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Abstract. Let f(x) be an irreducible polynomial of degree n defined
over a field F , and let G be the Galois group of f , identified as a
transitive subgroup of Sn. Let K/F be the stem field of f . We show
the automorphism group of K/F is isomorphic to the centralizer of
G in Sn. We include two applications to computing Galois groups;
one in the case F is the rational numbers, the other when F is the
5-adic numbers.

1. Introduction

The work of 19th century mathematician Evariste Galois shows it is
possible to associate a group structure to a polynomial’s roots. This group,
called the polynomial’s Galois group, is a collection of permutations of the
roots that encodes much arithmetic information concerning the polynomial.
For example, the polynomial is solvable by radicals if and only if its Galois
group is solvable (see for example [4, p. 628]). Recall that a polynomial
is said to be solvable by radicals if its roots can be expressed using the
following three items: (1) the polynomial’s coefficients, (2) the four basic
arithmetic operations (+,−,×,÷), and (3) radicals (square roots, cube
roots, etc.).

An important problem in computational algebra therefore is to determine
the Galois group of a polynomial f(x) of degree n defined over a field F .
Most practical methods for computing Galois groups focus on factoring
what are known as resolvent polynomials [5, 13, 14]. These are polynomials
that define subfields of the splitting field of f . But the resolvent method can
be computationally expensive, since resolvent polynomials generally have
large degree (which makes factoring difficult) and/or they are formed using
complex or p-adic approximations (this requires high precision for proven
results). Implementations of these methods over Q can be found in many
software programs, including but not limited to Gap [6] and Pari/gp [11].
We note that no general implementations exist for computing Galois groups
over the field of p-adic numbers Qp.
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In this paper, we present a simple alternative to the resolvent method.
Our approach is based on the centralizer of the Galois group in Sn (the
symmetric group of degree n). After providing a brief overview in Section 2
of the basic notation and terminology related to the Fundamental Theorem
of Galois Theory, Section 3 contains a proof that the centralizer of the Galois
group in Sn of an irreducible polynomial of degree n is isomorphic to the
automorphism group of the polynomial’s stem field (cf. Theorem 3.6).

Our final two sections provide applications of Theorem 3.6 to computing
Galois groups. Section 4 gives an algorithm for computing Galois groups of
irreducible quartic polynomials over arbitrary base fields (of characteristic
6= 2). This algorithm is an improvement over the traditional methods that
use resolvent polynomials [8, 3]. Section 5 gives a complete classification
of all isomorphism classes of degree 15 extensions of the 5-adic numbers
whose Galois group is isomorphic to a direct product of the form H × C3

where H is a solvable transitive subgroup of S5, and C3 is the cyclic group
of order 3. Note, there are only finitely many such isomorphism classes [9,
p. 54]. This extends previous research on classifying finite extensions of
Qp; see [1, 2] for the most recent results in this area.

2. Definitions

In this section we provide basic notation and terminology related to field
extensions and their automorphism groups for the purpose of introducing
the Fundamental Theorem of Galois Theory. Let F be a field and let F be
a fixed algebraic closure. Let f(x) ∈ F [x] be an irreducible polynomial of
degree n with roots α1, . . . , αn ∈ F . Let K be the stem field of f ; that is,
K = F (α1).

Then it is straight forward to verify that K is a vector space over F with
the set {1, α, . . . , α−1} serving as a basis. Since the dimension of K as an
F -vector space is n, we say K/F is an extension field of degree n and we
write [K : F ] = n.

We are interested primarily in automorphisms of K/F , which are field
isomorphisms from K to itself that restrict to the identity function on F .

Definition 2.1. An automorphism of K/F is a mapping σ : K → K such
that,

(1) σ is bijective,
(2) σ(x + y) = σ(x) + σ(y) for all x, y ∈ K,
(3) σ(xy) = σ(x)σ(y) for all x, y ∈ K,
(4) σ(a) = a for all a ∈ F .

The collection of all automorphisms of K/F is denoted Aut(K/F ).

