ON WILLIAMS NUMBERS WITH THREE PRIME FACTORS

IBRAHIM AL-RASASI AND NEJIB GHANMI

Abstract

Let $a \in \mathbb{Z} \backslash\{0\}$. A positive squarefree integer N is said to be an a-Korselt number (K_{a}-number, for short) if $N \neq a$ and $p-a$ divides $N-a$ for each prime divisor p of N. By an a-Williams number (W_{a}-number, for short) we mean a positive integer which is both an a-Korselt number and ($-a$)-Korselt number.

This paper proves that for each a there are only finitely many W_{a} numbers with exactly three prime factors, as conjectured in 2010 by Bouallegue-Echi-Pinch.

1. Introduction

We start by defining Korselt numbers.
Definition 1.1. Let $a \in \mathbb{Z} \backslash\{0\}$. A positive squarefree integer N is said to be an a-Korselt number (K_{a}-number, for short) if $N \neq a$ and $p-a$ divides $N-a$ for each prime divisor p of N.

For example, 6 is a 4 -Korselt number and $231=3 * 7 * 11$ is a (-9)-Korselt number.

It's clear from the definition that if N is an a-Korselt number, then a cannot be equal to any p dividing N.

Korselt numbers were introduced by Echi [3] as a natural generalization of Carmichael numbers which are exactly K_{1}-numbers and characterized by Korselt by the following criterion.

Korselt's criterion ([6], [2, p. 133]): A composite odd number n is a Carmichael number if and only if n is squarefree and $p-1$ divides $n-1$ for every prime p dividing n.

Korselt numbers were then further investigated in [1], 3] and [4]. In [7], Williams investigated Carmichael numbers N such that $p+1$ divides $N+1$ for each prime p dividing N. This motivates Echi 3] to introduce the following type of numbers.

Definition 1.2. Let $a \in \mathbb{Z} \backslash\{0\}$ and N be a squarefree composite number. We say that N is an a-Williams number (W_{a}-number, for short) if N is both an a-Korselt number and $(-a)$-Korselt number.

For example, $231=3 * 7 * 11$ is a 9 -Williams number.
It is not known whether there are $k \geq 3$ and a such that there are infinitely many K_{a}-numbers with k prime factors, or such that there are infinitely many W_{a}-numbers with k prime factors.

Echi conjectured in [1] and [3] that for each a, there exist infinitely many K_{a}-numbers with $k \geq 3$ prime factors and proved that for each a, there exist only finitely many K_{a}-numbers with exactly two prime factors.

Also, Echi conjectured in [1] that there exist only finitely many $W_{a^{-}}$ numbers with $k \geq 3$ prime factors. More precisely, Echi claims that N is a W_{a}-number with k prime factors if and only if $k=3, a=3 p$, and $N=p(3 p-2)(3 p+2)$ where $p,(3 p-2)$, and $(3 p+2)$ are all primes.

In this paper we prove that for each a there are only finitely many $W_{a^{-}}$ numbers with three prime factors.

We start by fixing some notations for the following sections. Let $a \in$ $\mathbb{Z}-\{0\}$ and $1=p_{0}<p_{1}<\cdots<p_{d}, d \geq 2$ such that the p_{i} 's are primes for each $i \in\{1,2, \ldots, d\}$ and $N=p_{1} p_{2} \cdots p_{d}$ is a K_{a}-number. Set $q=p_{d-1}$, $r=p_{d}$, and

$$
P= \begin{cases}\prod_{i=1}^{d-2} p_{i}, & \text { if } \quad d \geq 3 \\ 1, & \text { if } \quad d=2\end{cases}
$$

Our overall strategy is to derive upper bounds for N in terms of a and P. In this study several cases are discussed and the cases $a<0$ and $a>0$ are handled separately.

2. Some Properties Of K_{a}-Numbers

In this section, we prove some relations between the divisors of N and we establish some inequalities which are useful in Section 3.

We suppose in this section that $\operatorname{gcd}(a, q)=\operatorname{gcd}(a, r)=1$.
Proposition 2.1. There exist integers α and β such that

$$
\left\{\begin{array}{l}
P q-1=\alpha(r-a) \\
\operatorname{Pr}-1=\beta(q-a)
\end{array}\right.
$$

Proof. As N is a K_{a}-number, then for each $i, p_{i}-a$ divides $N-a=$ $N-p_{i}+p_{i}-a=p_{i}\left(\frac{N}{p_{i}}-1\right)+p_{i}-a$. If $\operatorname{gcd}\left(p_{i}, p_{i}-a\right)=1$, then N is a K_{a}-number is equivalent to $p_{i}-a$ divides $\frac{N}{p_{i}}-1$.

