ON GENERALIZED SIMULTANEOUS NEAREST POINT IN NORMED SPACES

M. RAWASHDEH, SH. AL-SHARIF, AND S. KHALIL

ABSTRACT. In this paper, we study the problem of generalized simultaneous approximation in terms of the Minkowski functional. We develop a theory of generalized best simultaneous approximation in quotient spaces and introduce equivalent assertions between the subspaces W and W + M and the quotient space W/M. Some other results regarding generalized simultaneous approximation in Banach space are presented.

1. INTRODUCTION

Let G be a subspace of the normed space X and $x \in X$. A point $g_0 \in G$ is said to be a best approximation to x from G, whenever

$$||x - g_0|| = \inf_{g \in G} ||x - g|| = d(x, G).$$

The set of all best approximations to x from G is denoted by $P_G(x)$. The set G is called proximinal if $P_G(x) \neq \phi$ for all $x \in X - G$, see [1, 4, 9]. If a bounded set A is given in X one might want to approximate all elements of A simultaneously by a single element of G. These type of problems arise when a function being approximated is not known precisely but it is known to belong to a set. Several mathematicians have studied this problem of simultaneous approximation in linear spaces see [5, 8]. A point $g_0 \in G$ is called a best simultaneous approximation to A from G, whenever

$$\sup_{a \in A} \|a - g_0\| = \inf_{g \in G} \sup_{a \in A} \|a - g\| = d(A, G).$$

The set of all best simultaneous approximations to A from G is denoted by $P_G(A)$. The set G is called simultaneously proximinal if $P_G(A) \neq \phi$ for all bounded subsets of X - G. By taking the set A to be $\{x\}$, the problem of best simultaneous approximation is considered as a generalization of best approximation.

For a closed bounded convex subset C of X with $0 \in int(C)$, recall that the Minkowski functional $\rho_c \colon X \to \mathbb{R}$ with respect to the set C is defined by

$$o_c(x) = \inf \left\{ \alpha > 0 : x \in \alpha C \right\}$$

MISSOURI J. OF MATH. SCI., FALL 2013

M. RAWASHDEH, SH. AL-SHARIF, AND S. KHALIL

for all $x \in X$. For a closed non-empty subset G of X and $x \in X$, define the generalized distance function by

$$d_c(x,G) = \inf_{g \in G} \rho_c \left(x - g \right).$$

A point $g_0 \in G$ with $d_c(x, G) = \rho_c(x - g_0)$ is called a generalized nearest point (generalized best approximation) [13]. For a non-empty bounded subset A of X and a non-empty subset G of X, we define

$$d_c(A,G) = \inf_{g \in G} \sup_{a \in A} \rho_c \left(a - g\right).$$

If there exists an element $g_0 \in G$ such that $\sup_{a \in A} \rho_c (a - g_0) = d_c(A, G)$, then

 g_0 is called a best simultaneous ρ_c -approximation to A from G. The set of all simultaneous ρ_c -approximations to A from G is denoted by

$$P_{G,C}(A) = \left\{ g \in G : d_c(A,G) = \sup_{a \in A} \rho_c \left(a - g\right) \right\}.$$

We say that G is simultaneously ρ_c -proximinal if for every bounded subset A of X, $P_{G,C}(A) \neq \phi$ and simultaneously ρ_c -Chebyshev if $P_{G,C}(A)$ is singleton.

In this paper we study the problem of best simultaneous ρ_c -approximation in terms of the Minkowski functional. Some results on quotient space and on simultaneous ρ_c -approximation of the sum of two subspaces are obtained by generalizing some of the results in [5, 12].

Throughout this paper, X is a normed space and C is a closed bounded convex subset of X.

2. P_C -Simultaneous Approximation in quotient Space

In this section we begin with the following proposition.

Proposition 1 ([13, Proposition 2.1]).

