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Abstract. Istvan Beck introduced the zero-divisor graph in 1988.
We explore the directed and undirected zero-divisor graphs of the
rings of 2× 2 upper triangular matrices mod n, denoted by Γ(T2(n))

and Γ̃(T2(n)), respectively. For prime p, we completely character-
ize the graph Γ(T2(p)) by partitioning T2(p), and prove several key
properties of the graphs using this approach. We establish additional
properties of Γ(T2(n)) for arbitrary n. We prove that Γ(T2(n)) is
Hamiltonian if and only if n is prime, and we give explicit formulas
for the edge connectivity and clique number of Γ(T2(n)) in terms of
the prime factorization of n.

1. Introduction

The zero-divisor graph of a ring R is a graph whose vertices are the
nonzero zero-divisors of R. The zero-divisor graph was introduced by Ist-
van Beck in his work [5], where he employed the concept to solve graph
coloring problems. Anderson and Naseer expanded upon Beck’s work, and
provided a counterexample to his conjecture that the chromatic and clique
numbers are equal for the zero-divisor graph of any commutative ring [1].
Redmond introduced multiple versions of zero-divisor graphs and extended
the definition to non-commutative rings in [12]. Much of our work is moti-
vated and aided by Redmond’s research [12].

Since Beck’s work, the motivation for studying zero-divisor graphs has
shifted from graph colorings to understanding the ring zero-divisors them-
selves. When present, zero-divisors are important elements of a ring. Zero-
divisor graphs enable us to study the structure of their respective rings
using graph theory, as opposed to more conventional methods.

Here we study the zero-divisor graphs of the rings T2(n) under matrix
addition and multiplication, where T2(n) denotes the set of upper-triangular
matrices with elements in Zn. A large amount of research has been devoted
to the study of the zero-divisor graphs of commutative rings, see [1] and
[13]. However, research in the area of non-commutative rings is less copious,
although some authors have established general results, such as [6] and
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[12]. In addition to their applications in graph coloring, zero-divisor graphs
provide a link between graph and number theory.

We study the relationship between the ring- and graph-theoretic prop-
erties of the ring T2(n) and the directed and undirected zero-divisor graphs
of T2(n). The directed and undirected graphs of T2(n) are denoted by

Γ(T2(n)) and Γ̃(T2(n)), respectively. We give Behboodi and Beyranvand’s

result [6] that Γ̃(R) is connected for every ringR, and we show that Γ(T2(n))
is connected using a result due to Redmond [13]. If n is prime, then the
chromatic number of Γ(T2(n)) is n+ 1. If p is the smallest prime factor of
n, then the edge connectivity of Γ(T2(n)) is p−1 and the edge connectivity

of Γ̃(R) is p2 − 1. Finally, we prove that Γ(T2(n)) is Hamiltonian if and
only if n is prime and vertex-pancyclic if and only if n is an odd prime, and
we establish an explicit formula for the clique number of Γ(T2(n)).

2. Preliminaries

Let G be a graph, and let a, b be vertices of G. If G is a directed
graph, then we write a → b if there is an edge of G from a to b. If both
a → b and b → a, then we say there is a multiple edge between a and
b. If G is undirected, then we write a—b if there is an edge of G from a
to b. Throughout the paper, 0 denotes the 2 × 2 zero matrix. If R is a
commutative ring, and a is an element of R, then 〈a〉 denotes the ideal of
R generated by a.

Most authors define only undirected complete graphs. However, for our
purposes it will be useful to provide a definition that may be applied to
directed complete graphs as well. Thus, we call a directed graph G with
n vertices a complete graph on n vertices if for all vertices x, y of G with
x 6= y there is a multiple edge between x and y. We denote such a complete
graph by Kn.

Throughout the following definitions, R denotes an arbitrary ring.

Definition 2.1. An element a ∈ R is a zero-divisor of R if a 6= 0 and there
exists some b ∈ R such that ab = 0 or ba = 0 in R. If ab = 0 (ba = 0), then
we say that a is a left (right) zero-divisor of R. The set of all zero-divisors
of R is denoted by Z(R). The set of all left (right) zero-divisors of R is
denoted by ZL(R) (ZR(R)).

We denote the set of all upper-triangular 2 × 2 matrices with elements
in Zn by T2(n). Also, in order to simplify notation, we denote the set of all
zero-divisors of T2(n) by Z2(n) instead of Z(T2(n)).

Definition 2.2. Γ(R) is the directed zero-divisor graph of R where a → b
if a, b ∈ Z(R) and ab = 0.
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Definition 2.3. Γ̃(R) is the undirected zero-divisor graph of R where a—b
if a, b ∈ Z(R) and ab = 0 or ba = 0.

Definition 2.4. Γ̄(R) is the strict zero-divisor graph of R where a—b if
a, b ∈ Z(R) and ab = 0 and ba = 0.

