A NOTE ON OI TORSION ABELIAN GROUPS

JOHN A. LEWALLEN AND NOEL SAGULLO

Abstract

Let R be a commutative ring with unity and M_{R} be a nonzero unital right R-module. We say that M is an OI R-module if for each $x \in R, M x=M$ implies x is invertible in R. We give a characterization of OI torsion abelian groups in terms of their direct summands.

1. Introduction

Throughout, R will denote a commutative ring with unity and M_{R} will denote a unitary right R-module. We will use M for M_{R} when the coefficient ring is obvious. Define $\rho_{x}: M_{R} \rightarrow M_{R}$, the right multiplication map by an element $x \in R$, by $\rho_{x}(m)=m x$ for all $m \in M$. Clearly, ρ_{x} is a module homomorphism. When ρ_{x} is surjective then $M x=M$ and we say that M is divisible by x, written $x \mid M$. Also, A will denote an abelian group and we will write the group additively. We will use \oplus to denote direct sums.
C. J. Maxson presented in [3] the following construction. If R is nonlocal then there exists noninvertible elements r and s such that $r+s=1$. Suppose that $f: M_{R} \rightarrow M_{R}$ is a homogenous function (preserving scalar multiplication) and f is linear on submodules $M r$ and $M s$. Calculations show that f will also be linear on M. A collection of proper submodules is said to force linearity if every homogeneous map which is linear on the collection of submodules is also linear on M. The forcing linearity number of M is the minimum integer n (if one exists) such that a collection of n proper submodules forces linearity on M. Thus, assuming that $M r$ and $M s$ are both proper submodules, then in this case, M will have forcing linearity number of at most two. Maxson asked if one can describe when right multiplication by a ring element onto a module implies that the element is invertible. Hence, in this case, if R satsified such a property then $M r$ and $M s$ would have to be proper submodules. To study this situation, the following terms are defined.
Definition 1.1. Let $0 \neq M_{R}$ have the property that for all $x \in R$, if ρ_{x} is surjective, then x is invertible in R. Then M is called an OI R-module.

J. LEWALLEN AND N. SAGULLO

Definition 1.2. If every nonzero module of R is an OI module, then we say that R is an OI ring.

If x is invertible in R, then the map ρ_{x} is an isomorphism for any R module. One could consider OI modules as a generalization of hopfian modules, that is, the class of modules in which every epimorphism is an isomorphism. In fact, the term OI comes from "onto implies invertible." Also, if R is an OI ring and $x \in R$ such that there exists a nonzero module for which ρ_{x} is surjective, then ρ_{x} is an isomorphism, and hence it is surjective, on every R-module.

In [2], the class of OI rings is fully characterized. This paper begins the study of the connection between an OI module and its ring of scalars. We first consider modules over \mathbb{Z}, that is the class of abelian groups. Thus, we make the following definition.

Definition 1.3. Let $0 \neq A$ be an abelian group with the property that for all $a \in A$, if ρ_{a} is surjective, then $a \in\{-1,1\}$. Then A is an OI \mathbb{Z}-module, or, in other words, an OI group.

2. Examples

Clearly, the class of divisible groups are not OI. Recall that all groups in this section are additively written abelian.

Example 2.1. Let $0 \neq M$ be a \mathbb{Z}_{4}-module. Then, for any $m \in M$, we have $4 m=4(m \overline{1})=m \overline{4}=0$. So the order of m divides 4 . Since M is a nonzero module, there must be at least one element of even order (not 1), so let y be an element of maximal even order. Thus, if $y=m \cdot \overline{2} \in M \cdot \overline{2}$, then m would have an even order greater than the order of y (since the order of y is half the order of m). Since this contradicts y having maximal even order, $y \notin M \cdot \overline{2}$. Therefore, $\rho_{\overline{2}}$ is not surjective. Clearly the zero map is not surjective. So only $\rho_{\overline{1}}$ and $\rho_{\overline{3}}$ could be surjective right multiplication maps. Since $\overline{1}$ and $\overline{3}$ are both invertible in \mathbb{Z}_{4}, M is an OI \mathbb{Z}_{4}-module and we have \mathbb{Z}_{4} is an OI ring. A similar argument can be used to show that $\mathbb{Z}_{p^{n}}$ is an OI ring for any prime p.

Example 2.2. Let \mathbb{Z}_{n} be a module over \mathbb{Z}. Then ρ_{x} is surjective if and only if $(x, n)=1$ if and only if x is invertible in the ring \mathbb{Z}_{n}. Hence, \mathbb{Z}_{n} is not an OI group because x does not have to be invertible in \mathbb{Z}. Note that \mathbb{Z}_{n} is a reduced group, so in a sense, one does not think of OI groups as the opposite of divisible groups.

