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Abstract. For r ∈ [0, 1], the Bernoulli measure µr on the Cantor
space {0, 1}N assigns measure r to the set of sequences with 1 at a

fixed position. In [5] it is shown that for r, s ∈ [0, 1], µs is contin-
uously reducible to µr if and only if r and s satisfy certain purely
number theoretic conditions (binomial reducibility). We bring these
results into the context of computability theory and Martin-Löf ran-
domness and show that the continuous maps arising in [5] are truth-
table functionals (tt-functionals) on {0, 1}N. This allows us to extend
the characterization of continuous reductions between Bernoulli mea-
sures to include tt-functionals. It then follows from the conservation
of randomness under tt-functionals that if s is binomially reducible
to r, then there is a tt-functional that maps every Martin-Löf ran-
dom sequence for µs to a Martin-Löf random sequences for µr . We
are also able to show using results in [2] that the converse of this
statement is not true.

1. Introduction

A functional F : {0, 1}N → {0, 1}N is a truth-table functional (tt−
functional) if there is a Turing machine T with the property that F (g) = h

if and only if T g(i) = h(i) for all i ∈ N (where T g is the Turing machine
T equipped with oracle g). Such functionals give truth table reductions
between infinite binary sequences. In this paper we investigate the interac-
tions of tt-functionals with Martin-Löf random binary sequences.

Martin-Löf randomness combines probability theory with computability
theory in a way that allows for the study of specific “random” binary se-
quences. The space {0, 1}N is usually equipped with the fair-coin measure:
the measure which assigns a probability of 1

2 to the occurrence of 1 in each
position of the sequence. We will call this measure µ 1

2

. Truth table re-

ductions and their interaction with Martin-Löf random binary sequences
under the measure µ 1

2

have been studied before, notably in [4]. More re-

cently [2] considered truth table reductions of binary sequences that are
Martin-Löf random under computable measures. We will consider truth
table reductions of binary sequences that are Martin-Löf random under
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Bernoulli measures. When the Bernoulli measures are computable this is a
special case of the situation studied in [2]. Our main result follows directly
from the work of [5] on continuous images of measures on {0, 1}N (Theorem
3.4 below). The observation that Theorem 3.4 is entirely effective together
with Lemma 2.2 (recently given the name “Conservation of Randomness”
in [2]) allows us to prove Theorem 3.6. We also note that results in [2]
suffice to prove that the converse of Theorem 3.6 is not true.

Measures require sigma algebras and in this case we work with the Borel
sigma algebra arising from the topology with a basis of cylinders: for a
finite binary string σ, define the basic open cylinder [σ] by

[σ] = {f ∈ {0, 1}N : f extends σ}.

Under this topology {0, 1}N is compact, Hausdorff, and second countable
(and homeomorphic to the Cantor middle thirds set, hence the name “Can-
tor space”). A subset E ⊆ {0, 1}N is clopen if both the subset E and its

complement E{ are open. It follows from the compactness of the space
{0, 1}N, that the clopen subsets of {0, 1}N are exactly the finite unions of
basic open cylinders. It is also worth noting that E is clopen if and only if
E is ∆0

1 (that is, both E and E{ are Σ0
1).

We also note that there are some issues related to the computational
power of the measure under consideration. The definitions of Martin-Löf
randomness include an oracle with sufficient computational power to cal-
culate the measure of any basic open cylinder. The main complication is
that there is no canonical choice of oracle, indeed as shown in [3] there may
not be a minimal Turing degree with sufficient computational power. We
are interested only in Bernoulli measures, however, which greatly simplifies
the situation. In this case the Bernoulli parameter is the appropriate min-
imal oracle (a proof can be found in [1]). We will initially state results and
definitions for computable measures (that is, those for which the measure
of any basic open cylinder is uniformly computable). These definitions and
results may later be relativized to an appropriate oracle when dealing with
non-computable measures.