Note that the strict graph of R is a subgraph of the undirected graph.

3. Results

Lemma 3.1. Let n ≥ 2, and let A =

(

a b
0 c

)

∈ T2(n) with A 6= 0. Then

A ∈ Z2(n) if and only if gcd(a, n) 6= 1 or gcd(c, n) 6= 1.

Proof. Assume gcd(a, n) = gcd(c, n) = 1. Since A ∈ Z2(n), there must

exist some X =

(

x y
0 z

)

∈ Z2(n) such that

AX =

(

ax ay + bz
0 cz

)

= 0 (3.1)

or

XA =

(

ax bx+ yc
0 cz

)

= 0. (3.2)

Suppose (3.1) holds. Then x = z = 0, so ay ≡ 0 (mod n), a contradiction.
Likewise, if (3.2) holds, then once again x = z = 0, so cy ≡ 0 (mod n), a
contradiction. Hence, we must have either gcd(a, n) 6= 1 or gcd(c, n) 6= 1.

Now, suppose gcd(a, n) 6= 1, and let s1 = n/ gcd(a, n). Then
(

a b
0 c

)(

s1 s1
0 0

)

= 0 ,

soA ∈ Z2(n). On the other hand, suppose that gcd(a, n) = 1 but gcd(c, n) 6=
1, and let s2 = n/ gcd(c, n). Also, let y be the solution of ay + bs2 ≡ 0
(mod n). Then

(

a b
0 c

)(

0 y
0 s2

)

=

(

0 ay + bs2
0 cs2

)

= 0,

so A ∈ Z2(n). �

Using Lemma 3.1, it is easy to show that if n ≥ 2, then

|Z2(n)| = n3 − nφ(n)2 − 1, (3.3)

where φ denotes Euler’s totient function. In particular,

|Z2(p)| = 2p2 − p− 1

for every prime p. To establish (3.3), first note that |T2(n)−{0}| = n3− 1.
By Lemma 3.1, |Z2(n)| = n3−1−nm2, where m is the number of elements
k ∈ Zn such that gcd(k, n) = 1; but this value is precisely φ(n), so the
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result is established. It then follows from the definition of Γ̃(T2(n)) that

|Γ̃(T2(n))| = n3−nφ(n)2−1 as well. It is clear that |Γ̄(T2(n))| ≤ |Γ(T2(n))|
for all n ≥ 2. Theorem 3.12 will show that, in fact, equality holds.

In the following definitions G denotes an arbitrary directed or undirected
graph.

Definition 3.2. The graph G is connected if for any distinct vertices v1, v2
of G, there exists a path in G from v1 to v2.

Definition 3.3. For each pair of vertices u, v of G, let Ps(u, v) denote the
shortest path from u to v for all vertices u, v of G. Then the diameter of
G, denoted by d(G), is

d(G) = max{Ps(u, v) : u, v vertices of G}.

We use the following result, due to Redmond [13], to establish several
properties of Γ(T2(n)).

Theorem 3.4. Let R be a ring. Then Γ(R) is connected if and only if
ZL(R) = ZR(R). Moreover, if Γ(R) is connected, then d(Γ(R)) ≤ 3.

Corollary 3.5. Let n ≥ 2. Then Γ(T2(n)) is connected.

Proof. Suppose A =

(

a0 b0
0 c0

)

is an element of Z(T2(n)). Let

a1 ≡
n

gcd(a0, n)
(mod n)

b1 ≡
−b0n

gcd(c0, n)
(mod n)

c1 ≡
a0n

gcd(c0, n)
(mod n)

a2 ≡
c0n

gcd(a0, n)
(mod n)

b2 ≡
−b0n

gcd(a0, n)
(mod n)

c2 ≡
n

gcd(c0, n)
(mod n)

and let

B1 =

(

a1 b1
0 c1

)

B2 =

(

a2 b2
0 c2

)

.

Then AB1 = 0 and B2A = 0. By Lemma 3.1, either gcd(a0, n) 6= 1 or
gcd(c0, n) 6= 1. Consequently, a1 = 0 implies c1 6= 0 and c2 = 0 implies
a2 6= 0, so B1 6= 0 and B2 6= 0. Therefore, A ∈ ZL(n) and A ∈ ZR(n), and
the result follows by Theorem 3.4. �
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Theorem 3.6. Let n ≥ 2. If n is not a prime power, then there is no
element A ∈ Z2(n) such that A is adjacent to all B ∈ Z2(n) in Γ̃(T2(n)).
If n = pk for some prime p and k ∈ N, then A ∈ Z2(n) is adjacent to

every other vertex in Γ̃(T2(n)) if and only if A =

(

0 spk−1

0 0

)

for some

s relatively prime to n.