The automorphisms of K/F form a group under function composition.
Since automorphisms are field isomorphisms and since a basis for K/F
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consists of powers of the one root α1, it follows that each automorphism is
completely determined by where it sends α1. Furthermore, since automor-
phisms act like the identity function on F , we have 0 = σ(0) = σ(f(α1)) =
f(σ(α1)) for each σ ∈ Aut(K/F ). This shows that automorphisms send α1

to some other root of f that lies in K. Therefore, the automorphisms of
K/F are in one-to-one correspondence to the roots of f that lie in K.

Definition 2.2. If K/F contains all n roots of f , then we say K/F is a
Galois extension. In this case, we call Aut(K/F ) the Galois group of f . If
K/F contains fewer than n roots of f , the Galois group of f is defined to
be Aut(Kg/F ) where Kg is the splitting field of f , the smallest subfield of
F that contains F and all n roots of f .

The next result is the Fundamental Theorem of Galois Theory, which
gives a bijection between the subfields of K/F and the subgroups of
Aut(K/F ) when K/F is a Galois extension (see [4, p. 574]).

Theorem 2.3 (Fundamental Theorem of Galois Theory). Let K/F be a
Galois extension with Galois group G. Let E be a subfield of K/F , H a
subgroup of G, and KH the collection of elements in K fixed by all the
elements of H (called the fixed field of H). That is, KH = {k ∈ K : σ(k) =
k for all σ ∈ H}.

(1) KH is a subfield of K/F .
(2) The maps E 7→ Aut(K/E) and H 7→ KH are inverses of each other.
(3) [K : E] = #H and [E : F ] = [G : H ] (the index of H in G).
(4) K/E is a Galois extension with Galois group H.
(5) E/F is a Galois extension if and only if H is normal in G. In this

case, Aut(E/F ) ' G/H.

We now prove several facts about subfields of K and subgroups of
Aut(K/F ). The first considers conjugate fields of a subfield E of K/F .
For σ ∈ Aut(K/F ) a subfield E of K/F , the image σ(E) of E under σ is
called a conjugate field of E. The next result shows that conjugate fields
correspond to conjugate subgroups.

Proposition 2.4. Let K/F be a Galois extension with Galois group G.
Let H be a subgroup of G and let E be the fixed field of H. For σ ∈ G, the
subgroup fixing σ(E) is σHσ−1.

Proof. First we show σHσ−1 fixes σ(E). Let σhσ−1 ∈ σHσ−1 and let
σ(x) ∈ σ(E). Then σhσ−1(σ(x)) = σh(x) = σ(x), as desired.

Next we show that every element that fixes σ(E) belongs to σHσ−1.
Suppose τ ∈ G fixes σ(E). Then for all x ∈ E, τ(σ(x)) = σ(x). Thus,
σ−1τσ(x) = x. Thus, σ−1τσ fixes E, which implies σ−1τσ ∈ H . Thus,
τ ∈ σHσ−1, as desired. �
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Proposition 2.5. Let K/F be a Galois extension with Galois group G.
Let H be a subgroup of G and let E be the fixed field of H. Let σ, τ ∈ G.
Then σ(x) = τ(x) for all x ∈ E if and only if τ ∈ σH.

Proof. Let σ, τ ∈ G and suppose σ(x) = τ(x) for all x ∈ E. Then x =
σ−1τ(x) for all x ∈ E. Thus, σ−1τ fixes E, which is true if and only if
σ−1τ ∈ H . This is true if and only if τ ∈ σH , as desired. �

Proposition 2.6. Let K/F be a Galois extension with Galois group G. Let
H be a subgroup of G and let E be the fixed field of H. Then Aut(E/F ) '
N(H)/H, where N(H) is the normalizer of H in G.

Proof. First we note that every element in Aut(E/F ) corresponds to some
restriction to E of an element σ ∈ G [4, p. 575]. Such an element σ
will restrict to an automorphism of E/F precisely when σ(E) = E. By
Proposition 2.4, these are restrictions of elements in the normalizer N(H)
of H in G. By Proposition 2.5, the elements in N(H) that restrict to
distinct functions on E correspond to the cosets of H in N(H). Therefore
Aut(E/F ) is isomorphic to the quotient group N(H)/H , as desired. �

3. Centralizers and Automorphism Groups

In this section, we prove that the automorphism group of the stem field of
an irreducible degree n polynomial f(x) defined over a field F is isomorphic
to the centralizer of its Galois group in Sn. Our proof involves analyzing
two group actions on suitably chosen cosets of the Galois group. We begin
with preliminary definitions and results.

