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Abstract. In this work, we give two applications of Karoubi’s fun-
damental theorem of hermitian K-theory. We prove some isomor-
phisms in L-theory of monoid rings and the ring of integers in a
finite extension of Q2.

1. Introduction

Let A be a regular ring and M be a commutative cancellative torsion free
and c-divisible monoid for some c > 1. In [1], Joseph Gubeladze showed
that for i ∈ N, if

Ki(A) ' Ki(A[M ]),

then
Ki(A) ' Ki(A[M ]/AI)

for all proper radical ideals I of M . He also showed that if in addition,
there exists an integer p such that Zp

+ ⊂M ⊂ Q
p
+, then

Ki(A) ' Ki(A[M ])

for all i ∈ Z.
Here, Z+ will denote the additive monoid of nonnegative integers and Q+

that of nonnegative rationals. In the first part of this work, we suppose that
F is a commutative field of characteristic different from 2 provided with the
trivial involution, M is a c-divisible monoid for some natural c > 1 such
that Zp

+ ⊂ M ⊂ Q
p
+ (p ∈ N), and J is a proper ideal of M such that F.J

is maximal in F [M ], and the field F [M ]/F.J has a characteristic different
from 2. We prove that if

1L0(F ) ' 1L0(F [M ]/F.J) and 1L1(F ) ' 1L1(F [M ]/F.J),

then

εLn(F ) ' εLn(F [M ]/F.J)

for all n ∈ N and ε = ±1.
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In [5], Panin proved that for the ring of integers D in a local field K/Q2

with maximal ideal M , the natural homomorphism

Ki(D;Z/2n) −→ lim←−Ki(D/M j ;Z/2n)

is an isomorphism for all positive i and n. In the second part of this work,
we prove that if there exists an integer r ∈ N such that the groups

εLr(D/M j ;Z/2n) and εLr+1(D/M j;Z/2n)

are finite,

εLr(D;Z/2n) ' lim
←−εLr(D/M j ;Z/2n)

and εLr+1(D;Z/2n) ' lim←−εLr+1(D/M j ;Z/2n),

then

εLq(D;Z/2n) ' lim
←−εLq(D/M j ;Z/2n)

for all q ≥ r.

2. Review of Known Facts

2.1. Here we recall some results obtained by using the algebraic suspension
SA of a ring A.

Definition 2.1. The cone of A, called CA, is the set of infinite matrices
such that in each row and each column, we have a finite number of non-zero
elements in A. Clearly, CA is a ring by matrix multiplication. We define
the suspension SA of A as the quotient of CA by the two-sided ideal of
finite matrices (i.e. whose entries are 0, except for a finite number). This
definition may be iterated and Sn(A) will denote the nth suspension of A.

Remark 2.2. If A is a hermitian ring, we endow SA with the following
involution

M =t M.

Theorem 2.3. [6] Let A be a unitary ring. We have a natural homotopy
equivalence

ΩBGL(SA)+ ∼ K0(A)×BGL(A)+.

The group K0(A) is endowed with the discrete topology. In particular, for
every n ≥ 1, we have

Kn(SA) ' Kn−1(A).

Theorem 2.4. [2] Let A be a hermitian ring. We have a natural homotopy
equivalence

ΩBεO(SA)+ ∼ εL0(A)×BεO(A)+.

The group εL0(A) is endowed with the discrete topology. In particular, for
every n ≥ 1, we have

εLn(SA) ' εLn−1(A).
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These theorems are used to define groups Kn and εLn for all n < 0. For
a unitary ring (resp. hermitian ring) A and n < 0, we set

Kn(A) = K0(S
−nA) (resp. εLn(A) = εL0(S

−nA)).

2.2. Let A be a hermitian ring. The hyperbolic functor [2] induces a group
homomorphism

K0(A) −→ε L0(A)

and the homomorphism

GLn(A) −→ε On,n(A)

defined by the following correspondence

M −→

(

M 0

0 tM−1

)

induces a map

BGL(A)+ −→ε O(A)+.

We denote εU(A) the homotopic fiber of the map

K0(A)×BGL(A)+ −→ε L0(A)×BεO(A)+.