N. GHANMI AND I. AL-RASASI

Since $\operatorname{gcd}(q, a)=\operatorname{gcd}(r, a)=1, q-a$ divides $\operatorname{Pr}-1$ and $r-a$ divides $P q-1$. Therefore, there exist a nonzero integers α and β such that

$$
\left\{\begin{array}{l}
P q-1=\alpha(r-a) \tag{1}\\
\operatorname{Pr}-1=\beta(q-a)
\end{array}\right.
$$

Let $\Delta=\alpha \beta-P^{2}$. Then we have the following proposition.
Proposition 2.2.
(1) $\Delta=0$ if and only if $P=1, \alpha=\beta=-1$, and so $q+r=a+1$.
(2) If $\Delta \neq 0$, then

$$
q=\frac{(a P-1)(P+\alpha)}{\Delta}+a
$$

and

$$
r=\frac{(a P-1)(P+\beta)}{\Delta}+a .
$$

Proof.
(1) If $\Delta=0$, then $P^{2}=\alpha \beta$ and by $\left(F_{1}\right)$ we obtain

$$
(P q-1)(P r-1)=\alpha \beta(r-a)(q-a)=P^{2}(r-a)(q-a)
$$

Hence, P divides 1 and so $P=1$. Therefore, as $\alpha \beta=P^{2}=1$ we obtain either $\alpha=\beta=1$ or $\alpha=\beta=-1$.

We claim that $\alpha=\beta=-1$; indeed, if $\alpha=\beta=1$ and as $P=1$, then by $\left(F_{1}\right)$, we obtain $q-r=(q-1)-(r-1)=(r-a)-(q-a)=$ $r-q$, which implies that $q=r$, a contradiction.

So by $\left(F_{1}\right)$, we obtain $a=q+r-1$. The converse is obvious.
(2) $\mathrm{By}\left(F_{1}\right)$ we obtain

$$
\left\{\begin{array}{l}
r=\frac{P q-1+\alpha a}{\alpha} ; \\
q=\frac{P r-1+\beta a}{\beta}
\end{array}\right.
$$

Substituting r in the expression of q, we get

$$
q=\frac{P \cdot \frac{P q-1+\alpha a}{\alpha}-1+\beta a}{\beta}=\frac{P^{2} q-P+\alpha a P-\alpha+\beta \alpha a}{\alpha \beta} .
$$

This implies that

$$
\begin{equation*}
q\left(P^{2}-\alpha \beta\right)+\alpha \beta a+\alpha(a P-1)-P=0 \tag{2}
\end{equation*}
$$

Similarly, we prove that

$$
\begin{equation*}
r\left(P^{2}-\alpha \beta\right)+\alpha \beta a+\beta(a P-1)-P=0 . \tag{3}
\end{equation*}
$$

ON WILLIAMS NUMBERS WITH THREE PRIME FACTORS

Now, suppose that $\Delta \neq 0$. Then by $\left(F_{2}\right)$ we get

$$
q=\frac{\alpha \beta a+\alpha(a P-1)-P}{\alpha \beta-P^{2}}=\frac{(a P-1)(P+\alpha)}{\Delta}+a .
$$

Similarly by $\left(F_{3}\right)$, we obtain

$$
r=\frac{(a P-1)(P+\beta)}{\Delta}+a .
$$

We maintain throughout the rest the same definitions for Δ, α, and β as in Proposition 2.1.

Theorem 2.3 ([1]). Let $a \in \mathbb{Z} \backslash\{0\}$. Then the following properties hold.
(1) If $a \leq 1$, then each composite squarefree K_{a}-number has at least three prime factors.
(2) Suppose that $a>1$. Let $q_{1}<q_{2}$ be two prime numbers and $N:=q_{1} q_{2}$. If N is an a-Korselt number, then $q_{1}<q_{2} \leq 4 a-3$. In particular, there are only finitely many a-Korselt numbers with exactly two prime factors.
Proposition 2.4. Let N be a K_{a}-number such that $a<0$. Then we have
(1) $0<\alpha<\beta$ and $\alpha<P$.
(2) $\Delta<0$ and for $d=3,|\Delta|<2|a P-1|$.
(3) $d \geq 3$ and $\max \left(1, \frac{P^{2}\left(p_{d-2}+2+a\right)-2 P}{p_{d-2}+2-a}\right)<\alpha \beta<P^{2}$.

Proof.
(1) As $a<0$ and

$$
\left\{\begin{array}{l}
P q-1=\alpha(r-a) \\
\operatorname{Pr}-1=\beta(q-a)
\end{array}\right.
$$

we get $\alpha>0$ and $\beta>0$, since $q<r$ then $\operatorname{Pq}-1<\operatorname{Pr}-1$. Therefore, $\alpha(r-a)<\beta(q-a)$. Hence, $\alpha<\beta\left(\frac{q-a}{r-a}\right)<\beta$ and so $0<\alpha<\beta$.