Definition 3.1. Let G be a group with identity element e, and let X be
a set. A group action of G on X is a function from G×X to X where the
image of (g, x), denoted by g · x, satisfies the following two properties:

(1) e · x = x for all x ∈ X
(2) g · (h · x) = (gh) · x for all x ∈ X and all g, h ∈ G

For each g ∈ G, we can define a function σg : X → X by σg(x) = g · x. It
is straightforward to verify that each σg has the following properties.

• σg is a permutation, hence, σg ∈ SX .
• σgσh = σgh.
• σe = idX .
• σ−1

g = σg−1 .
• The function φ : G → SX defined by φ(g) = σg is a homomorphism.

The function φ is called the permutation representation of G acting on X .

Now we consider a group G acting on left cosets of some subgroup H ≤
G.
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Proposition 3.2. Let G be a group with identity element e, and let H be
a subgroup of G. Let L be the set of left cosets of H in G. Then G acts on
L by left multiplication; i.e., for each a ∈ G,

g · (aH) = (ga)H,

defines a group action of G on L. Let λ : G → SL be the permutation
representation of this action. Then

Ker λ =
⋂

g∈G

gHg−1.

Proof. That G defines a group action on L follows directly from the two
defining properties of group actions. Let λ : G → SL be the permutation
representation of this action, so that λ(g) = σg where σg(aH) = gaH .
Then we have,

Ker λ = {g ∈ G : σg = idL}

= {g ∈ G : σg(aH) = aH for all a ∈ G}

= {g ∈ G : gaH = aH for all a ∈ G}

= {g ∈ G : a−1ga ∈ H for all a ∈ G}

= {g ∈ G : g ∈ aHa−1 for all a ∈ G}

=
⋂

g∈G

gHg−1.

�

We now give two consequences of Proposition 3.2 that will be useful in
our proof of Theorem 3.6. For G ≤ Sn, let Gi denote the point stabilizer
of i in G; that is, Gi = {g ∈ G : g(i) = i}.

Corollary 3.3. Let G be a transitive subgroup of Sn, G1 the point stabilizer
of 1 in G, L the left cosets of G1 in G, and λ the permutation represen-
tation of G acting on L by left multiplication. Then we have the following
isomorphisms:

(1) SL ' Sn, and
(2) λ(G) ' G.

Proof. To prove item (1), we show there is a well-defined bijection from L
to the set {1, . . . , n}. Toward that end, let σ ∈ G and suppose σ(1) = i.
Then for every a ∈ G1, we have σa(1) = i, since a(1) = 1. Thus every
element in the coset σG1 sends 1 to i. Moreover, if τ ∈ G is any other
element such that τ(1) = i, then σ−1τ(1) = σ−1(i) = 1. This shows that
σ−1τ ∈ G1; i.e., that τ ∈ σG1. Thus the map from L to the set {1, . . . , n}
is a well-defined injection. The map is surjective because G is transitive.
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Therefore [G : G1] = n, and it follows that SL is isomorphic to Sn in a
natural way.

To prove item (2), we show that Ker λ is trivial. By Proposition 3.2, we
have

Ker λ =
⋂

g∈G

gG1g
−1.

For g ∈ G, if g(1) = i, then gG1g
−1 = Gi. Thus Ker λ consists of those

elements g ∈ G such that g(i) = i for every i ∈ {1, . . . , n}. The only such
element is the identity. This proves Ker λ is trivial, and therefore λ(G) ' G
by the First Isomorphism Theorem. �

We now introduce another action on the left cosets of H . This action
involves the normalizer N(H) of H in G.

Proposition 3.4. Let G be a group, H ≤ G, N(H) the normalizer of H in
G, and L the left cosets of H in G. Then N(H) acts on L by the following
action:

n · (aH) = an−1H.

Let ρ : N(H) → SL be the permutation representation of this action. Then
Ker ρ = H and ρ(N(H)) ' N(H)/H.