We now recall the definition of Martin-Löf randomness.

Definition 1.1. Let µ be a computable Borel measure on {0, 1}N, let σ1, σ2,

σ3, . . . be the standard enumeration of {0, 1}<N, and let 〈·, ·〉 : N × N → N

be the standard computable pairing function.

(1) A sequence of subsets of {0, 1}N, {Ui}i∈N
, is uniformly Σ0

1 if there

is a computable f ∈ {0, 1}N such that for each i ∈ N

Ui =
⋃

f(〈i,n〉)=1

[σn].
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(2) A µ-Martin-Löf test is a uniformly Σ0
1 sequence of sets {Ui}i∈N

such that for each i ∈ N, µ (Ui) ≤ 2−i.
(3) A sequence g ∈ {0, 1}N is µ-Martin-Löf random if there is no µ-

Martin-Löf test {Ui}i∈N
such that g ∈

⋂

i∈N
Ui.

We follow the custom of writing “Martin-Löf random” instead of “µ 1

2

-

Martin-Löf random”.

2. Martin-Löf Randomness and TT-Functionals

We begin with an example. Define a functional F : {0, 1}N → {0, 1}N

by [F (g)] (i) = 0 for all i ∈ N. Then F is a tt-functional that maps all
sequences to the sequence consisting entirely of zeros, a sequence which is
not Martin-Löf random. Hence, F has the property of mapping Martin-Löf
random sequences to a non-Martin-Löf random sequence.

We note that any tt-functional F : {0, 1}N → {0, 1}N is continuous and
hence also gives a function between Borel measures on {0, 1}N (defined by
µ 7→ µ ◦ F−1). It turns out that this phenomenon of Martin-Löf random
sequences mapping to non-Martin-Löf random sequences via a tt-functional
only occurs when we fail to transform measures as well. This result is not
new, but it may not be widely known, so we provide a statement and proof
of the result in Lemma 2.2. This lemma has recently been given the name
“Conservation of Randomness” in [2].

Our proof of Lemma 2.2 relies on the following lemma.

Lemma 2.1. If F : {0, 1}N → {0, 1}N is a tt-functional, then F−1([σ]) is
a clopen set uniformly computable from σ ∈ {0, 1}<N.

Proof. Let σ ∈ {0, 1}<N.
We first prove that F−1([σ]) is open. If F (g) ∈ [σ], then by the finite

use principle there is some n ∈ N such that if h ∈ {0, 1}N agrees with g up
to bit n, then F (h) ∈ [σ]. Consequently, if τ is the length n initial segment
of g, then [τ ] ⊆ F−1([σ]). Therefore, F−1([σ]) is open.

Because the cylinders form a basis for the topology on {0, 1}N, it follows
that F is continuous. The cylinder [σ] is also closed and hence, F−1([σ])
must be closed. Therefore, F−1([σ]) is clopen.

Let T be a Turing machine associated with the functional F (so that
F (g) = T g). For τ ∈ {0, 1}<N let T τ be the string given by T τ (i) � |τ | for
as many bits as this computation converges. Cantor space is compact and
hence there is a smallest positive integer n such that T τ has at least length
|σ| for all τ ∈ 2n (and nmay be computed uniformly from σ). Consequently,
for τ ∈ 2n, [τ ] ⊆ F−1 ([σ]) if and only if T τ is an extension of σ. Therefore,
F−1 ([σ]) is uniformly computable from σ. �
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Lemma 2.2 (Conservation of Randomness). Let F : {0, 1}N → {0, 1}N be
a tt-functional and let µ be a computable Borel measure on {0, 1}N. If g ∈
{0, 1}N is Martin-Löf random under the measure µ, then F (g) is Martin-Löf
random under the measure µ ◦ F−1.