Similarly, the forgetful functor [2] induces a group homomorphism

εL0(A) −→ K0(A)

and the natural inclusions

εOn,n(A) −→ GL2n(A)

induce a map

BεO(A)+ −→ BGL(A)+.

We denote εV(A) the homotopic fiber of the map

εL0(A)×BεO(A)+ −→ K0(A)×BGL(A)+.

Theorem 2.5. [3] Let A be a hermitian ring containing in its center an
element λ, such that λ + λ = 1. Then there exists a natural homotopy
equivalence between ΩεU(A) and −εV(A).

For n ≥ 0, we let

εUn(A) = πn(εU(A)) and εVn(A) = πn(εV(A)).

For n < 0 we let

εUn(A) = εU0(S
−nA) and εVn(A) = εV0(S

−nA).

For every n ∈ Z, we have

εUn+1(A) = −εVn(A).
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We also have the following long exact sequences.

· · · −→ Kn+1(A) −→ εVn(A) −→ εLn(A) −→ Kn(A) −→ εVn−1(A) −→ · · ·

· · · −→ εLn+1(A) −→ εUn(A) −→ Kn(A) −→ εLn(A) −→ εUn−1(A) −→ · · ·

3. Hermitian K-theory of Monoid Rings

Definition 3.1. Let M be a commutative monoid. M is called cancellative
if, for all a, b and c ∈M , ab = ac implies that b = c.

Definition 3.2. A monoid M is called c-divisible for some c ∈ N if, for
any x ∈M , there exists y ∈M for which cy = x.

Remark 3.3. If A is a hermitian ring. We endow A[M ] with the following
involution:

n
∑

i=0

aimi =

n
∑

i=0

aimi.

Later, Z+ will denote the additive monoid of nonnegative integers and Q+

that of nonnegative rationals.

Theorem 3.4. [1] Let A be a unitary ring and M be a commutative can-
cellative torsion free and c-divisible monoid for some c > 1. The equality

Ki(A) ' Ki(A[M ])

implies

Ki(A) ' Ki(A[M ]/AI)

where i ∈ N and I is an arbitrary proper radical ideal of M .

Theorem 3.5. [1] Let A be a regular ring, p ∈ N, and c > 1 a natural
number. Then for an intermediate c-divisible monoid Z

p
+ ⊂ M ⊂ Q

p
+, we

have the natural isomorphisms

Ki(A) ' Ki(A[M ])

where i ∈ Z.

Theorem 3.6. Let A be a hermitian regular ring containing in its center
an element λ, such that λ + λ = 1, c > 1 a natural number, and M an
intermediate c-divisible monoid Z

p
+ ⊂ M ⊂ Q

p
+. Let r ∈ Z, and suppose

that

εLr(A) ' εLr(A[M ]) and εLr+1(A) ' εLr+1(A[M ]).

Then

εLn(A) ' εLn(A[M ])

for all n ≥ r.
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Proof. For all n ∈ Z the homomorphism

A −→ A[M ]

induces the following diagrams of long exact sequences.

· · · −−−→Kn+1(A) //

��

εVn(A) //

��

εLn(A) //

��

Kn(A)

��

//
εVn−1(A)−−−→· · ·

��

· · · −−−→Kn+1(A[M ]) //
εVn(A[M ]) //

εLn(A[M ]) // Kn(A[M ]) //
εVn−1(A[M ])−−−→· · ·

· · · −−−→εLn+1(A) //

��

εUn(A) //

��

Kn(A) //

��

εLn(A)

��

//
εUn−1(A)−−−→· · ·

��

· · · −−−→εLn+1(A[M ]) //
εUn(A[M ]) // Kn(A[M ]) //

εLn(A[M ]) //
εUn−1(A[M ])−−−→· · ·

Consider the following diagram of exact sequences.

εLr+1(A) //

o

��

K
r+1(A) //

o

��

εVr(A) //

��

εLr(A) //

o

��

Kr(A)

o

��
εLr+1(A[M]) // K

r+1(A[M]) //
εVr(A[M]) //

εLr(A[M]) // Kr(A[M])

We deduce that for any ε,

εVr(A) ' εVr(A[M ])

Then we have

εUr+1(A) ' εUr+1(A[M ]).