(1)
$$\rho_c(x) \ge 0$$
 and $\rho_c(x) = 0 \Leftrightarrow x = 0$.
(2) $\rho_c(x+y) \le \rho_c(x) + \rho_c(y)$.
(3) $-\rho_c(y-x) \le \rho_c(x) - \rho_c(y) \le \rho_c(x-y)$.
(4) $\rho_c(\lambda x) \ge \lambda \ \rho_c(x), \lambda \ge 0$.
(5) $\rho_c(-x) = \rho_{-c}(x)$.
(6) $\rho_c(x) = 1 \Leftrightarrow x \in \partial C$.
(7) $\rho_c(x) < 1 \Leftrightarrow x \in int(C)$.
(8) $\alpha ||x|| \le \rho_c(x) \le \beta ||x||$, where $\alpha = \inf_{x \in \partial C} \rho_c(x)$ and $\beta = \sup_{a \in C} \rho_c(x)$.

Now we show some properties of the ρ_c -distance function and the set of ρ_c -best simultaneous approximations.

MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2

Proposition 2. Let G be a subspace of X and $A \subseteq X$ be a bounded subset of X. Then:

- (1) $P_{G,C}(A)$ is bounded.
- (2) If G is convex then, $P_{G,C}(A)$ is convex.
- (3) If G is closed then, $P_{G,C}(A)$ is closed.
- (4) $d_c (A + y, G + y) = d_c (A, G).$
- (5) $P_{G+y,C}(A+y) = P_{G,C}(A) + y.$
- (6) $P_{\lambda G,C}(\lambda A) = |\lambda| P_{G,C}(A).$

Proof.

(1) Let $g_0 \in P_{G,C}(A)$. Then for $a \in A$, the inequality

$$\rho_c(g_0) \le \rho_c(a - g_0) + \rho_c(a),$$

implies that

$$\rho_c(g_0) \leq \sup_{a \in A} \rho_c(a - g_0) + \sup_{a \in A} \rho_c(a)$$
$$= d_c(A, G) + \sup_{a \in A} \rho_c(a).$$

(2) Let $g_1, g_2 \in P_{G,C}(A)$. Then for $0 < \lambda < 1$,

$$\sup_{a \in A} \rho_c \left(a - \left(\lambda g_1 + (1 - \lambda) g_2 \right) \right)$$

$$\leq \lambda \sup_{a \in A} \rho_c \left(a - g_1 \right) + (1 - \lambda) \sup_{a \in A} \rho_c \left(a - g_2 \right)$$

$$= \lambda d_c(A, G) + (1 - \lambda) d_c(A, G) = d_c(A, G).$$

(3) Let $g_n \in P_{G,C}(A)$ such that $g_n \to g_0$. Then

$$\sup_{a \in A} \rho_c \left(a - g_n \right) = d_c(A, G).$$

By continuity of ρ_c , we have $\sup_{a \in A} \rho_c(a - g_0) = d_c(A, G)$. Thus $g_0 \in P_{G,C}(A)$. (4)

$$\begin{aligned} d_c \left(A+y, G+y\right) &= \inf_{g \in G} \sup_{a+y \in (A+y)} \rho_c \left((a+y) - (g+y)\right) \\ &= \inf_{g \in G} \sup_{a \in A} \rho_c \left(a-g\right) = d_c \left(A, G\right). \end{aligned}$$

Similarly, we can show that

$$d_{\lambda G}(\lambda A) = |\lambda| \ d_G(A).$$

MISSOURI J. OF MATH. SCI., FALL 2013

(5) Let

$$g_{0} + y \in P_{G+y,C}(A + y)$$

$$\Leftrightarrow d_{c} (A + y, G + y) = \sup_{a \in A} \rho_{c} ((a + y) - (g_{0} + y))$$

$$= \sup_{a \in A} \rho_{c} (a - g_{0})$$

$$= \inf_{g \in G} \sup_{a \in A} \rho_{c} (a - g)$$

$$\Leftrightarrow g_{0} \in P_{G,C}(A)$$

$$\Leftrightarrow g_{0} + y \in P_{G,C}(A) + y.$$

(6) Similarly, we can show that $P_{\lambda G,C}(\lambda A) = |\lambda| P_{G,C}(A)$.

