H) be a HGTS and let A ⊆ X , A 6= φ. We denote by HA

the collection {H ∩ A : H ∈ H} and by (A, µA) the subspace of (X,µ) on
A. It is clear that the collection µA is a generalized topology on A and
the collection HA is a hereditary class of subsets in A. Then we have the
following theorem.

Theorem 4.12. Let (X,µ,H) be a µH-Lindelöf HGTS and A be a µ-closed
subset of X. Then (A, µA,HA) is µAHA-Lindelöf.

Proof. Let {Uλ ∩ A : Uλ ∈ µ, λ ∈ Λ} be a µA-covering of A. Then {Uλ :
Uλ ∈ µ, λ ∈ Λ} ∪ {X \ A} is a µ-covering of X and hence, there exists a
countable subset Λ0 of Λ such that X \ [∪{Uλ : λ ∈ Λ0}∪(X \A)] = H ∈ H.
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Now, we have

A ∩H = A ∩ (X \ [∪{Uλ : λ ∈ Λ0} ∪ (X \A)])

= A ∩ (X \ ∪{Uλ : λ ∈ Λ0}) ∩ A

= A ∩ (X \ ∪{Uλ : λ ∈ Λ0}) = A \ ∪{Uλ : λ ∈ Λ0}

= A \ (A ∩ [∪{Uλ : λ ∈ Λ0}]) = A \ ∪{Uλ ∩ A : λ ∈ Λ0}

Therefore, we have A \ ∪{Uλ ∩ A : λ ∈ Λ0} = A ∩ H ∈ HA. This shows
that A is a µHA-Lindelöf set. �

The well-known result that a µ-closed subspace of a µ-Lindelöf space is
µ-Lindelöf which is a special case by taking H = {φ}.

Theorem 4.13. Let (X,µ,H) be a HGTS and A ⊆ X. If for each µ-open
set U containing A there is a µBHB-Lindelöf set B with A ⊂ B ⊂ U , then
A is µAHA-Lindelöf.

Proof. Let {Uλ : λ ∈ Λ} be a µA-covering of A, where Uλ = Vλ ∩ A such
that Vλ ∈ µ. By the given condition, there exists a µBHB-Lindelöf set B
with A ⊂ B ⊂ ∪Vλ. Then {Vλ ∩ B : λ ∈ Λ} is a µB-covering of B. By
assumption B is µBHB-Lindelöf, there exists a countable subset Λ0 of Λ
such that B\∪{Vλ∩B : λ ∈ Λ0} ∈ HB. Let B\∪{Vλ∩B : λ ∈ Λ0} = H∩B,
where H ∩B ∈ HB and H ∈ H. Since B = ∪{Vλ ∩B : λ ∈ Λ0} ∪ (H ∩B).
Then A ∩ B = A ∩ (∪{Vλ ∩ B : λ ∈ Λ0} ∪ (H ∩ B)) = ∪{Vλ ∩ B ∩ A :
λ ∈ Λ0} ∪ (H ∩ B ∩ A). This implies A = ∪{Vλ ∩ A : λ ∈ Λ0} ∪ (H ∩ A).
It follows that A \ ∪{Vλ ∩ A : λ ∈ Λ0} ⊆ H ∩ A ∈ HA. Therefore, A is
HA-Lindelöf. �

Theorem 4.14. Every µg-closed subset of a µH-Lindelöf space is µH-
Lindelöf relative to X.

Proof. Let A be any µg-closed of (X,µ,H) and {Uλ : λ ∈ Λ} be any
cover of A by µ-open sets in X . Since A is µg-closed, A ⊂ ∪Uλ implies
cµ(A) ⊂ ∪Uλ. Then the family {Uλ : λ ∈ Λ} ∪ {X \ cµ(A)} is a µ-
covering of X and hence, there exists a countable subset Λ0 of Λ such that
X \ [∪{Uλ : λ ∈ Λ0} ∪ (X \ cµ(A))] ∈ H. Now, we have

X \ [∪{Uλ : λ ∈ Λ0} ∪ (X \ cµ(A))] = [X \ ∪{Uλ : λ ∈ Λ0}] ∩ cµ(A)

⊃ [X \ ∪{Uλ : λ ∈ Λ0}] ∩ A

= A \ [∪{Uλ : λ ∈ Λ0}].

Therefore, we have A \ [∪{Uλ : λ ∈ Λ0}] ∈ H. Thus, A is µH-Lindelöf
relative to X . �
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