Proof. Let n = pe11 pe22 · · · pemm , where the pi are prime and n is not a prime
power. Suppose that

X =

(

x y
0 z

)

∈ Z2(n)

is adjacent to every other vertex in Γ(T2(n)); that is, XA = 0 or AX = 0

for all A ∈ Z2(n). Choosing A =

(

p1 1
0 1

)

and then A =

(

1 1
0 p1

)

shows that x = z = 0. Thus y 6= 0, and since n is not a prime power, there

exists some j ∈ N, 1 ≤ j ≤ m such that n - pjy. Let B =

(

1 1
0 pj

)

.

Then

XB =

(

0 ypj
0 0

)

= 0 or BX =

(

0 y
0 0

)

= 0.

In either case, y = 0, a contradiction.
To prove the second part of the theorem, let n = pk, where p is prime

and k ∈ N; let s ∈ N be relatively prime to n; and let

A1 =

(

0 spk−1

0 0

)

.

By Lemma 3.1, if C =

(

x y
0 z

)

∈ Z2(n), then either p|x or p|z. If p|z,

then A1C = 0, and if p|x, then CA1 = 0.
Conversely, let A2 ∈ Z2(n), and suppose that A2 is adjacent to every

other vertex in Γ(T2(n)). Once again A2 must have the form

A2 =

(

0 y
0 0

)

.

Let B =

(

1 1
0 p

)

, and suppose y 6= spk−1 for all s relatively prime to n.

Then either

A2B =

(

0 yp
0 0

)

= 0 or BA2 =

(

0 y
0 0

)

= 0 ,

both of which imply that y = 0, a contradiction. �
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Theorem 3.7. Let n ≥ 2. Then d(Γ̃(T2(n))) = 2 if and only if n is a
prime power.

Proof. Suppose n is a prime power, and let X,Y ∈ Z2(n). Then by The-
orem 3.6 there is a matrix A ∈ Z2(n) such that X → A → Y is a path in

Γ̃(T2(n)). By Theorem 3.6, the diameter is greater than 1, so the result
follows.

Now suppose that n is not a prime power, and let p, q be distinct prime
divisors of n. Consider the matrices

A =

(

p 0
0 1

)

, B =

(

q 0
0 1

)

in Z2(n). If there is some M =

(

m1 m2

0 m3

)

such that A → M → B

is a path in Γ̃(T2(n)), then one of AM,MA is 0 and one of BM,MB is
0. Multiplying out AM,MA,BM and MB shows that in each of the four
possible cases m1 = m2 = m3 = 0. Thus, d(Γ̃(T2(n))) 6= 2. �

Definition 3.8. Let p be prime. Then for each 1 ≤ k ≤ p we define the
following subsets of Z2(p):

S0(p) :=

{(

0 b
0 0

)

: b ∈ Zp, b 6= 0

}

Sk(p) :=

{(

a ka
0 0

)

: a ∈ Zp, a 6= 0

}

S ′
k(p) :=

{(

0 −kc
0 c

)

: c ∈ Zp, c 6= 0

}

.

When the ring Zp is clear from the context, we will often write Sk(p)
and S ′

k(p) as Sk and S ′
k, respectively.

Lemma 3.9. If p is prime, then the set {S0,S1, . . . ,Sp,S
′
1, . . . ,S

′
p} parti-

tions Z2(p).

Proof. Clearly the intersection of any two of the sets is empty. Let A =
(

a b
0 c

)

∈ Z2(p). Since p is prime, Lemma 3.1 implies that a = 0 or

c = 0. If c = 0 and a 6= 0, then we must have b ≡ ka (mod p) for some
1 ≤ k ≤ p, so A ∈ Sk. Likewise, if a = 0 and c 6= 0, then b ≡ −kc (mod p)
for some 1 ≤ k ≤ p, so A ∈ S ′

k. Finally, if a = c = 0, then A ∈ S0. Thus,
⋃p

k=0 Sk ∪
⋃p

k=1 S
′
k = Z2(p). �

Let n ≥ 2, and let A1, A2, . . . , Ak be distinct vertices in Z2(n). If
AiAi+1 = 0 for each 1 ≤ i < k, then A1 → A2 → · · · → Ak denotes
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the path from A1 to Ak in Γ(T2(n)) via the vertices Ai, where each ver-
tex is visited exactly once. Moreover, if B1, B2 ⊆ Z2(n), then we write
B1 ⇒ B2 if BB′ = 0 for all B ∈ B1, B

′ ∈ B2, and we write B1 ⊥ B2

if BB′ 6= 0 for all B ∈ B1, B
′ ∈ B2. The following lemma can easily be

verified using direct calculation and the definition of the sets S0,Sk,S
′
k.

Lemma 3.10. Let p be prime. If k, j ∈ {1, 2, . . . , p}, then

S0 ⇒ S0,Sk

S0 ⊥ S ′
j

S ′
j ⇒ S0,Sk

S ′
j ⊥ S ′

k

Sk ⇒ S ′
j if k = j

Sk ⊥ S ′
j if k 6= j

Sk ⊥ S0,Sj

where S0,Sk,Sj ,S
′
k,S

′
j ⊆ Z2(p).