Lemma 3. Let X be a normed space and M is a ρ_c -proximinal subspace of X. Then for each non-empty bounded set A in X, $d_c(A, M) = \sup_{a \in A} \inf_{m \in M} \rho_c(a-m)$.

Proof. Since M is ρ_c -proximinal, for each $a \in A$, there exists $m_a \in M$ such that

$$\rho_c \left(a - m_a \right) = \inf_{m \in M} \rho_c \left(a - m \right).$$

Now,

$$d_{c}(A, M) = \inf_{m \in M} \sup_{a \in A} \rho_{c}(a - m)$$

$$\leq \sup_{a \in A} \rho_{c}(a - m_{a})$$

$$= \sup_{a \in A} \inf_{m \in M} \rho_{c}(a - m)$$

$$\leq \inf_{m \in M} \sup_{a \in A} \rho_{c}(a - m)$$

$$= d_{c}(A, M).$$

This implies $d_c(A, M) = \sup_{a \in A} \inf_{m \in M} \rho_c(a - m).$

Let M be a subspace of a normed space X. The quotient space X/M is the set of all cosets x + M with the following operations:

(1) (x+M) + (y+M) = (x+y) + M.

(2) $\lambda(x+M) = \lambda x + M$ for every x, y and an arbitrary λ .

For the ρ_c -Minkowski functional on X, we define a function $\widetilde{\rho_c} \colon X/M \to \mathbb{R}$ such that

$$\widetilde{\rho_c}\left(x+M\right) = \inf_{m \in M} \rho_c\left(x+m\right).$$

MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2

Theorem 4. Let M be a ρ_c -proximinal subspace of X, and $M \subseteq W$ be a subspace of X. If A is a bounded set in X and $w_o \in P_{W,C}(A)$, then $w_o + M \in P_{W/M,C}(A/M)$.

Proof. Since A is a bounded set in X, A/M is bounded in X/M. In fact,

$$\begin{aligned} \|a+M\| &= \inf_{m \in M} \|a+m\| \\ &\leq \|a\| < \infty. \end{aligned}$$

Assume that $w_{\circ} \in P_{W,C}(A)$ and that $w_{\circ} + M \notin P_{W/M,C}(A/M)$. This means, there exists $w' \in W$ such that

$$\sup_{a \in A} \widetilde{\rho_c}(a - w' + M) < \sup_{a \in A} \widetilde{\rho_c}(a - w_0 + M)$$

$$= \sup_{a \in A} \inf_{m \in M} \rho_c(a - w_0 + m)$$

$$= \inf_{m \in M} \sup_{a \in A} \rho_c(a - w_0 + m)$$

$$\leq \sup_{a \in A} \rho_c(a - w_0) = d_c(A, W).$$
(1)

On the other hand, for each $a \in A$ we have

$$\widetilde{\rho_c}(a - w' + M) = \inf_{m \in M} \rho_c(a - w' - m).$$

It follows that for each $\epsilon > 0$ and $a \in A$ there exists $m_a \in M$ such that

$$\rho_c(a - w' - m_a) \le \widetilde{\rho_c}(a - w' + M) + \epsilon$$

Since $w' + m_a \in W$, we conclude that

$$d_c(A, W) \le \sup_{a \in A} \rho_c(a - (w' + m_a)) \le \sup_{a \in A} \widetilde{\rho_c}(a - w' + M) + \epsilon.$$

Thus, since ϵ is arbitrary

$$d_c(A, W) \le \sup_{a \in A} \widetilde{\rho_c}(a - w' + M).$$
(2)

From (1) and (2) we have

$$d_c(A, W) \le \sup_{a \in A} \rho_c(a - w' + M) < d_c(A, W),$$

which is impossible.