Suppose that $P \leq \alpha$. Then $P q-1=\alpha(r-a) \geq P(r-a)$. This implies that $P q>P(r-a)$ and so $q>r-a>r$, a contradiction with $q<r$. Thus, $\alpha<P$.
(2) By Proposition 2.2, we have $\Delta \neq 0$.

Suppose that $\Delta>0$. As in addition $q=\frac{(a P-1)(P+\alpha)}{\Delta}+a, \alpha>0$ and $a<0$ we obtain $q<0$, which is not possible. Then $\Delta<0$.

Now, suppose that $d=3$. Then P is prime such that $P<q$ and we have

$$
|\Delta|=\frac{|a P-1|(P+\alpha)}{q-a}<\frac{|a P-1|(P+\alpha)}{P}
$$

N. GHANMI AND I. AL-RASASI

As $0<\alpha<P$, then

$$
|\Delta|<\frac{|a P-1| 2 P}{P}=2|a P-1| .
$$

(3) By Theorem [2.3, we immediately obtain $d \geq 3$.

We claim that $q-p_{d-2} \geq 2$. Indeed if this is not the case, then $q-p_{d-2}=$ 1. This is equivalent to $\left(q=2\right.$ and $\left.p_{d-2}=1\right)$ or $\left(q=3\right.$ and $\left.p_{d-2}=2\right)$. But as $d \geq 3$ we have p_{d-2} is prime, then the first case (i.e., $p_{d-2}=1$) is not possible.

Suppose that $\left(q=3\right.$ and $\left.p_{d-2}=2\right)$ then $N=6 r$ (i.e., $\left.q=3<r\right)$ is a K_{a}-number, so by $\left(F_{1}\right)$ we have $r-a$ divides $6-1=5$. This implies that $r-a \leq 5$, but as $a \leq-1$ and $r \geq 5$, we get $r-a \geq 6$, a contradiction.

Now, as $p_{d-2}+2 \leq q$ and $q-a=\frac{(a P-1)(P+\alpha)}{\Delta}$, we obtain

$$
0<p_{d-2}+2-a \leq \frac{(a P-1)(P+\alpha)}{\Delta}=\frac{|a P-1|(P+\alpha)}{|\Delta|}
$$

This implies that

$$
|\Delta| \leq \frac{|a P-1|(P+\alpha)}{p_{d-2}+2-a} \leq \frac{2 P(-a P+1)}{p_{d-2}+2-a}
$$

Hence, as $|\Delta|=P^{2}-\alpha \beta$, we obtain

$$
\alpha \beta \geq P^{2}+\frac{2 P(a P-1)}{p_{d-2}+2-a}=\frac{P^{2}\left(p_{d-2}+2+a\right)-2 P}{p_{d-2}+2-a}
$$

So, we conclude that

$$
\max \left(1, \frac{P^{2}\left(p_{d-2}+2+a\right)-2 P}{p_{d-2}+2-a}\right)<\alpha \beta<P^{2}
$$

Now we will give a similar result for $a>0$ as given for $a<0$ in Proposition 2.4

Proposition 2.5. Let N be a K_{a}-number such that $N=P q r$ and $0<a<$ $q<r$. Then we have
(1) $\Delta>0$ and $0<\alpha<\beta$.
(2) $0<\alpha<\frac{a+1}{2} P$.
(3) i) If $a \geq p_{d-2}+2$ then $P^{2}<\alpha \beta<\frac{(a+1)(a+2)}{2} P^{2}$.
ii) If $a<p_{d-2}+2$ then $P^{2}<\alpha \beta<\frac{P^{2}\left(2 p_{d-2}+4+a(a+1)\right)}{2\left(p_{d-2}+2-a\right)}$.

ON WILLIAMS NUMBERS WITH THREE PRIME FACTORS

Proof. (1) By $\left(F_{1}\right)$, we have $0<\alpha<\beta$.
It is clear that $\Delta=\frac{(a P-1)(P+\alpha)}{q-a}$ is a positive integer.
(2) As $P q-1=\alpha(r-a)$ and $r \geq q+1$, then

$$
\alpha=\frac{P q-1}{r-a} \leq \frac{P q-1}{q+1-a} .
$$

Define for a fixed integer $a>0$ the function
$f: x \longrightarrow \frac{P x-1}{x+1-a}=P+\frac{(a-1) P-1}{x-a+1}$ for $x \geq(a+1)$.
We can easily see that f is a decreasing function that assumes its maximum at $x=a+1$. Hence,

$$
\alpha=\frac{P q-1}{r-a} \leq f(q)=\frac{P q-1}{q+1-a} \leq f(a+1)=\frac{P(a+1)-1}{2}<\frac{a+1}{2} P .
$$

(3) Also, we claim that $q-p_{d-2} \geq 2$. Indeed if this is not the case, then $q-p_{d-2}=1$. This is equivalent to ($q=2$ and $p_{d-2}=1$) or ($q=3$ and $p_{d-2}=2$). Hence, $N=2 r$ or $N=6 r$ is a K_{a}-number.