Proof. First we show that N(H) exhibits a well-defined action on L. Let
a, b ∈ G and suppose aH = bH . Then for all n ∈ N(H),

n · (aH) = an−1H

= aHn−1 since n ∈ N(H)

= bHn−1 since aH = bH

= bn−1H since n ∈ N(H)

= n · (bH).

Thus the action is well-defined. Next, we have

e · (aH) = (ae−1)H = aH.

And if x, y ∈ N(H), then we also have

x · (y · (aH)) = x · (ay−1H)

= ay−1x−1H

= a(xy)−1H

= (xy) · aH.

So N(H) does act on L. Let ρ : N(H) → SL be the permutation represen-
tation of this action, so that ρ(n) = σn where σn(aH) = an−1H . Then we
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have,

Ker ρ = {n ∈ N(H) : σn = idL}

= {n ∈ N(H) : σn(aH) = aH for all a ∈ G}

= {n ∈ N(H) : an−1H = aH for all a ∈ G}

= {n ∈ N(H) : n−1 ∈ H}

= H.

The final statement in the proposition now follows from the First Isomor-
phism Theorem. �

Our next result proves an important relationship between the two per-
mutation representations λ and ρ.

Proposition 3.5. Let G be a group, H ≤ G, N(H) the normalizer of H in
G, and L the left cosets of H in G. Let λ : G → SL and ρ : N(H) → SL be
the permutation representations in Propositions 3.2 and 3.4, respectively.
Thus for a coset aH of H, we have λ(g)(aH) = gaH and ρ(n)(aH) =
an−1H for all g, a ∈ G and all n ∈ N(H). Then

CSL
(λ(G)) = ρ(N(H)),

where CSL
(λ(G)) is the centralizer of λ(G) in SL.

Proof. First we show that ρ(N(H)) ⊆ CSL
(λ(G)). Let n ∈ N(H) and

let g ∈ G be arbitrary. We will show that ρ(n)λ(g)ρ(n)−1 = λ(g) as
permutations of SL. Note that ρ(n)

−1 = ρ(n−1) (see Definition 3.1). Then,
for aH ∈ L, we have

ρ(n)λ(g)ρ(n−1)(aH) = ρ(n)λ(g)(anH)

= ρ(n)(ganH)

= gann−1H

= gaH

= λ(g)(aH).

Thus, ρ(N(H)) ⊆ CSL
(λ(G)).

Conversely, let σ ∈ CSL
(λ(G)) be arbitrary. Let n ∈ G be defined by

σ(H) = nH . Since σ ∈ CSL
(λ(G)), this means σλ(a) = λ(a)σ for all a ∈ G.

Evaluating both sides of the equation at H , we obtain:

σ(aH) = anH.
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If we can show n ∈ N(H), then we are done since this proves σ = ρ(n−1) ∈
ρ(N(H)). Toward that end, let h ∈ H . Then we have

σ(nhn−1H) = nhn−1nH

= nhH

= nH

= σ(H).

Since σ is a permutation, this implies nhn−1H = H ; i.e., nhn−1 ∈ H .
Thus, n ∈ N(H), as desired. �

We are now able to prove our main result concerning automorphism
groups of stem fields of polynomials.

Theorem 3.6. Let f(x) be an irreducible degree n polynomial defined over
a field F . Let α1, . . . , αn be the roots of f in some algebraic closure of F .
Let K = F (α1) be the stem field of f , and let G be the Galois group of
f over F . Then Aut(K/F ) ' CSn

(G), where CSn
(G) is the centralizer of

G in Sn. In particular, the order of the centralizer of G in Sn equals the
number of roots of f in K.

Proof. We first note that since f is irreducible, G is necessarily a transitive
subgroup of Sn. Now let G1 be the point stabilizer of 1 in G. Thus, G1

corresponds to K under the Galois correspondence of Theorem 2.3, since
G1 consists of those elements of G that fix α1 (and hence, fix all of K). Let
L be the left cosets of G1 in G, N(G1) the normalizer of G1 in G, λ and
ρ the permutation representations appearing in Propositions 3.2 and 3.4,
respectively, and CSL

(λ(G)) the centralizer of λ(G) in SL. Therefore, we
have the following string of isomorphisms:

CSn
(G) ' CSL

(λ(G)) Corollary 3.3

' ρ(N(G1)) Proposition 3.5

' N(G1)/G1 Proposition 3.4

' Aut(K/F ) Proposition 2.6.