Proposition 5. Let M be a ρ_c -proximinal subspace of X, and $W \supset M$ a subspace of X. If A is bounded subset of X such that

$$w_{\circ} + M \in P_{W/M,C}(A/M)$$
 and $m_{\circ} \in P_{M,C}(A - w_{\circ})$

then $w_{\circ} + m_{\circ} \in P_{W,C}(A)$.

MISSOURI J. OF MATH. SCI., FALL 2013

171

M. RAWASHDEH, SH. AL-SHARIF, AND S. KHALIL

Proof. Since $m_{\circ} \in P_{M,C}(A - w_{\circ})$, then

$$\sup_{a \in A} \rho_c(a - w_\circ - m_\circ) = \inf_{m \in M} \sup_{a \in A} \rho_c(a - w_\circ - m)$$

$$= \sup_{a \in A} \inf_{m \in M} \rho_c(a - w_\circ - m) \quad \text{(using Lemma 3)}$$

$$= \sup_{a \in A} \widetilde{\rho_c}(a - w_\circ + M)$$

$$\leq \sup_{a \in A} \widetilde{\rho_c}(a - w + M) \text{ for all } w \in W$$

$$\leq \sup_{a \in A} \rho_c(a - w) \text{ for all } w \in W.$$

Hence,

$$\sup_{a \in A} \rho_c(a - (w_{\circ} + m_{\circ})) \le \sup_{a \in A} \rho_c(a - w), \text{ for all } w \in W.$$

Since $w_{\circ} + m_{\circ} \in W$, we conclude that $w_{\circ} + m_{\circ} \in P_{W,C}(A)$.

Theorem 6. Let M be a ρ_c -proximinal subspace of $X, M \subseteq W$ and W is ρ_c -simultaneously proximinal subspace of X. Then for each bounded subset A of X, we have $\pi(P_{W,C}(A)) = P_{W/M,C}(A/M)$. Note here π is the canonical map defined by: $\pi: X \to X/M$ by $\pi(x) = x + M$.

Proof. First, note that

$$\pi\left(P_{W,C}(A)\right) \subseteq P_{W/M,C}(A/M)$$

and W/M is ρ_c -simultaneously proximinal. Now let

$$w_0 + M \in P_{W/M,C}(A/M),$$

where $w_0 \in W$. Since M simultaneously proximinal, there exists $m_0 \in M$ such that $m_0 \in P_{M,C}(A - w_0)$. Hence, $w_0 + m_0 \in P_{W,C}(A)$. Therefore, $w_0 + M \in \pi \ (P_{W,C}(A))$.

Theorem 7. Let W and M be two subspaces of X. If M is simultaneously ρ_c -proximinal, then the following assertions are equivalent.

- (1) W/M is simultaneously ρ_c -proximinal in X/M.
- (2) W + M is simultaneously ρ_c -proximinal in X.

Proof. (1) \Rightarrow (2) Let A be an arbitrary bounded set in X. Then we have A/M is bounded set in X/M. Since (W + M)/M = W/M and M are ρ_c -simultaneously proximinal, it follows that there exists $w_{\circ} + M \in (W + M)/M$ and $m_{\circ} \in M$ such that

$$w_{\circ} + M \in P_{(W+M)/M,C}(A/M)$$
 and $m_{\circ} \in P_{M,C}(A - w_{\circ})$

Hence, $w_{\circ} + m_{\circ} \in P_{W+M,C}(A)$. This shows that W+M is ρ_c -simultaneously proximinal in X.

MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2

SIMULTANEOUS NEAREST POINT IN NORMED SPACES

 $(2) \Rightarrow (1)$ Since W+M is simultaneously ρ_c -proximinal and $M \subseteq W+M$, then (W+M)/M = W/M is simultaneously ρ_c -proximinal.