We proceed now by induction on n. Assume that

εLn(A) ' εLn(A[M ]) and εUn(A) ' εUn(A[M ]).

The diagram of exact sequences

Kn+1(A) //

o

��

εLn+1(A) //

��

εUn(A) //

o

��

Kn(A)

o

��

Kn+1(A[M ]) //
εLn+1(A[M ]) //

εUn(A[M ]) // Kn(A[M ])

prove that the homomorphism

εLn+1(A) −→ εLn+1(A[M ])

is surjective. Consider the following diagram.

εLn+1(A) //

��

K
n+1(A) //

o

��

εVn(A) //

��

εLn(A) //

o

��

Kn(A)

o

��
εLn+1(A[M]) // K

n+1(A[M]) //
εVn(A[M]) //

εLn(A[M]) // Kn(A[M])
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We deduce that for any ε

εVn(A) ' εVn(A[M ]).

Consequently, we have

εUn+1(A) ' εUn+1(A[M ]).

Finally, consider the diagram of exact sequences.

εUn+1(A) //

o

��

K
n+1(A) //

o

��

εLn+1(A) //

��

εUn(A) //

o

��

Kn(A)

o

��
εUn+1(A[M]) // K

n+1(A[M]) //
εLn+1(A[M]) //

εUn(A[M]) // Kn(A[M])

It follows that

εLn+1(A) ' εLn+1(A[M ]).

The theorem follows. �

Theorem 3.7. Let F be a field of characteristic different from 2 provided
with the trivial involution, M an intermediate c-divisible monoid Z

p
+ ⊂

M ⊂ Q
p
+, and J a proper ideal of M such that F.J is maximal in F [M ],

and the field F [M ] F.J has a characteristic different from 2. If

1L0(F ) ' 1L0(F [M ]/F.J) and 1L1(F ) ' 1L1(F [M ]/F.J),

then

εLn(F ) ' εLn(F [M ]/F.J)

for all n ≥ 0 and ε = ±1.

Proof. Since

Kn(F ) ' Kn(F [M ])

we have, according to Theorem 3.4, an isomorphism

Kn(F ) ' Kn(F [M ]/F.J)

for all n ∈ N. On the other hand, we have

−1L0(F ) ' Z ' −1L0(F [M ]/F.J) (see [2], p. 6)

−1L1(F ) = −1L1(F [M ]/F.J) = 0 (see [2], p. 96)

Then we prove the result by proceeding as in Theorem 3.6. �
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4. Hermitian K-theory with Coefficients of the Ring of

Integers in a Finite Extension of Q2

Let X be a topological space. For n ≥ 2, πn(X ;Z/l) will denote the nth
homotopy group of X with coefficients in Z/l.

Definition 4.1. Let A be a unitary (resp. hermitian) ring. For all n ≥ 2,
we let

Kn(A;Z/l) = πn(BGL(A)+;Z/l) (resp. εLn(A;Z/l) = πn(BεO(A)+;Z/l)).

For n < 2, we let

Kn(A;Z/l) = K2(S
2−nA;Z/l) (resp. εLn(A;Z/l) =ε L2(S

2−nA;Z/l)).

Definition 4.2. Let A be a hermitian ring. For n ≥ 2, we let

εUn(A;Z/l) = πn(εU(A);Z/l) and εVn(A;Z/l) = πn(εV(A);Z/l).

For n < 2, we let

εUn(A;Z/l) =ε U2(S
2−nA;Z/l) and εVn(A;Z/l) =ε V2(S

2−nA;Z/l).

Note that for all n ∈ Z, we have

εUn(SA;Z/l) 'ε Un−1(A;Z/l), εVn(SA;Z/l) 'ε Vn−1(A;Z/l)

and

εUn+1(A;Z/l) '−ε Vn(A;Z/l).

We also have the following long exact sequences.