The final sentence in the statement of the Theorem now follows, since the
automorphisms of K/F are in one-to-one correspondence with the roots of
f in K. �

4. Application: Quartic Galois Groups

In this section, let f(x) denote an irreducible quartic polynomial defined
over the rational numbers and let G be the Galois group of f . We give
an algorithm for determining G that does not involve factoring resolvent
polynomials like the traditional approaches [8, 3]. Though we are focusing

MISSOURI J. OF MATH. SCI., FALL 2015 23



C. AWTREY, N. MISTRY, AND N. SOLTZ

Table 1. Possible Galois groups of irreducible quartic polynomials.

Name Size Generators |C| Parity

C4 4 (1234) 4 −

E4 4 (12)(34), (13)(24) 4 +

D4 8 (13), (1234) 2 −

A4 12 (123), (124) 1 +

S4 24 (12), (1234) 1 −

on the case where f is defined over Q, we point out that our method is
valid over any field of characteristic different from two.

First we describe the possibilities for G. Since f(x) is irreducible, G can
be identified with a transitive subgroup of S4, well defined up to conjuga-
tion (different orderings of the roots correspond to conjugate subgroups).
There are five conjugacy classes of transitive subgroups of S4. Table 1 con-
tains information on one representative group from each of these conjugacy
classes, including the representative’s Name, Size, and Generators. The
names are standard: C4 is the cyclic group of order 4, E4 is the elementary
abelian group of order 4, C2 ×C2 (also called the Klein 4-group), D4 is the
dihedral group of order 8, and A4 and S4 are the alternating and symmet-
ric groups, respectively. The table also gives the order of the centralizer in
S4 in column |C| and the Parity of the group. The parity of a transitive
subgroup G ≤ Sn is + if G ≤ An and − otherwise.

There is something important to observe about Table 1. If we consider
the two columns |C| and Parity, then no two groups have the same val-
ues for these two characteristics. This observation forms the core of our
algorithm for computing the Galois group of an irreducible quartic poly-
nomial (see Theorem 4.3). Before stating our algorithm, we introduce an
important quantity associated to each polynomial.

Definition 4.1. Let f(x) be a degree n polynomial defined over a field F ,
and let α1, . . . , αn be the roots of f in a fixed algebraic closure of F . The
discriminant of f is defined as

Disc(f) =
∏

i<j

(αi − αj)
2.

The discriminant of a polynomial is related to its Galois group in the
following way. See [4, p. 610] for a proof.

Proposition 4.2. If f(x) is a degree n polynomial defined over a field F
with Galois group G, then Disc(f) is a perfect square in F if and only if
G ≤ An.

Furthermore, by the theory of elementary symmetric polynomials, it
follows that Disc(f) can be expressed using only the coefficients of f [4,
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p. 611]. For example, in the case of quartic polynomials, [11] gives the
following:

Disc(x4 + ax3 + bx2 + cx+ d) = −27a4d2 + 2a3c(9bd− 2c2)

− a2(4b3d− b2c2 − 144bd2 + 6c2d)

− 2ac(40b2d− 9bc2 + 96d2)

+ 4b(4b3 − b2c2 − 32bd2 + 36c2d)

− 27c4 + 256d3.

The discriminant is used in the traditional approaches to computing
Galois groups of quartic polynomials [8, 3]. We now give a brief description
of each of these methods.

The approach taken in [8] involves computing and factoring a cubic poly-
nomial that is related to the original quartic f . If this cubic polynomial is
irreducible, the Galois group of f is either A4 or S4, depending on whether
the discriminant is a perfect square. In all other cases, the cubic polynomial
has a rational root. If the cubic has three rational roots, then the Galois
group is E4. Otherwise, the cubic has an irreducible quadratic factor g(x).
The Galois group of f is C4 if g(x) factors into two linear factors over the
stem field of x2 −Disc(f), and it is D4 otherwise.