It follows from Lemma 3.10 that a matrix A ∈ Z2(p) is nilpotent if and
only if A ∈ S0. Figure 1 depicts the relationships given in Lemma 3.10.
If A,B ∈ {S0,S1, . . . ,Sp,S

′
1, . . . ,S

′
p}, then there is an arrow going from A

to B if and only if A ⇒ B. Moreover, the absence of an arrow from A to
B implies that A ⊥ B. Some of the lines are dashed in order to make the
diagram more readable. We call this the S,S ′ diagram.

S0

S ′

1 S ′

2 · · · S ′

p

S1 S2 · · · Sp

Figure 1. The S,S ′ Diagram.

Since the S,S ′ diagram portrays every conclusion of Lemma 3.10, when
Lemma 3.10 is cited it is almost always more practical to refer to the dia-
gram rather than the lemma itself.

The proof of the following theorem is an excellent application of the S,S ′

diagram.

Theorem 3.11. Let p be prime. Then χ (Γ(T2(p))) = p+ 1.
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Proof. Suppose we have colored the graph so that no two adjacent vertices
have the same color. Since S0 ⇒ S0, every element in S0 must have a
different color, so χ (Γ(T2(p))) ≥ p − 1. Since S ′

k ⇒ S0 and S0 ⇒ Sk,
any vertex v of Γ(T2(p)) such that v /∈ S0 does not have a color found in
S0. Moreover, since S ′

k ⇒ Sk for each k ∈ {1, . . . , p}, it follows that if
a ∈ Sk, b ∈ S ′

k, then a and b must be colored with different colors. Thus,
χ (Γ(T2(p))) ≥ p + 1. It is easy to verify that choosing a different color
for each of the p − 1 elements of S0, choosing a pth distinct color for the
elements of

⋃p

k=1 Sk, and choosing a (p + 1)th color for the elements of
⋃p

k=1 S
′
k gives a valid coloring of the graph. �

In the proof of Theorem 3.12 will shall use the following notation: Let
n ≥ 2, let p be a factor of n, and suppose

X =

(

x1 x2

0 x3

)

∈ Z2(n).

Then we define the element Xk ∈ T2(k) by

Xk =

(

x′
1 x′

2

0 x′
3

)

where x′
i ≡ xi (mod k) for each i ∈ {1, 2, 3}.

Theorem 3.12. Let n ≥ 2, and let X =

(

a b
0 c

)

∈ Z2(n). Then

deg(X) > 0 in Γ̄(T2(n)).

Proof. Write n = pe11 · · · pemm , where the pi are distinct primes. Suppose that
there exists some prime divisor p of n that divides a, b, and c. Renaming if
necessary, we may assume p = p1. Let

Y =

(

pe1−1
1 pe2 · · · pemm pe1−1

1 pe2 · · · pemm
0 pe1−1

1 pe2 · · · pemm

)

.

Then Y ∈ Z2(n) and XY = Y X = 0 in Zn.
On the other hand, suppose that no divisor of n divides a, b, and c

simultaneously. By Lemma 3.1, there is a prime divisor q of n that divides
either a or c. Then Xq ∈ Z2(q), and by Lemma 3.10 we see that there
exists some W ′ ∈ Z2(q) such that XqW

′ = W ′Xq = 0 in Zq. We claim

that XW = WX = 0, where W =
(

n
q

)

W ′ ∈ Z2(n). To see this, write

X = qM + Xq, where M ∈ T2(n). Then XW = (qM + Xq)
(

n
q

)

W ′ =

nMW ′ +
(

n
q

)

XqW
′ = 0 in Zn. Similarly, WX = 0 in Zn, and the proof

is complete. �
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Definition 3.13. Let G be a connected graph. Then the edge connectivity
of G, denoted by κ(G), is the smallest number of edges that can be removed
from G to disconnect the graph.

Remark. Let n = pe11 · · · pemm , where the pi are prime and p1 < p2 < · · · <

pm. If A =

(

a1 a2
0 a3

)

∈ Z2(n), then the matrices A, 2A, . . . , (p1 − 1)A

are all distinct elements of Z2(n). For suppose there exist integers k1, k2 ∈
{1, . . . , p1 − 1} such that k1A = k2A. Then (k1 − k2)ai ≡ 0 (mod n) for
each i ∈ {1, 2, 3}. Let s ∈ {1, 2, 3} such that as 6= 0. Then since as < n
and |k1 − k2| < p1, it follows that k1 = k2.

Theorem 3.14. Let n = pe11 · · · pemm , with p1 < p2 < · · · < pm. Then
Γ(T2(n)) has edge connectivity p1 − 1.

Proof. Let k = pe1−1
1 pe22 · · · pemm , let

X =

(

x y
0 z

)

∈ Z2(n) ,

and consider the element

A =

(

1 k
0 p1

)

∈ Z2(n) .