- Suppose that $N=2 r$ (i.e., $q=2<r$) is a K_{a}-number, then $0<a<q=2<r$ which implies that $a=1$. Hence by $\left(F_{1}\right)$, we get $r-a=r-1$ divides $2-1=1$. Therefore, $r-1=1$ and so $r=2$, a contradiction with $q<r$.
- Suppose now that $N=6 r$ (i.e., $q=3<r$) is a K_{a}-number. As $a \neq p_{d-2}=2$ and $0<a<q=3<r$ then $a=1$. Hence by (F_{1}), we have $q-a=2$ divides $N-a=6 r-1$ which is odd, a contradiction.
Now, as $p_{d-2}+2 \leq q$, we obtain
$p_{d-2}+2-a \leq q-a=\frac{(a P-1)(P+\alpha)}{\Delta}$
(F_{4}).
(i) If $p_{d-2}+2-a \leq 0$, then we can write

$$
1 \leq q-a=\frac{(a P-1)(P+\alpha)}{\Delta}
$$

which is equivalent to

$$
\Delta=\alpha \beta-P^{2} \leq(a P-1)(P+\alpha) .
$$

Therefore by (2), we have

$$
\Delta=\alpha \beta-P^{2} \leq(a P-1)(P+\alpha) \leq(a P-1) \frac{a+3}{2} P .
$$

Hence,

$$
\alpha \beta \leq P^{2}+(a P-1) \frac{a+3}{2} P<P^{2}\left(1+\frac{a(a+3)}{2}\right)=\frac{(a+1)(a+2)}{2} P^{2} .
$$

N. GHANMI AND I. AL-RASASI

Finally, as $\Delta=\alpha \beta-P^{2}>0$, we conclude that

$$
P^{2}<\alpha \beta<\frac{(a+1)(a+2)}{2} P^{2}
$$

(ii) Suppose that $p_{d-2}+2-a>0$. Then, by $\left(F_{4}\right)$ and (2), we get

$$
\Delta\left(p_{d-2}+2-a\right) \leq(a P-1)(P+\alpha) \leq \frac{a+3}{2} P(a P-1)
$$

Thus,

$$
\Delta=\alpha \beta-P^{2} \leq \frac{P(a+3)(a P-1)}{2\left(p_{d-2}+2-a\right)}
$$

and so

$$
\alpha \beta<\frac{P^{2}\left(2 p_{d-2}+4+a(a+1)\right)}{2\left(p_{d-2}+2-a\right)} .
$$

Finally, as $\Delta=\alpha \beta-P^{2}>0$, we obtain

$$
P^{2}<\alpha \beta<\frac{P^{2}\left(2 p_{d-2}+4+a(a+1)\right)}{2\left(p_{d-2}+2-a\right)}
$$

3. Factor Bounds Of A K_{a}-Number

In this section we derive upper bounds for q and r (so for N) in terms of a and P. As a consequence, for each fixed P and a there are only finitely many N that are K_{a}-numbers.

Theorem 3.1. If $a<0$, then

$$
\left\{\begin{aligned}
q & <-2 a P^{2} \\
r & <-2 a P^{3}
\end{aligned}\right.
$$

Proof. We consider two cases.
(1) If $|a|<q$, then $\operatorname{gcd}(a, q)=\operatorname{gcd}(a, r)=1$. By Proposition 2.2, we have

$$
q-a=\frac{(P+\alpha)(a P-1)}{\Delta}
$$

As $a<0$, and by Proposition 2.2, $\Delta=\alpha \beta-P^{2} \leq-1$ and $\alpha \leq P-1$, then we can write

$$
q=a+\frac{(P+\alpha)(1-a P)}{P^{2}-\alpha \beta} \leq a+(P+P-1)(1-a P)
$$

Thus,

$$
\begin{equation*}
q \leq-2 a P^{2}+(a+2) P+a-1 \tag{5}
\end{equation*}
$$

As $a<0$, we discuss two cases:

- If $a \leq-2$: It's obvious from $\left(F_{5}\right)$ that $q \leq-2 a P^{2}$.