The approach taken in [3] is more streamlined, as it involves only the
discriminant of f as well as computing and factoring a degree 6 polynomial
g(x) that is related to f . Let L be the list of the degrees of the irreducible
factors of g(x). The Galois group of f is C4 if L = {1, 1, 4}, E4 if L =
{2, 2, 2}, and D4 if L = {2, 4}. If g(x) is irreducible, then the Galois group
of f is A4 if Disc(f) is a perfect square and S4 otherwise.

Our approach is similar to the one in [3]. We also make use of the
discriminant of f , but instead of factoring a related degree 6 polynomial,
we count the number of roots of f in its stem field (which is equivalent to
factoring f over its stem field and counting linear factors).

Theorem 4.3. Let f(x) ∈ Z[x] be an irreducible quartic polynomial, and
let K be the stem field of f . Let #A be the number of roots of f in K,
D = Disc(f), and G the Galois group of f .

(1) If #A = 4, then G = E4 if D is a perfect square and C4; otherwise.
(2) If #A = 2, then G = D4.
(3) If #A = 1, then G = A4 if D is a perfect square and S4; otherwise.

Proof. By Proposition 4.2,D is a perfect square if and only if the parity ofG
is +. Since the number of roots of f in K is equal to the size of Aut(K/Q),
Theorem 3.6 therefore shows #A equals the order of the centralizer of G
in S4. The validity of our algorithm now follows by examining the columns
|C| and Parity in Table 1. �
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Examples. To illustrate our algorithm, we compute the Galois groups of
the following three polynomials: A(x) = x4 + 3x+ x, B(x) = x4 + 5x+ 5,
and C(x) = x4 + 7x + 7. Let α, β, and γ denote a root of A, B, and C,
respectively. Thus the stem field of A is Q(α), the stem field of B is Q(β),
and the stem field of C is Q(γ). Note that we can factor a polynomial over
its stem field using Algorithm 3.6.4 in [3].

There are two roots of A(x) in its stem field; these are α and 1
5 (4α

3 −

2α2 + α+ 9). According to Table 1, D4 is the only group with centralizer
order 2. Thus the Galois group of A(x) is D4.

There are four roots of B(x) in its stem field; these are β, − 1
11 (4β

3 +

2β2 + 1β + 15), − 1
11 (4β

3 − 9β2 + 12β + 15), and 1
11 (8β

3 − 7β2 + 2β + 30).
Therefore the Galois group is either C4 or E4. Factoring the discriminant,
we see that Disc(B(x)) = 53 · 112, which is not a perfect square (because of
the odd exponent of 5). Thus the Galois group of B(x) is C4.

There is only one root of C(x) in its stem field; namely, γ. So the Galois
group of C(x) is either A4 or S4. Factoring the discriminant, we see that
Disc(C(x)) = 73 · 67, which is also not a square. We conclude that the
Galois group of C(x) is S4.

5. Application: Degree 15 5-adic Fields

Our final section deals with computing Galois groups of degree 15 poly-
nomials defined over the field of 5-adic numbers. In the first subsection, we
give a brief introduction to p-adic numbers Qp and their extensions fields.
Those interested in more details can find a good elementary account of p-
adic numbers in [7]. Next, we describe the possible Galois groups of degree
15 polynomials defined over Q5 (see Table 2). For such a polynomial f , we
then develop an algorithm for determining its Galois group G when G is a
direct product of the form H×C3 where H is a solvable transitive subgroup
of S5. Since the number of isomorphism classes of degree n extensions of
Qp is finite [9, p. 54], we determine all isomorphism classes of degree 15
extensions of Q5 whose Galois group is of the form H × C3 (mentioned
above). We find that there are 26 such extensions. We end with Tables 3
and 4 which give a defining polynomial for each extension along with a few
of the extension’s invariants.

5.1. Introduction to p-adic Numbers. The p-adic numbers are con-
structed from the rationals in much the same way the reals are constructed.
In particular, consider the map vp : Q → Z ∪ {∞} defined by

vp(x) =

{

n if x = pna/b with p - ab

∞ if x = 0.
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The function vp is called the p-adic valuation and it gives rise to the p-adic
absolute value | · |p in the following way,

|x|p =
1

pvp(x)
for all x ∈ Q.