Then

AX =

(

x y + kz
0 p1z

)

= 0

if and only if x = 0, z = rk where gcd(r, p1) = 1, and y = −kz. Thus,

κ(Γ(T2(n))) ≤ p1 − 1. (3.4)

Now, suppose M = {mij}, N = {nij} ∈ Z2(n), and let E be any set of
p1− 2 edges in Γ(T2(n)). To prove κ(Γ(T2(n))) ≥ p1− 1, it suffices to show
that there is a path from M to N in Γ(T2(n)) that contains no edge in E.
By Lemma 3.1, there exist prime factors p, q of n such that p divides at
least one of m11,m22 and q divides at least one of n11, n22. Define

S1 =

{(

0 x
0 0

)

∈ Z2(n) : x ∈ 〈n/p〉

}

S2 =

{(

0 y
0 x

)

∈ Z2(n) : x ∈ 〈n/p〉 and m11y +m12x ≡ 0 (mod n)

}

R1 =

{(

0 x
0 0

)

∈ Z2(n) : x ∈ 〈n/q〉

}

R2 =

{(

x y
0 0

)

∈ Z2(n) : x ∈ 〈n/q〉 and n12x+ n22y ≡ 0 (mod n)

}
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Clearly |S1| = p − 1 and |R1| = q − 1. Also, note that if p - m11, then
|S2| ≥ p − 1, and if q - n22, then |R2| ≥ q − 1. Define s = 1 if p | m11,
s = 2 otherwise. Similarly, define r = 1 if q | n22, r = 2 otherwise.
Note that MV = 0 for all V ∈ Ss, and WN = 0 for all W ∈ Rr. Let
a = min{p − 1, q − 1}. Let V1, . . . , Va be distinct elements of Ss, and
let W1, . . . ,Wa be distinct elements of Rr such that Wi = Vi whenever
Wi ∈ {V1, . . . , Va}. Then

K = {M → Vi → Wi → N : i ∈ {1, . . . , a}}

is a set of a ≥ p1 − 1 paths in Γ(T2(n)), no two of which share an edge.
Thus, there is a path in K that contains no edge of E. Consequently,

κ(Γ(T2(n))) ≥ p1 − 1,

so κ(Γ(T2(n))) = p1 − 1 by equation (3.4). �

The proof of our next theorem mimics that of Theorem 3.14.

Theorem 3.15. Let n = pe11 · · · pemm , where the pi are prime and p1 < p2 <

· · · < pm. Then Γ̃(T2(n)) has edge connectivity p21 − 1.

Proof. Let k = pe1−1
1 pe22 · · · pemm , let

X =

(

x y
0 z

)

∈ Z2(n) ,

and consider the element

A =

(

1 k
0 p1

)

∈ Z2(n) .

Then

AX =

(

x y + kz
0 p1z

)

= 0

if and only if x = 0, z = rk where gcd(r, p1) = 1, and y ≡ −kz (mod n).
On the other hand,

XA =

(

x kx+ p1y
0 p1z

)

= 0

if and only if x = 0, and z = r1k, y = r2k for some r1, r2 ∈ {0, 1, . . . , p1−1}
where r1 and r2 are not both zero. Hence, if AX = 0, then XA = 0, and
deg(A) = p21 − 1. Thus,

κ
(

Γ̃(T2(n))
)

≤ p21 − 1. (3.5)

Now, let E be any collection of p21 − 2 edges of Γ̃(T2(n)), and suppose

M = {mij}, N = {nij} ∈ Z2(n). To prove that κ
(

Γ̃(T2(n))
)

≥ p21 − 1

is suffices to show that there exists a path from M to N in Γ̃(T2(n)) that
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contains no edge in E. By Lemma 3.1, there exist prime factors p, q of n
such that p divides at least one of m11,m22 and q divides at least one of
n11, n22. Define

S1 =

{(

x y
0 0

)

∈ Z2(n) : x, y ∈ 〈n/p〉

}

S2 =

{(

0 x
0 y

)

∈ Z2(n) : x, y ∈ 〈n/p〉

}

R1 =

{(

x y
0 0

)

∈ Z2(n) : x, y ∈ 〈n/q〉

}

R2 =

{(

0 x
0 y

)

∈ Z2(n) : x, y ∈ 〈n/q〉

}

.