A NOTE ON OI TORSION ABELIAN GROUPS

3. OI Groups

In this section, it is more useful to use the convention of $n \mid A$ rather than ρ_{n} is surjective. The following two lemmas from [1] are provided with proof, the first of which allows us to concentrate on the case where n is prime.

Lemma 3.1. For all $n \in \mathbb{Z}, n \mid A$ if and only if $p \mid A$ for every prime $p \mid n$.
Proof. Suppose $n \mid A$. Let $x \in A$ and let $p \mid n$. If $x=n y$, then $x=p(q y)$ for some $q \in \mathbb{Z}$. Hence, $p \mid A$.

Now suppose that $n=p_{1} \ldots p_{k}$ where the primes are not necessarily distinct. Then $x=p_{1} y_{1}=p_{1}\left(p_{2} y_{2}\right)=\cdots=p_{1} p_{2} \ldots p_{k-1}\left(p_{k} y_{k}\right)=n y_{k}$. Consequently, $n \mid A$.

Lemma 3.2. Let $A=\oplus_{i} A_{i}$. For all $n \in \mathbb{Z}, n \mid A$ if and only if $n \mid A_{i}$ for every i.

Proof. Suppose $n \mid A$ and let $a_{i} \in A_{i}$. Thus there exists $b \in A$ such that $a=n b$ and since A_{i} is a direct summand of $A, b \in A_{i}$. So, $n \mid A_{i}$.

Now suppose that $n \mid A_{i}$ for every i and let $a \in A$. Then $a=\sum a_{i}$ and for each $i, a_{i}=n b_{i}$ for some $b_{i} \in A_{i}$. Thus, $a=\sum n b_{i}=n \sum b_{i}$. Therefore, $n \mid A$.

Theorem 3.3. Let A be a torsion abelian group. Then A is an OI group if and only if, for each prime p, A has a cyclic direct summand $\mathbb{Z}_{p^{n}}$ for some n.

Proof. Let A be an OI group and let A_{p} be the p-primary component of A, that is, $A_{p}=\left\{x \in A \mid p^{n} x=0\right.$ for some $\left.n \geq 0\right\}$. It is well-known that $A=\oplus_{p} A_{p}$ [1]. Decompose $A_{p}=B \oplus D$ where B is reduced and D is the divisible subgroup of A_{p}. Since A is OI, A_{p} is OI and so A_{p} is not divisible by any prime. Thus, A_{p} cannot be divisible and so $B \neq\{0\}$. By Lemma 10.34 in [4], B contains a pure nonzero cyclic subgroup C. Since A is torsion, we can take $C=\mathbb{Z}_{p^{n}}$ for some n. By Corollary 3.41 from [4], a pure subgroup of bounded order is a direct summand. Consequently, C is a direct summand of B and so also of A_{p} and finally of A.

Conversely, suppose A has a $\mathbb{Z}_{p^{n}}$ direct summand for some n for each prime p. If $p \mid A$ then p divides every direct summand of A. Since $p \nmid \mathbb{Z}_{p^{n}}$, then by Lemma $1, n \nmid A$ for every n divisible by p. So, if $n \mid A$, then $n \in\{-1,1\}$ and A is an OI group.

Further research can either continue the investigation into more classes of abelian groups or extend these structure theorems to torsion modules over rings in general.

J. LEWALLEN AND N. SAGULLO

Acknowledgement

The authors would like to acknowledge their gratitude to Dr. K. M. Rangaswamy for his help and encouragement during the preparation of this work.

References

[1] L. Fuchs, Infinite Abelian Groups, Academic Press, New York and London, 1970.
[2] J. A. Lewallen, When divisibility by an element implies invertibility, Rocky Mountain J. Math., 37.1 (2007), 285-289.
[3] C. J. Maxson and J. H. Meyer, Forcing linearity numbers, J. Algebra, 223.1 (2000), 190-207.
[4] J. J. Rotman, An Introduction to the Theory of Groups, Springer-Verlag, New York, 1995.

MSC2010: 20K10, 13C05, 13C12
Key words and phrases: OI group, OI module, OI ring, torsion abelian group

Department of Mathematics, University of Arkansas-Fort Smith, Fort Smith, AR 72913

E-mail address: John.Lewallen@uafs.edu
Department of Mathematics, University of Arkansas-Fort Smith, Fort Smith, AR 72913

E-mail address: Noel.Sagullo@selu.edu