The p-adic numbers are defined as the completion of Q with respect to this
absolute value. The field Qp has characteristic 0 and is a locally compact,
totally disconnected Hausdorff topological space [7, p. 63].

The ring of p-adic integers Zp is defined as the set {x ∈ Qp : |x|p ≤ 1}.
The ring Zp has a unique maximal ideal; namely, pZp. It follows that every
ideal of Zp is of the form pcZp for some integer c. Every element of Qp

can be written in the form x/pn for some x ∈ Zp and some nonnegative
integer n. Moreover, every element of Zp can be represented uniquely as
an infinite sum in “base p” [7, p. 68]

Zp =

{

∞
∑

k=0

akp
k : ak ∈ Z with 0 ≤ ak ≤ p− 1

}

.

Since Qp has characteristic 0, the Primitive Element Theorem shows
that an extension field of Qp arises by adjoining the root of some monic
irreducible polynomial over Zp [4, p. 595]. By Krasner’s Lemma [9, p.
43], this polynomial can be chosen to have integer coefficients. For an
extension K/Qp with n = [K : Qp] and an element x ∈ K, let g(y) =
yd + ad−1y

d−1 + · · · + a1y + a0 be its minimal polynomial. We define the
norm of x from K down to Qp as,

NK/Qp
(x) = (−1)ng(0)n/d.

The norm is used to define an absolute value on K that extends the p-adic
absolute value on Qp [7, p. 151]. For x ∈ K, we define

|x| = n

√

∣

∣NK/Qp
(x)

∣

∣

p
.

The absolute value on an extension K gives rise to the corresponding val-
uation v on K by using the equation: |x| = p−v(x), where v(0) = ∞.

The valuation on K is a homomorphism from the multiplicative group
K∗ to the addivite group Q. Its image is of the form (1/e)Z where e
divides [K : Qp] [7, p. 159]. We call e the ramification index of K/Qp.
The discriminant ofK, denoted by Disc(K), is an ideal of Zp. We define the
discriminant exponent of K to be the integer c such that Disc(K) = pcZp.

5.2. Galois Groups of Degree 15 5-adic Fields. If f(x) ∈ Z5[x] is an
irreducible polynomial of degree 15, then it follows that the Galois group
G of f over Qp is a transitive subgroup of S15, of which there are 104.
However, the arithmetic in extensions of Qp is specialized, and this limits
the possibility for what G can be.
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Table 2. The 24 transitive subgroups of S15 that are pos-
sible Galois groups of degree 15 polynomials defined over
Q5.

T Size |C| Parity

1 15 15 +

2 30 1 −

3 30 3 +

4 30 5 −

6 60 1 +

7 60 1 −

8 60 3 −

9 75 5 +

11 120 1 −

12 150 1 +

13 150 5 −

14 150 1 −

17 300 1 +

18 300 1 −

19 300 1 −

25 375 5 +

27 600 1 −

30 750 1 +

31 750 1 −

32 750 5 −

37 1500 1 +

38 1500 1 −

40 1500 1 −

49 3000 1 −

For example, in [1, Lemma 2.2] it is shown thatGmust have the following
properties:

• G contains a normal subgroup I such that G/I is cyclic.
• I contains a normal subgroupW such that W is a 5-group (possibly
trivial).

• I/W is cyclic of order dividing 5[G:I] − 1.

Using the software Gap [6], direct computation on the 104 transitive sub-
groups of S15 shows that only 24 groups are possible Galois groups of degree
15 polynomials overQ5. We identify these groups in Table 2 using the tran-
sitive numbering system in [6]. Specifically, an entry of j in column T refers
to the group TransitiveGroup(15,j) in Gap. The table also includes the
Size of each group, the order of its centralizer in S15 (in column |C|), and
its Parity.

Notice that one group in Table 2 has a centralizer order of 15 and two
have a centralizer order of 3. These three groups are T1 = C15, T3 =
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D5 × C3, and T8 = F5 × C3. Here F5 is the Frobenius group of order
20; it is a semidirect product C5 o C4, generated by (12345) and (2354).
Note that these three groups are of the form H ×C3 where H is a solvable
transitive subgroup of S5.