Note that |S1| = |S2| = p2 − 1 ≥ p21 − 1 and |R1| = |R2| = q2 − 1 ≥ p21 − 1.
Let s, r ∈ {1, 2} such that p divides mss and q divides nrr. Note that for all
V ∈ Ss, either MV = 0 or VM = 0, and for all W ∈ Rr, either NW = 0 or
WN = 0. Let a = min{p2−1, q2−1}. Let V1, . . . , Va be distinct matrices in
Ss, and let W1, . . . ,Wa be distinct matrices in Rr, where Wi = Vi whenever
Wi ∈ {V1, . . . , Va}. Then

K = {M → Vi → Wi → N : i ∈ {1, . . . , a}}

is a set of a ≥ p21−1 paths in Γ̃(T2(n)), no two of which share an edge. Thus,
there is a path in K that contains no edge of E. Therefore κ(Γ(T2(n))) ≥
p21 − 1, and it follows from (3.5) that κ(Γ(T2(n))) = p21 − 1. �

Definition 3.16. A graph G with n vertices is Hamiltonian if G contains
a cycle of length n. G is pancyclic if G contains a cycle of all lengths `, for
3 ≤ ` ≤ n. G is vertex-pancyclic if each vertex in G belongs to a cycle of
every length 3 ≤ ` ≤ n.

If P1,P2 are paths in Γ(T2(n)), and the last vertex in P1 is adjacent to
the first vertex of P2, then P1 +P2 denotes the path formed by appending
P2 to the end of P1. In a slight abuse of notation, if A is a vertex of
Γ(T2(n)) and A is adjacent to the last element of P1, then P1 +A denotes
the path formed by appending A to the end of P1.

Remark. Note that Γ(T2(2)) is pancyclic but not vertex-pancyclic since no
element in S0 can be in a cycle of length four. This can be visually verified
using the S,S ′ diagram.

Theorem 3.17. Γ(T2(n)) is vertex-pancyclic if and only if n is an odd
prime.

Proof. The remark preceding the theorem takes care of the case n = 2.
Suppose n is an odd prime. For i ∈ {0, . . . , n}, j ∈ {1, . . . , n}, enumerate
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the elements of Si and S ′
j :

Si = {Si,1, . . . , Si,n−1}

S ′
j = {Sj,1, . . . , Sj,n−1}.

For 1 ≤ k ≤ n, even 2 ≤ e ≤ 2n, and odd 3 ≤ d ≤ 2n+ 1, define

Pk,e,i := S′
k,i → Sk+1,i → S′

k+1,i → · · · → Sk+ e

2
−1,i → S′

k+ e

2
−1,i → Sk,i

Pk,d,i := S′
k,i → S0,i → Sk+1,i → S′

k+1,i → · · · → Sk+b d

2
c−1,i → S′

k+b d

2
c−1,i

→ Sk,i

where we take Sm,i = Sm−n,i, S
′
m,i = S′

m−n,i whenever m > n. The S,S ′

diagram shows that for any 3 ≤ ` ≤ 2n+ 1, Pk,`,i is a path of length `− 1
in Γ(T2(n)).

Let 3 ≤ ` ≤ |Z2(n)| = 2n2 − n − 1. We must show that for each
S ∈ Z2(n), Γ(T2(n)) contains a cycle of length ` that passes through S. If
` ≤ 2n + 1, then Pk,`,i + S′

k,i is a cycle of length ` that contains S′
k,i and

Sk,i. If 2n + 2 ≤ ` ≤ 2n2 − 2n + 1, then there is some t ∈ {1, . . . , n − 2}
such that 2(tn+ 1) ≤ ` ≤ 2(t+ 1)n+ 1, and

Pk,2n,i + Pk,2n,i+1 + · · ·+ Pk,2n,i+t−1 + Pk,`−2tn,i+t + S′
k,i

is a cycle in Γ(T2(n)) with length (2n−1)(t)+t+(`−2tn−1)+1 = `, where
we take Pk,l,m = Pk,l,m−n+1 whenever m > n− 1. If 2((n− 1)n+1) ≤ ` <
(2n+ 1)(n− 1), then

Pk,2n+1,i + Pk,2n+1,i+1 + · · ·+ Pk,2n+1,i+`−2n(n−1)−1 + Pk,2n,i+`−2n(n−1)

+ · · ·+ Pk,2n,i+n−2 + S′
k,i

is a cycle of length (2n+1)(`−2n(n−1))+2n(2n2−n−1− `) = `. Finally,
if ` = (2n+ 1)(n− 1), then

Pk,2n+1,i + Pk,2n+1,i+1 + · · ·+ Pk,2n+1,i+n−2 + S′
k,i

is a cycle of length `. This shows that Γ(T2(n)) is pancyclic. Moreover,
notice that each cycle given above passes through S′

k,i and Sk,i for all `, and

S0,i if ` is odd. Since this holds for all k ∈ {1, . . . , n} and i ∈ {1, . . . , n−1},
we have that for each S ∈ Z2(n) and 3 ≤ ` ≤ |Z2(n)|, Γ(T2(n)) contains a
cycle of length ` containing S unless S ∈ S0 and ` is even.