3. Chebyshev and Quasi Chebyshev ρ_c -Simultaneous Approximation.

Definition 8. A closed subset W of X is called ρ_c -simultaneously quasi-Chebyshev if the set $P_{W,C}(A)$ is non-empty and compact in X for every bounded set A in X.

Theorem 9. Let W and M be a subspace of X. If M is ρ_c -simultaneously Chebyshev, then the following assertions are equivalent.

- (1) W/M is ρ_c -simultaneously Chebyshev in X/M.
- (2) W + M is ρ_c -simultaneously Chebyshev in X.

Proof. (1) \Rightarrow (2) By hypothesis (W + M)/M = W/M is ρ_c -simultaneously Chebyshev. Assume that (2) is not true. Then some bounded subset A of X has two distinct ρ_c -simultaneous best approximation say ℓ_{\circ} and ℓ_1 in W + M. Thus, we have ℓ_{\circ} and $\ell_1 \in P_{W+M,C}(A)$. Since $M \subseteq W + M$, it follows that

$$\ell_{\circ} + M$$
 and $\ell_{1} + M \in P_{(W+M)/M,C}(A/M) = P_{W/M,C}(A/M).$

But W/M is ρ_c -simultaneously Chebyshev, and so $\ell_{\circ} + M = \ell_1 + M$. Then there exists $m_{\circ} \in M \setminus \{0\}$ such that $\ell_1 = \ell_{\circ} + m_{\circ}$. Thus,

$$\sup_{a \in A} \rho_c((a - \ell_\circ) - m_\circ) = \sup_{a \in A} \rho_c(a - \ell_1)$$
$$= \inf_{m \in M} \sup_{a \in A} \rho_c((a - \ell_\circ) - m)$$
$$= d_c(A - \ell_0, M).$$

So this shows that both m_{\circ} and 0 are ρ_c -simultaneous best approximation to $A - \ell_{\circ}$ from M. Hence, M is not ρ_c -simultaneously Chebyshev. This is a contradiction.

 $(2) \Rightarrow (1)$ Assume that (1) does not hold. Then for some bounded subset A of X, A/M has two distinct ρ_c -simultaneous best approximation, say w + M and $w' + M \in W/M$. Thus, $w - w' \notin M$. Since M is ρ_c simultaneously proximinal, there exist ρ_c -simultaneous best approximation m and m' to A - w and A - w' from M, respectively. Therefore, we have

$$m \in P_{M,C}(A-w)$$
 and $m' \in P_{M,C}(A-w')$.

Since $M \subseteq W + M$ and

$$w + M, w' + M \in P_{W/M,C}(A/M) = P_{(W+M)/M,C}(A/M),$$

MISSOURI J. OF MATH. SCI., FALL 2013

then by Proposition 5, it follows that w + m and $w' + m' \in P_{W+M,C}(A)$. But, W + M is ρ_c -simultaneously Chebyshev. Thus, w + m = w' + m' and $w - w' \in M$. This is a contradiction.

Theorem 10. Let M and W be two subspaces of X. If M is finite dimensional, then the following assertions are equivalent.

- (1) W/X is ρ_c -simultaneously quasi-Chebyshev in X/M.
- (2) W + M is ρ_c -simultaneously quasi-Chebyshev in X.

Proof. (1) ⇒ (2) Suppose that (W+M)/M is ρ_c -simultaneously proximinal in X/M. Since M is also ρ_c -simultaneously proximinal, W + M is ρ_c simultaneously proximinal in X. Let A be an arbitrary bounded set in X. Then $P_{W+M,C}(A) \neq \phi$. Now to show that $P_{W+M,C}(A)$ is compact, we need to show that every sequence in $P_{W+M,C}(A)$ has a convergent subsequence. Let $\{g_n\}_{n=1}^{\infty}$ be an arbitrary sequence in $P_{W+M,C}(A)$. Then for each $n \geq 1$ by Theorem (4), $g_n + M \in P_{(W+M)/M,C}(A/M)$. Since $P_{(W+M)/M,C}(A/M)$ is compact, there exists $g_0 \in W + M$ with $g_0 + M \in P_{(W+M)/M,C}(A/M)$ and a subsequence $\{g_{n_k} + M\}_{k=1}^{\infty}$ of $\{g_n + M\}_{n=1}^{\infty}$ converges to $g_0 + M$. Now, for all $k \geq 1$, we have