ON WILLIAMS NUMBERS WITH THREE PRIME FACTORS

- If $a=-1$:

First, we claim that $\alpha \leq P-2$. Indeed, suppose that this is not the case, then by Proposition 2.2, we obtain $\alpha=P-1$. So, by $\left(F_{1}\right)$, we can write

$$
P q-1=(P-1)(r+1)=r P-r+P-1
$$

Therefore, $P q=P(r+1)-r$, this implies that P divides r, a contradiction.
Now, with $a=-1$, Proposition 2.2 gives

$$
q=-1+\frac{(P+\alpha)(P+1)}{P^{2}-\alpha \beta} \leq-1+(P+P-2)(P+1)
$$

Thus,

$$
q<2 P^{2}=-2 a P^{2}
$$

Then, we conclude that for all $a<0$, we have $q<-2 a P^{2}$.
Now, since $r-a \leq \alpha(r-a)=P q-1$, we obtain

$$
r \leq P q-1+a<P q<-2 a P^{3}
$$

(2) Suppose that $q \leq|a|$. Then clearly $q \leq|a|<-2 a P^{2}$.

- If $\operatorname{gcd}(r, a)=1$, then as $P q-1=\alpha(r-a)$ with $1 \leq \alpha$, we obtain $r<r-a \leq \alpha(r-a)=P q-1<P|a| \leq-2 a P^{3}$.
- Now, if r divides a, we obtain

$$
r \leq-a<-2 a P^{3}
$$

Finally we conclude that, in all cases, we have $q<-2 a P^{2}$ and $r<$ $-2 a P^{3}$.

Theorem 3.2. If $a>0$, then

$$
\left\{\begin{array}{l}
q<\frac{a(a+3)}{2} P^{2} \\
r<\frac{a(a+3)}{2} P^{3}
\end{array}\right.
$$

Proof. We have two cases to be considered.
(1) If $a<q$, then $\operatorname{gcd}(a, q)=\operatorname{gcd}(a, r)=1$ and by Proposition 2.2. we have

$$
q-a=\frac{(\alpha+P)(a P-1)}{\Delta}
$$

Hence, by Proposition [2.4, $\Delta \geq 1$ and $\alpha<\frac{a+1}{2} P$.
Then, we obtain

$$
q<a+\left(\frac{a+1}{2} P+P\right)(a P-1)=\frac{a+3}{2} P(a P-1)+a .
$$

N. GHANMI AND I. AL-RASASI

This gives
$q<\frac{a(a+3)}{2} P^{2}-\left(\frac{a+3}{2} P-a\right)$.
But as $P \geq 1$, we consider the following three subcases:
(a) Suppose that $P \geq 3$. Then we have $\frac{a+3}{2} P>a+3>a$, hence by $\left(F_{6}\right)$, we obtain

$$
q<\frac{a(a+3)}{2} P^{2}-\left(\frac{a+3}{2} P-a\right)<\frac{a(a+3)}{2} P^{2}
$$

On the other hand, we have $P q-1=\alpha(r-a)$ and $\alpha \geq 1$. Therefore, $r-a \leq P q-1$, so by $\left(F_{6}\right)$, we obtain
$r \leq P q-1+a<\frac{a(a+3)}{2} P^{3}-\left(\frac{a+3}{2} P^{2}-a P-a+1\right) .\left(F_{7}\right)$
We claim that the quantity $\frac{a+3}{2} P^{2}-a P-a+1$ in $\left(F_{7}\right)$ is positive. Indeed, define the function:

$$
x \longrightarrow f(x)=(a+3) x^{2}-2 a x-2 a+2
$$

Let $\delta=4 \delta^{\prime}=4\left(3 a^{2}+4 a-6\right)>0$ and $\left\{P_{1}, P_{2}\right\}$ be respectively the discriminant and the solution set of the equation $f(x)=0$. Then

$$
P_{1}=\frac{a-\sqrt{\delta^{\prime}}}{a+3} \leq 0<\frac{a+\sqrt{\delta^{\prime}}}{a+3}=P_{2} .
$$

As $\delta^{\prime}=3 a^{2}+4 a-6<4 a^{2}$, we have $P_{2}=\frac{a+\sqrt{\delta^{\prime}}}{a+3}<\frac{a+2 a}{a+3}=$ $\frac{3 a}{a+3}<3$.

By studying the sign of $f(P)$, we can easily see that $f(P)>0$ for each $P \geq 3$. This implies that

$$
\frac{a+3}{2} P^{2}-a P-a+1=\frac{f(P)}{2}>0 \text { for each } P \geq 3
$$

Thus, by $\left(F_{7}\right)$, we get

$$
r<\frac{a(a+3)}{2} P^{3} .
$$

(b) If $P=2$, we consider two cases:
(i) If $\Delta=1$, then $\alpha \beta-P^{2}=1$. As $P=2$ and $\alpha<\beta$ then $\alpha=1$ and $\beta=5$ and by $\left(F_{1}\right)$ we obtain

$$
\left\{\begin{array}{ccc}
2 q-1 & =r-a \\
2 r-1 & =5(q-a)
\end{array}\right.
$$

This implies that $q=7 a-3$ and $r=15 a-7$.