Proof. Let {Ui}i∈N
be a

(

µ ◦ F−1
)

-Martin-Löf test and let h ∈
⋂

i∈N
Ui. It

follows from Lemma 2.1 that
{

F−1 (Ui)
}

i∈N
is a uniformly Σ0

1 sequence of

sets. Clearly µ
(

F−1 (Ui)
)

=
(

µ ◦ F−1
)

(Ui) ≤ 2−i. Therefore,
{

F−1 (Ui)
}

i∈N

is a µ-Martin-Löf test. Clearly F−1 ({h}) ⊆
⋂

i∈N
F−1 (Ui). Consequently

if g ∈ F−1 ({h}), then g is not µ-Martin-Löf random. We have shown that
if F (g) = h and h is not Martin-Löf random under µ ◦ F−1, then g is
not Martin-Löf random under µ. This is the contrapositive of the desired
statement. �

Note that our example of a functional that maps all sequences to the se-
quence of zeros shows that the converse of this theorem is not generally true

(in this example the sequence of zeros is
(

µ 1

2

◦ F−1
)

-Martin-Löf random,

but also the image of non-Martin-Löf random sequences).

3. Bernoulli Measures and TT-Functionals

The fair coin measure arises naturally when considering a sequence of
flips of a fair coin (hence the name). A natural generalization is to flip
a biased coin, in which case the probability of heads or tails on each flip
remains constant, but is no longer 1

2 . Such measures are known as Bernoulli
measures because they arise from repeated, independent Bernoulli trials
(such as flips of a coin).

Definition 3.1. Let r ∈ [0, 1]. Define µr to be the Bernoulli measure on
{0, 1}N given by µr

(

{f ∈ {0, 1}N : f(i) = 1}
)

= r for any i ∈ N.

In light of the result of the last section, we might wonder when there
is a tt-functional that maps the set of Martin-Löf random sequences for a
particular Bernoulli measure into the set of Martin-Löf randoms sequences
for another. Most of the work required to answer this question has already
been done in [5], from which much of the following is derived.

Definition 3.2. Let µ and ν be Borel measures on Cantor Space. The
measure ν is continuously reducible to measure µ if there is a continuous
functional F : {0, 1}N → {0, 1}N such that ν = µ ◦ F−1 (meaning that
ν(E) = µ

(

F−1(E)
)

for every Borel subset E). If F is a tt-functional, then
ν is computably reducible to µ.
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Definition 3.3. A partition polynomial is any polynomial P (x) that can
be expressed in the form

P (x) =

n
∑

i=0

aix
i(1− x)n−i

where n is the degree of P (x) and ai is an integer with 0 ≤ ai ≤
(

n
i

)

for
i = 0, 1, . . . , n. Let r, s ∈ [0, 1]. Then s is binomially reducible to r if there
is a partition polynomial P (x) such that s = P (r).

Theorem 3.4 (Mauldin). The measure µs is continuously reducible to µr

if and only if s is binomially reducible to r.

We provide the proof of Theorem 3.4 given in [5] in order to extend its
application to tt-functionals and prove Corollary 3.5.

Proof. We first prove that if µs is continuously reducible to µr, then s is
binomially reducible to r. Suppose F : {0, 1}N → {0, 1}N is continuous and
for each Borel set E ⊂ {0, 1}N µs(E) = µr

(

F−1(E)
)

. Consider the clopen

set [1] ⊆ {0, 1}N. By definition s = µs([1]) = µr

(

F−1([1])
)

. The functional

F is continuous and hence, F−1([1]) is a clopen subset of {0, 1}N. It follows
that there is a positive integer n and a collection E ⊆ 2n such that

F−1([1]) =
⋃

σ∈E

[σ].

Let ai be the number of strings in E with exactly i ones (and n− i zeros).
Thus, 0 ≤ ai ≤

(

n
i

)

for i = 0, 1, . . . , n and

s = µr

(

F−1([1])
)

=
n
∑

i=0

air
i(1− r)n−i.