$$\widetilde{\rho_c} \left(g_0 - g_{n_k} + M \right) = \inf_{m \in M} \rho_c \left(g_0 - g_{n_k} - m \right)$$
$$= d_c \left(g_0 - g_{n_k}, M \right), \text{ for all } k \ge 1$$

Since M is ρ_c -proximinal in X, then for each $k \ge 1$, there exists $m_{n_k} \in M$ such that $m_{n_k} \in P_{M,C}(g_0 - g_{n_k})$, and hence,

$$\rho_c \left(g_0 - g_{n_k} - m_{n_k} \right) = d_c \left(g_0 - g_{n_k}, M \right).$$

Therefore, $\lim_{k \to \infty} \rho_c \left(g_0 - g_{n_k} - m_{n_k} \right) = 0.$

ĥ

On the other hand, $\{g_{n_k}\}_{k=1}^{\infty}$ is a bounded sequence because

$$g_n \in P_{W+M,C}(A).$$

Thus, we have $\{m_{n_k}\}_{k=1}^{\infty}$ is a bounded sequence in M. Moreover, M is a finite dimensional subspace of X. It follows that $\{m_{n_k}\}_{k=1}^{\infty}$ converges to an element $m_0 \in M$. Let $g' = g_0 - m_0$. Then $g' \in W + M$ and using Proposition 1 part 8 we have

$$p_c (m_{n_k} - m_0) \le \beta \|m_{n_k} - m_0\| \to 0.$$

This implies

$$\rho_c \left(m_{n_k} - m_0 \right) \to 0.$$

Consequently;

$$\rho_c \left(g' - g_{n_k} \right) = \rho_c \left(g_0 - m_0 - g_{n_k} \right)$$

$$\leq \rho_c \left(g_0 - g_{n_k} - m_{n_k} \right) + \rho_c \left(m_{n_k} - m_0 \right), \text{ for all } k \ge 1.$$

MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2

Thus,

$$\lim_{k \to \infty} \rho_c \left(g' - g_{n_k} \right) = 0$$

Since $\{g_{n_k}\}_{k=1}^{\infty} \in P_{W+M,C}(A)$, for all $k \geq 1$, and $P_{W+M,C}(A)$ is closed, we conclude that $g' \in P_{W+M,C}(A)$. Hence, $P_{W+M,C}(A)$ is compact.

(2) \Rightarrow (1) Since M and W + M are ρ_c -simultaneously proximinal and $M \subseteq W + M$, then (W + M)/M = W/M is ρ_c -simultaneously proximinal in X/M.

Now, let A be an arbitrary bounded set in X. Then $P_{W/M,C}(A/M)$ is non-empty. So from the hypothesis we have W + M is ρ_c -simultaneously quasi Chebyshev in X, and hence $P_{W+M,C}(A)$ is compact in X. But we have

$$P_{(W+M)/M,C}(A/M) = \pi (P_{W+M,C}(A)).$$

It follows that $P_{W/M,C}(A/M)$ is compact. Therefore, W/M is ρ_c -simultaneously quasi Chebyshev in X.

4. CONCLUSION

The study of minimal time function $d_c(\cdot, G)$, $d_c(x, G) = \inf_{g \in G} \rho_c(x - g)$ is motivated by its own worldwide applications in many areas of variation analysis, control theory, approximation theory, etc., and has received a lot of attention, see e.g. [13, 3, 6, 7].