Let $g(a)=\frac{a(a+3)}{2} P^{2}-q=2 a(a+3)-7 a+3=2 a^{2}-a+3$. As the discriminant of $g(a)$ is $\delta=-23<0$, then $g(a)>0$ for all $a>0$. Hence, $q<\frac{a(a+3)}{2} P^{2}$.
Let $h(a)=\frac{a(a+3)}{2} P^{3}-r=4 a^{2}-3 a+7$.
As the discriminant of $h(a)$ is $\delta=-103<0$, then $h(a)>0$ for all $a>0$. Hence, $r<\frac{a(a+3)}{2} P^{3}$.
(ii) Suppose that $\Delta \geq 2$.

By Proposition 2.2, we have $q-a=\frac{(\alpha+P)(a P-1)}{\Delta}$.
As $\Delta \geq 2, P=2$ and by Proposition [2.4] $\alpha<\frac{a+1}{2} P$, we get $q=a+\frac{(\alpha+P)(a P-1)}{\Delta}<a+\frac{\left(\frac{a+1}{2} P+P\right)(a P-1)}{2}$.

This implies that

$$
q<\frac{2 a^{2}+7 a-3}{2}
$$

So, we obtain

$$
q<\frac{2 a^{2}+7 a-3}{2}<2 a(a+3)=\frac{a(a+3)}{2} P^{2} .
$$

Now, as $\alpha \geq 1$ and $P q-1=\alpha(r-a)$, we can write

$$
\begin{aligned}
r & \leq P q-1+a=2 q-1+a \\
& <2\left(\frac{2 a^{2}+7 a-3}{2}\right)+a-1=2 a^{2}+8 a-4 \\
& <4 a(a+3)=\frac{a(a+3)}{2} P^{3} .
\end{aligned}
$$

(c) Now suppose that $P=1$. We consider two cases:
(i) If $\Delta=1$, then $\alpha \beta-P^{2}=1$. Therefore, as $P=1$ and $0<\alpha<$ β, we get $\alpha=1$ and $\beta=2$. Hence by $\left(F_{1}\right)$, we obtain

$$
\left\{\begin{array}{l}
q-1=r-a \\
r-1=2(q-a)
\end{array}\right.
$$

This implies that $q=3 a-2$ and $r=4 a-3$. But q and r are prime numbers, then $a \notin\{1,2,3,4\}$. Hence, $a \geq 5$.

$$
\text { Let } \frac{g(a)}{2}=\frac{a(a+3)}{2} P^{2}-q=\frac{a(a+3)}{2}-3 a+2=\frac{a^{2}-3 a+4}{2} .
$$

N. GHANMI AND I. AL-RASASI

As the discriminant of $g(a)$ is $\delta=-7<0$, then $g(a)>0$ for all $a>0$. Hence, $q<\frac{a(a+3)}{2} P^{2}$.
Let $\frac{h(a)}{2}=\frac{a(a+3)}{2} P^{3}-r=\frac{a(a+3)}{2}-4 a+3=\frac{a^{2}-5 a+6}{2}$. As the discriminant of $h(a)$ is $\delta=1$, then $h(a)=0$ if and only if $a=2$ or $a=3$. But $a \geq 5$, then $h(a)>0$. Hence, $r<\frac{a(a+3)}{2} P^{3}$.
(ii) Suppose that $\Delta \geq 2$.

By Proposition 2.2, we have $q-a=\frac{(\alpha+P)(a P-1)}{\Delta}$.
As $\Delta \geq 2, P=1$ and by Proposition [2.4] $\alpha<\frac{a+1}{2} P$, we get

$$
q=a+\frac{(\alpha+P)(a P-1)}{\Delta}<a+\frac{\left(\frac{a+1}{2} P+P\right)(a P-1)}{2} .
$$

This implies that

$$
q<\frac{a^{2}+6 a-3}{4}
$$

Hence,

$$
q<\frac{a^{2}+6 a-3}{4}<\frac{a(a+3)}{2}=\frac{a(a+3)}{2} P^{2} .
$$

As $P q-1=\alpha(r-a), \alpha \geq 1$ and $P=1$, then we can write $q-1 \geq r-a$. Therefore, $r \leq q-1+a<\frac{a^{2}+6 a-3}{4}+a-1=$ $\frac{a^{2}+10 a-7}{4}$.
Finally, we obtain $r<\frac{a(a+3)}{2}=\frac{a(a+3)}{2} P^{3}$.
(2) Suppose that $q<a$. At first, as $P \geq 1$, it's clear to see that $q<a<$ $\frac{a(a+3)}{2} P^{2}$.
(a) Suppose that $a<r$. Then $\operatorname{gcd}(r, a)=1$, and as

$$
\begin{aligned}
& P q-1=\alpha(r-a) \text { with } \alpha \geq 1, \text { we get } \\
& \quad r=\frac{P q-1}{\alpha}+a \leq P q-1+a \leq P(a-1)+a-1 .
\end{aligned}
$$

Hence, $r \leq(a-1)(P+1)<\frac{a(a+3)}{2} P^{3}$.
(b) Now, suppose that $r<a$. Then $r<a<\frac{a(a+3)}{2} P^{3}$.