This is a binomial reduction of s to r.
Conversely, suppose that there is a partition polynomial P (x) =

∑n

i=0

aix
i(1 − x)n−i such that s = P (r). Let E be a subset of 2n (where n is

the degree of the partition polynomial P ) with exactly ai members having
i ones (and n− i zeros). If g ∈ {0, 1}N, then g has a unique representation
as a sequence of strings of length n:

g = τ
a
1 τ

a
2 τ

a
3 . . .

where τi ∈ 2n for every i. Define a functional F : {0, 1}N → {0, 1}N by

[F (g)] (i) =

{

1 if τi ∈ E ,

0 otherwise.

It is easy to verify that F is continuous.
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We must now prove that

µs

(

{h ∈ {0, 1}N : h(k) = 1}
)

= µr

(

F−1
(

{h ∈ {0, 1}N : h(k) = 1}
))

for any non-negative integer k (see Definition 3.1). Our definition of F

means that

F−1
(

{h ∈ {0, 1}N : h(k) = 1}
)

= {g ∈ {0, 1}N : τk ∈ E}

(where τk is the kth length n string in g). Consequently

µr

(

F−1
(

{h ∈ {0, 1}N : h(k) = 1}
))

= µr

(

{g ∈ {0, 1}N : τk ∈ E}
)

= P (r).

Our initial assumption was that P (r) = s. Moreover,

µs

(

{h ∈ {0, 1}N : h(k) = 1}
)

= s

by definition. Thus we have completed the proof.
�

The proof we have just given for Theorem 3.4 is entirely constructive
and so the following corollary follows immediately.

Corollary 3.5. The measure µs is computably reducible to measure µr if
and only if s is binomially reducible to r.

Proof. First suppose that µs is computably reducible to µr. Be definition
there is a tt-functional F : {0, 1}N → {0, 1}N such that µs = µr ◦ F

−1. By
Lemma 2.1 F is continuous and thus µs is continuously reducible to µr. By
the preceding theorem s is binomially reducible to r.

Now suppose that s is binomially reducible to r. The proof of Theorem
3.4 shows how to construct a functional F : {0, 1}N → {0, 1}N such that
µs = µr ◦ F

−1. Although originally intended only to produce a continuous
functional, this construction actually produces a tt-functional. Therefore,
µs is computably reducible to µr. �

Our main result now follows.

Theorem 3.6. If s is binomially reducible to r, then there is a tt-functional
that maps the set of µs-Martin-Löf random sequences into the set of µr-
Martin-Löf random sequences.

Proof. If s is binomially reducible to r, then by Corollary 3.5 µs is com-
putably reducible to measure µr. Let F be a tt-functional corresponding to
this reduction. Then by Lemma 2.2 (Conservation of Randomness) F maps
the set of µs-Martin-Löf random sequences into the set of µr-Martin-Löf
random sequences. �
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We note that the converse is not true. In [2] it is shown that for any
atomless computable measure ν there is a tt-functional F such that any
g ∈ {0, 1}N is

(

ν ◦ F−1
)

-Martin-Löf random if and only if g is Martin-
Löf random (which we recall means µ 1

2

-Martin-Löf random). Applying

Conservation of Randomness (Lemma 2.2) to this functional F shows that if
g ∈ {0, 1}N is ν-Martin-Löf random, then F (g) is Martin-Löf random. Any
Bernoulli measure µr is atomless and computable when r is computable, so
this result applies for such measures. In particular, applying it to µ 1

3

shows

that there is a tt-functional F such that if g is µ 1

3

-Martin-Löf random,

then F (g) is Martin-Löf random. We thus have a tt-functional F that
maps the set of µ 1

3

-Martin-Löf random sequences into the set of µ 1

2

-Martin-

Löf random sequences. It is fairly straightforward to show that 1
3 is not

binomially reducible to 1
2 . Therefore the converse of Corollary 3.6 does not

hold.
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