In this paper, our interest is to focus on the following minimization problem:

$$\min_{g\in G} \max_{a\in A} \rho_c \left(a-g\right),$$

where A is a bounded set in X. Any solution to this problem min $\max(A, G)$ is called a best simultaneous approximation or (generalized best simultaneous approximation) to A from G.

We proved our results using the same techniques of the author in [5, 9, 12] but replacing the norm by the Minkowski functional ρ_c . We define the function $\tilde{\rho_c}: X/M \to \mathbb{R}$, by $\tilde{\rho_c}(x+M) = \inf_{m \in M} \rho_c(x+m)$. We use this function in Theorems 4, 6, 7, 9, and 10 replacing the norm of the coset x + M in X/M.

Note that in the special case when C is the closed unit ball, the minimal time function $d_c(x, G)$ and the corresponding minimization problem $\min_{g \in G} \rho_c(x-g)$ are reduced to the distance function $d(x, G) = \inf_{g \in G} ||x = g||$ and to the classical best approximation. This means, the existence results in [5, 9, 12] is a special case of our results in the sense that the set C is taken to be the closed unit ball.

MISSOURI J. OF MATH. SCI., FALL 2013

M. RAWASHDEH, SH. AL-SHARIF, AND S. KHALIL

Acknowledgement

This research was supported by the Deanship of Research (DR) at Jordan University of Science and Technology (JUST) (No. 2012-114).

References

- E. W. Cheney and D. E. Wulbert, Existence and unicity of best approximations, Mathematics Scandinavi, 24 (1969), 113–140.
- [2] L. Chong and G. A. Watson, On best simultaneous approximation, J. Approx. Theory, 91 (1997), 332–348.
- [3] F. S. De Blasi and J. Myjak, On a generalized best approximation problem, J. of Approx. Theory, 94 (1998), 54–72.
- [4] M. Feder, On the sum of proximinal subspaces, J. of App. Theory, 49 (1987), 144– 148.
- [5] M. Iranmanesh and H. Mohebi, On best simultaneous approximation in quotient spaces, Analy. Theory and Appl., 23.1 (2007), 35–49.
- [6] C. Li, On well posed generalized best approximation problems, J. Approx. Theory, 107 (2000), 96–108.
- [7] C. Li and R. X. Ni, Derivatives of generalized distance functions and existence of generalized nearest points, J. Approx. Theory, 115 (2002), 44–55.
- [8] P. D. Milman, On best simultaneous approximation in normed linear spaces, J. Approx. Theory, 20 (1977), 223–238.
- H. Mohebi, On quasi-Chebyshev subspaces of Banach spaces, J. Approx. Theory, 107 (2000), 87–95.
- [10] H. Mohebi, On pseudo-Chebyshev subspaces in normed linear spaces, Math. Sci. Res. Hot-Line, 5.10 (2001), 31–42.
- [11] H. Mohebi and H. Radjavi, On compactness of the best approximant set, Journal of Natural Geometry, 21 (2002), 51–62.
- [12] H. Mohebi and Sh. Rezapour, On sum and quotient of quasi-Chebyshev subspaces in Banach spaces, Analy. Theory and Appl. 19.3 (2003), 266–272.
- [13] N. Renxing, Existence of generalized nearest points, Taiwanese Journal of Mathematics, 7.1 (2003), 115–128.

MSC2010: 41A65, 41A50

Key words and phrases: Generalized nearest point, Normed spaces, Simultaneous approximation

DEPARTMENT OF MATHEMATICS AND STATISTICS, JORDAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, 22110, IRBED, JORDAN

 $E\text{-}mail\ address:\ \texttt{msalrawashdeh@just.edu.jo}$

Department of Mathematics, Yarmouk University, Irbed, Jordan $E\text{-}mail \ address: sharifa@yu.edu.jo$

Department of Mathematics and Statistics, Jordan University of Science and Technology, 22110, Irbed, Jordan

E-mail address: sara2004meq@yahoo.com

MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2