Finally we conclude that, in all cases, we have $q<\frac{a(a+3)}{2} P^{2}$ and $r<\frac{a(a+3)}{2} P^{3}$.
Remark 3.3. If $a=1$ which is the case of Carmichael numbers, we can give an improvement to the bounds in Theorem 3.2 as given in [5] as follows.

We have $P q-1=\alpha(r-1)$. We claim that $\alpha \geq 2$. Indeed, if it is not the case, then, as $\alpha>0, P q-1=r-1$. Thus $P q=r$, which contradicts the primality of r. Hence, $r \leq \frac{P q-1}{2}+1$, but as $q<\frac{a(a+3)}{2} P^{2}=2 P^{2}$, we get

$$
r \leq \frac{P\left(2 P^{2}-1\right)-1}{2}+1<P^{3}
$$

From Theorem 3.1 and Theorem 3.2, we immediately obtain the following theorem.

Theorem 3.4. Let $a \in \mathbb{Z}-\{0\}$ and $p_{1}<p_{2}<\cdots<p_{d-2}$ be a given set of $d-2$ primes, $d \geq 3$. Then there are only finitely many K_{a}-numbers $N=\prod_{i=1}^{d} p_{i}$, where p_{d-1} and p_{d} are primes such that $p_{d-2}<p_{d-1}<p_{d}$.
Proof. By Theorem 3.1 and Theorem 3.2, respectively we have:

- If $a<0$, then $N=P q r<4 a^{2} P^{6}$.
- If $a>0$, then $N=P q r<\frac{a^{2}(a+3)^{2}}{4} P^{6}$.

4. W_{a}-Numbers

In this section we prove that for each fixed a there are only finitely many W_{a}-numbers with three prime factors, by handling separately the cases $p_{1}<a$ and $p_{1}>a$.
Proposition 4.1 (Characterization of W_{a}-numbers). Let a be a nonzero positive integer. Let $N=\prod_{i=1}^{k} p_{i}$ be a composite squarefree integer and $d_{i}=$ $\operatorname{gcd}\left(a, p_{i}\right)$ for each $i \in\{1, \ldots, k\}$.
N is a W_{a}-number if and only if $\frac{p_{i}^{2}-a^{2}}{d_{i}^{2}}$ divides $2\left(\frac{N}{p_{i}}-1\right)$ for each $i \in\{1, \ldots, k\}$.
Proof. Suppose that N is a W_{a}-number. We note that $p_{i}-a$ divides $N-a=$ $N-p_{i}+p_{i}-a$ is equivalent to

$$
\begin{equation*}
p_{i}-a \text { divides } N-p_{i}=p_{i}\left(\frac{N}{p_{i}}-1\right) \tag{8}
\end{equation*}
$$

Since $d_{i}=\operatorname{gcd}\left(a, p_{i}\right) \in\left\{1, p_{i}\right\}$,

N. GHANMI AND I. AL-RASASI

- If $d_{i}=1$ and as $\operatorname{gcd}\left(p_{i}-a, p_{i}\right)=1$, then $\left(F_{8}\right)$ is equivalent to

$$
p_{i}-a=\frac{p_{i}-a}{d_{i}} \text { divides } \frac{N}{p_{i}}-1 .
$$

- If $d_{i}=p_{i}$, then $\left(F_{8}\right)$ is equivalent to

$$
\frac{p_{i}-a}{p_{i}}=\frac{p_{i}-a}{d_{i}} \text { divides } \frac{p_{i}}{d_{i}}\left(\frac{N}{p_{i}}-1\right)=\frac{N}{p_{i}}-1
$$

Thus, $p_{i}-a$ divides $N-a$ is equivalent to $\frac{p_{i}-a}{d_{i}}$ divides $\frac{N}{p_{i}}-1$.
In a similar way, we deduce that $p_{i}+a$ divides $N+a$ is equivalent to $\frac{p_{i}+a}{d_{i}}$ divides $\frac{N}{p_{i}}-1$.