The group T1 is the only group among the 24 whose centralizer in S15 has
15 elements. Similarly, T3 and T8 are the only groups whose centralizers
have 3 elements, and these two groups have different parities. We have
therefore proven the following theorem, which determines when a degree 15
polynomial defined over Q5 has a Galois group among T1, T3, and T8.

Theorem 5.1. Let f(x) be an irreducible degree 15 polynomial defined over
the 5-adic numbers, and let K be the stem field of f . Let #A be the number
of roots of f in K, D = Disc(f), and G the Galois group of f .

(1) If #A = 15, then G = C15.
(2) If #A = 3, then G = D5 ×C3 if D is a perfect square and F5 ×C3

otherwise.

Since the number of degree 15 extensions of Q5 is finite [9, p. 54], we can
count how many extensions have Galois group C15, D5 ×C3, and F5 ×C3.
First, we use [12] to compute polynomials defining all nonisomorphic degree
15 extension of Q5. There are 1012 such polynomials. For each polynomial,
we compute the number of roots of that polynomial in its stem field. This
is possible using the p-adic root-finding algorithm in [10]. We extract those
polynomials whose stem field contains either 15 roots or 3 roots. If the
stem field contains 15 roots, then the Galois group is C15.

Otherwise, we compute the polynomial’s discriminant and determine if
it is a perfect square in Q5. This is a straightforward task due to Hensel’s
Lemma [7, p. 71]. In particular, we write D = pku where gcd(p, u) = 1.
Then D is a perfect square in Q5 if and only if k is even and u is a quadratic
residue modulo 5. If the discriminant is a perfect square, then G = D5×C3.
Otherwise G = F5 × C3.

Of the 1012 polynomials defining nonisomorphic degree 15 extensions of
Q5, six have C15 as Galois group, three have D5 ×C3 as Galois group, and
17 have F5 ×C3 as Galois group. Tables 3 and 4 list these 26 polynomials,
their Galois group, and the ramification index e and discriminant exponent
c of their stem field.
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Table 3. Polynomials over Q5 whose Galois group is T1
or T3. Also included are the extension’s ramification in-
dex e and discriminant exponent c. The table is sorted
first by Galois group, then by ramification index, then by
discriminant exponent.

Polynomials e c G

x15 + x2 + 2 1 0 T1

x15 + 585x14 + 505x13 + 370x12 + 165x11 + 378x10 + 395x9 + 170x8 5 24 T1
+315x7 + 95x6 + 306x5 + 315x4 + 260x3 + 5x2 + 260x + 607

x15 + 405x14 + 120x13 + 10x12 + 90x11 + 188x10 + 135x9 + 395x8 5 24 T1
+505x7 + 345x6 + 341x5 + 300x4 + 95x3 + 75x2 + 470x+ 457

x15 + 380x14 + 555x13 + 575x12 + 160x11 + 43x10 + 70x9 + 125x8 5 24 T1
+330x7 + 170x6 + 546x5 + 305x4 + 75x3 + 95x2 + 370x+ 382

x15 + 70x14 + 315x13 + 80x12 + 530x11 + 518x10 + 565x9 + 425x8 5 24 T1
+480x7 + 30x6 + 386x5 + 275x4 + 5x3 + 295x2 + 100x + 132

x15 + 315x14 + 285x13 + 45x12 + 425x11 + 133x10 + 620x9 + 325x8 5 24 T1
+365x7 + 365x6 + 516x5 + 35x4 + 575x3 + 275x2 + 420x+ 257

x15 + 90x14 + 15x13 + 70x12 + 110x11 + 60x10 + 85x9 + 110x8 + 5x7 5 18 T3
+15x6 + 14x5 + 15x4 + 75x3 + 90x2 + 20x+ 43

x15 + 70x14 + 100x13 + 85x12 + 70x11 + 30x10 + 85x9 + 85x8 + 80x7 5 18 T3
+20x6 + 49x5 + 105x4 + 5x3 + 115x2 + 80x+ 83

x15 + 445x14 + 130x13 + 265x12 + 560x11 + 323x10 + 505x9 + 545x8 5 24 T3
+280x7 + 580x6 + 306x5 + 120x4 + 75x3 + 175x+ 252
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