Thus, to prove that Γ(T2(n)) is vertex-pancyclic, we have only to show
that an element from S0 can belong to a cycle of even length ` ∈ {4, 6, . . . ,
2n2 − n− 1}. To show that this is possible, we can modify Pk,e,i, for even
e ≥ 4, to be

P ′
k,e,i

:= S′
k,i → S0,i → S0,i+1 → Sk+1,i → · · · → Sk+ e

2
−2,i → S′

k+ e

2
−2,i → Sk,i
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We can simply change between Pk,e,i and P ′
k,e,i as necessary. It follows

that Γ(T2(n)) is vertex-pancyclic.
Now suppose n is composite. Let p1 be the smallest prime factor of n,

and let

Q =

{(

a 0
0 p1

)

: gcd(a, n) = 1

}

.

If A ∈ Q and B ∈ Z2(n), then AB = 0 if and only if B =

(

0 0
0 kn

p1

)

for

some 1 ≤ k ≤ p1 − 1. But since |Q| = φ(n) > p1 − 1, Γ(T2(n)) contains
no cycle of length |Z2(n)|. Thus Γ(T2(n)) is not pancyclic (and hence not
vertex-pancyclic). �

Corollary 3.18. Γ(T2(n)) is Hamiltonian if and only if n is prime.

Proof. If n = 2, the result is clear from the S, S′ diagram, and if n is an odd
prime, then it follows from Theorem 3.17 that Γ(T2(n)) is Hamiltonian. If
n is not prime, then Γ(T2(n)) has no cycle of length |Z2(n)| by the proof
of Theorem 3.17, so Γ(T2(n)) is not Hamiltonian. �

Definition 3.19. The clique number of a graph G, which we denote by
ω(G), is the greatest integer r ≥ 1 such that Kr ⊆ G, where Kr is the
complete graph on r vertices.

Our final theorem shall give an explicit formula for the clique number of
Γ(T2(n)). However, we must first establish two lemmas.

Lemma 3.20. Let n = pe11 pe22 · · · pemm be the prime factorization of n, let
S = {s ∈ Zn : s2 6≡ 0 (mod n)}, and let C be a subset of Zn whose elements
form a complete subgraph of Γ(Zn). Then |S

⋂

C| ≤ m.

Proof. Let x, y ∈ C
⋂

S, and write gcd(x, n) = pa1

1 · · · pam

m , gcd(y, n) =

pb11 · · · pbmm . Since x2 6≡ 0 (mod n), there is some i ∈ {1, . . . ,m} such that
ai < ei/2. Similarly, there is some j ∈ {1, . . . ,m} such that bj < ej/2. But
since xy ≡ 0 (mod n), we have i 6= j, and it follows that |S

⋂

C| ≤ m. �

Lemma 3.21. Let n ≥ 2, let C be a complete subgraph of Γ(T2(n)), and
define G = {{aij} ∈ C : a11 = a22 = 0}. If gcd(a12, n) = 1 for any
{aij} ∈ G, then C = G.

Proof. Suppose A = {aij} ∈ G with gcd(a12, n) = 1, and suppose B =
{bij} ∈ C such that B 6= A. Since AB = 0, we have a12b22 = 0, which
implies b22 = 0. Similarly, BA = 0 implies b11 = 0. Thus, B ∈ G, and it
follows that C = G. �

Recall that K is a complete subgraph of a directed graph G if A → B
and B → A for every pair of distinct vertices A,B of K.
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Theorem 3.22. Let n = pe11 pe22 · · · pemm be the prime factorization of n. If
n = 2, then ω(Γ(T2(n))) = 2; otherwise,

ω(Γ(T2(n))) = ξn− 1,

where ξ = p
b
e1

2
c

1 p
b
e2

2
c

2 · · · p
b em

2
c

m .

Proof. The S,S ′ diagram verifies Theorem 3.22 when n = 2. Thus, suppose
n ≥ 3, and let H = {h ∈ Zn : h2 ≡ 0 (mod n)}. Note that |H | = ξ. We
now create a complete subgraph in Γ(T2(n)); let

Ω =

{(

a b
0 c

)

6= 0 : a, c ∈ H, b = kξ for 0 ≤ k <
n

ξ

}

.

Note that the elements of Ω form a complete subgraph of Γ(T2(n)), and
|Ω| = ξn− 1. We claim that the elements of Ω form a complete subgraph
in Γ(T2(n)) of maximum order.

Suppose that C is a complete subgraph of Γ(T2(n)). Define the sets

H1 = {a11 ∈ H : {aij} ∈ C}

H2 = {a22 ∈ H : {aij} ∈ C}

S1 = {gcd(a11, n) : {aij} ∈ C, a11 /∈ H}

S2 = {gcd(a22, n) : {aij} ∈ C, a22 /∈ H}.

Note that |S1| + |S2| is an upper bound for the number of matrices in C
with at most one diagonal entry in H . For if B = {bij}, C = {cij} and
gcd(bkk, n) = gcd(ckk, n) /∈ H for some k ∈ {1, 2}, then BC 6= 0, since
(bkk)(ckk) 6≡ 0 (mod n). Since n ≥ 3, Lemma 3.20 implies |S1| + |S2| ≤
2m ≤ n− 1.