· · · −→ K
n+1(A; Z/l) −→ εVn(A; Z/l) −→ εLn(A; Z/l) −→ Kn(A; Z/l) −→ εVn−1(A; Z/l) −→ · · ·

· · · −→ εLn+1(A; Z/l) −→ εUn(A; Z/l) −→ Kn(A; Z/l) −→ εLn(A; Z/l) −→ε U
n−1(A; Z/l) −→ · · ·

Theorem 4.3. [5] Let p be a prime integer and K/Qp a finite field exten-
sion. Let D ⊂ K be the ring of integers in K, and M its maximal ideal.
Then for all r ≥ 0 and n ≥ 1, we have the following statements.

1. The group Kr(D/M j ;Z/pn) is finite for all j ∈ N.
2. The natural homomorphism

Kr(D;Z/pn) −→ lim←−Kr(D/M j ;Z/pn)

is an isomorphism.
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Theorem 4.4. Let K/Q2 be a finite field extension with involution. Let
D ⊂ K be the ring of integers in K containing in its center an element
λ, such that λ + λ = 1, and M its maximal ideal such that D and M are
invariant by the involution. Suppose that there exists r ∈ N such that the
groups εLr(D/M j ;Z/2n) and εLr+1(D/M j ;Z/2n) are finite, ε = ±1, and
j ∈ N. Then for all q ≥ r, the groups εUq(D/M j ;Z/2n), εVq(D/M j ;Z/2n)
and εLq(D/M j;Z/2n) are finite.

Proof. Consider the following exact sequence.

εLr+1(D/M j ;Z/2n)
α′

r+1

−→ εUr(D/M j ;Z/2n)
αr

−→Kr(D/M j ;Z/2n).

We also have

|εUr(D/M j;Z/2n)| = |kerαr||Imαr|

= |Imα′

r+1||Imαr|.

Since the groups εLr+1(D/M j ;Z/2n) and Kr(D/M j ;Z/2n) are finite, the
group εUr(D/M j ;Z/2n) is finite.

We proceed now by induction on q. Assume that εLq(D/M j;Z/2n) is
finite. The following exact sequence

Kq+1(D/M j ;Z/2n) −→ε Vq(D/M j ;Z/2n) −→ε Lq(D/M j;Z/2n)

proves that for any ε the group εVq(D/M j ;Z/2n) is finite. Hence for any
ε, the group εUq+1(D/M j ;Z/2n) is also finite. Finally, consider the exact
sequence

Kq+2(D/M j;Z/2n) −→ε Lq+2(D/M j ;Z/2n) −→ε Uq+1(D/M j ;Z/2n).

It follows that the group εLq+2(D/M j;Z/2n) is finite. The theorem follows.
�

Theorem 4.5. Under the conditions of Theorem 4.4, assume moreover
that

εLr(D;Z/2n) ' lim←−εLr(D/M j ;Z/2n)

and εLr+1(D;Z/2n) ' lim←−εLr+1(D/M j ;Z/2n).

Then

εLq(D;Z/2n) ' lim
←−εLq(D/M j ;Z/2n)

for all q ≥ r.

Proof. Since for all j ∈ N and q ≥ r, the groups εUq(D/M j;Z/2n),

εVq(D/M j ;Z/2n), Kq(D/M j ;Z/2n), and εLq(D/M j ;Z/2n) are finite, then
the following long sequences
· · · −→ lim

←−
Kr+1(D/M j;Z/2n) −→ lim

←−εVr(D/M j;Z/2n) −→ lim
←−εLr(D/M j ;Z/2n) −→ lim

←−
Kr(D/M j ;Z/2n)
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· · · −→ lim
←−εLr+1(D/M j ;Z/2n) −→ lim

←−εUr(D/M j ;Z/2n) −→ lim
←−

Kr(D/M j ;Z/2n) −→ lim
←−εLr(D/M j ;Z/2n).

are exact. �

The proof of this theorem is completely analogous to that of Theo-
rem 3.6. We only have to replace Kn(A), εLn(A), . . ., by Kn(D;Z/2n),

εLn(D;Z/2n), and Kn(A[M ]), εLn(A[M ]), . . ., by lim←−Kn(D/M j ;Z/2n),

and lim←−εLn(D/M j ;Z/2n).

Remark 4.6. The same statements of Theorem 4.4 and 4.5 are true for
odd prime p, but the case p = 2 is more interesting. The case p odd is
an immediate consequence of the periodicity theorem for odd torsion of the
Witt groups [4].
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