Let z = n/ξ, and for each k ∈ {1, 2}, let Pk = {{aij} ∈ C : akk ∈ Hk},
hk = gcd(v : v ∈ Hk

⋃

{n}). Notice that hk ≥ z for k ∈ {1, 2}, and that
|Hk| ≤ n/hk for k ∈ {1, 2}, where equality implies 0 ∈ Hk. For all x, y ∈ Zξ,
define

Fx,y = {{aij} ∈ C : a11 = xz and a22 = yz}

Gx,y = {a12 : a11 = xz and a22 = yz}.

If C = F0,0, then |C| ≤ n − 1 ≤ ξn − 1. So assume C 6= F0,0. Suppose
x1, x2 ∈ Zξ. We claim that |Fx1,x2

| ≤ min{h1−1, h2−1} if x1 = x2 = 0, and
|Fx1,x2

| ≤ min{h1, h2} otherwise. We first consider the case |Fx1,x2
| ≤ 2.

Since n ≥ 3, we must have h1, h2 ≥ 2, so if x1, x2 are not both zero, we are
done. Suppose x1 = x2 = 0. If min{h1, h2} > 2 we are done, so suppose
min{h1, h2} = 2. Then n = 4, and since C 6= F0,0, Lemma 3.21 implies
that 1, 3 /∈ Gx1,x2

, so |Fx1,x2
| = |Gx1,x2

| ≤ 1. This proves the claim for
|Fx1,x2

| ≤ 2.
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Now suppose |Fx1,x2
| ≥ 3. Let B = {bij}, C = {cij} ∈ Fx1,x2

. To prove
|Fx1,x2

| ≤ h1, suppose D = {dij} ∈ P1 such that D 6= B,D 6= C. Then

D =

(

rDh1 d12
0 d22

)

for some rD ∈ Zξ. Since DB = DC = 0, it follows

that

rDh1b12 + d12x2z ≡ rDh1c12 + d12x2z ≡ 0 (mod n) (3.6)

which implies

rDb12 ≡ rDc12 (mod n/h1) (3.7)

Let T = {c12, c12+n/h1, c12+2n/h1, . . . , c12+n−n/h1}, where the values
in T are taken modulo n. Since equation (3.7) must hold for all D ∈ P1,
and since |Fx1,x2

| ≥ 3, it follows that rb12 ≡ rc12 (mod n/h1) holds for
all r such that rh1 ∈ H1. But gcd(r : rh1 ∈ H1) = 1, so b12 ∈ T . Thus,
Gx1,x2

⊆ T and |Fx1,x2
| = |Gx1,x2

| ≤ |T | = h1. Note that if x1 = x2 = 0,
then 0 ∈ T . However, 0 /∈ G0,0, so |F0,0| ≤ h1 − 1.

To prove that |Fx1,x2
| ≤ h2 and |F0,0| ≤ h2 − 1, suppose A ∈ P2 such

that A 6= B,A 6= C. Then A =

(

a11 a12
0 rAh2

)

for some rA ∈ Zξ. Since

BA = CA = 0, it follows that

a12x1z + b12rAh2 ≡ a12x1z + c12rAh2 ≡ 0 (mod n) (3.8)

which implies

rAb12 ≡ rAc12 (mod n/h2) (3.9)

From here a similar argument as that used in the previous paragraph shows
that |Fx1,x2

| ≤ h2 and |F0,0| ≤ h2 − 1.
Thus we have

|C| ≤
∑

x∈H1

∑

y∈H2

|Fx,y|+ |S1|+ |S2|

≤

(

n2

h1h2
− 1

)

min{h1, h2}+min{h1 − 1, h2 − 1}+ |S1|+ |S2|.

(3.10)
Suppose max{h1, h2} = z, so that |S1| = |S2| = 0. Then (3.10) becomes

|C| ≤

(

n2

h1h2
− 1

)

min{h1, h2}+min{h1−1, h2−1} =
n2

z
−z+z−1 = ξn−1

On the other hand, if max{h1, h2} > z, then ξ = n
z
≥ max{h1,h2}

z
≥ 2, so

n

max{h1, h2}
+ 1 ≤

ξ

2
+ 1 ≤ ξ.

MISSOURI J. OF MATH. SCI., FALL 2014 165



T. FENSTERMACHER AND E. GEGNER

Thus,

|C| ≤
∑

x∈H1

∑

y∈H2

|Fx,y|+ |S1|+ |S2|

<

(

n

h1

)(

n

h2

)

min{h1, h2}+ n− 1

=
n2

max{h1, h2}
+ n− 1 ≤ ξn− 1.

Therefore, no complete subgraph of Γ(T2(n)) has size greater than ξn− 1.
This completes the proof that ω(Γ(T2(n))) = ξn− 1. �
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