Hence, N is a W_{a}-number is equivalent to both

$$
\begin{equation*}
\frac{p_{i}-a}{d_{i}} \text { and } \frac{p_{i}+a}{d_{i}} \text { divide } \frac{N}{p_{i}}-1 . \tag{9}
\end{equation*}
$$

This implies that $\frac{\left(p_{i}-a\right)\left(p_{i}+a\right)}{D_{i} d_{i}^{2}}$ divides $\frac{N}{p_{i}}-1$ with

$$
D_{i}=\operatorname{gcd}\left(\frac{p_{i}-a}{d_{i}}, \frac{p_{i}+a}{d_{i}}\right)
$$

On the other hand, as D_{i} divides both $\frac{p_{i}-a}{d_{i}}$ and $\frac{p_{i}+a}{d_{i}}$, then D_{i} divides $2 \frac{p_{i}}{d_{i}}=\frac{p_{i}-a}{d_{i}}+\frac{p_{i}+a}{d_{i}}$ and D_{i} divides $2 \frac{a}{d_{i}}=\frac{p_{i}+a}{d_{i}}-\frac{p_{i}-a}{d_{i}}$. Therefore, D_{i} divides $2 \operatorname{gcd}\left(\frac{a}{d_{i}}, \frac{p_{i}}{d_{i}}\right)=2$.

So we conclude that, if N is a W_{a}-number then $\frac{p_{i}^{2}-a^{2}}{d_{i}^{2}} \operatorname{divides} 2\left(\frac{N}{p_{i}}-1\right)$.
Conversely, suppose that $\frac{p_{i}^{2}-a^{2}}{d_{i}^{2}}$ divides $2\left(\frac{N}{p_{i}}-1\right)$.

- If $\operatorname{gcd}\left(2, \frac{p_{i}^{2}-a^{2}}{d_{i}^{2}}\right)=1$, then $\frac{p_{i}^{2}-a^{2}}{d_{i}^{2}}$ divides $\frac{N}{p_{i}}-1$.
- Now, suppose that gcd $\left(2, \frac{p_{i}^{2}-a^{2}}{d_{i}^{2}}\right)=2$, then 2 divides $\frac{p_{i}-a}{d_{i}}$ or $\frac{p_{i}+a}{d_{i}}$. But as

$$
\frac{p_{i}-a}{d_{i}}=\left(\frac{p_{i}+a}{d_{i}}\right)-2 \frac{a}{d_{i}},
$$

then 2 divides $\frac{p_{i}-a}{d_{i}}$ if and only if 2 divides $\frac{p_{i}+a}{d_{i}}$.

So,

$$
\frac{p_{i}^{2}-a^{2}}{2 d_{i}^{2}}=\left(\frac{p_{i}-a}{2 d_{i}}\right)\left(\frac{p_{i}+a}{d_{i}}\right)=\left(\frac{p_{i}-a}{d_{i}}\right)\left(\frac{p_{i}+a}{2 d_{i}}\right)
$$

divides $\frac{N}{p_{i}}-1$.
This implies that both $\frac{p_{i}-a}{d_{i}}$ and $\frac{p_{i}+a}{d_{i}}$ divides $\frac{N}{p_{i}}-1$.
Finally, by $\left(F_{9}\right)$, we conclude that N is a W_{a}-number.

Let $N=p_{1} p_{2} p_{3}$ be a W_{a}-number such that $a<p_{1}<p_{2}<p_{3}$. As $\operatorname{gcd}\left(a, p_{i}\right)=1$ for each $i \in\{1,2,3\}$, then by Proposition 4.1 there exist positive integers α, β and γ such that

$$
\begin{cases}2 p_{2} p_{3}-2=\alpha\left(p_{1}^{2}-a^{2}\right), & \left(E_{1}\right) \\ 2 p_{1} p_{3}-2=\beta\left(p_{2}^{2}-a^{2}\right), & \left(E_{2}\right) \\ 2 p_{1} p_{2}-2=\gamma\left(p_{3}^{2}-a^{2}\right) . & \left(E_{3}\right)\end{cases}
$$

Lemma 4.2. (1) $0<\gamma<\beta<\alpha$.
(2) $p_{3}<\frac{\beta(\gamma+1)}{\gamma(\beta+1)} p_{2}$.
(3) $\gamma p_{3}^{3}<\beta p_{2}^{3}<\alpha p_{1}^{3}$.
(4) $8<\alpha \beta \gamma$.

Proof. (1) As $a<p_{1}<p_{2}<p_{3}$ we have

$$
0<p_{1}^{2}-a^{2}<p_{2}^{2}-a^{2}<p_{3}^{2}-a^{2},
$$

and

$$
0<2\left(p_{1} p_{2}-1\right)<2\left(p_{1} p_{3}-1\right)<2\left(p_{2} p_{3}-1\right) .
$$

Then

$$
0<\gamma=\frac{2\left(p_{1} p_{2}-1\right)}{p_{3}^{2}-a^{2}}<\beta=\frac{2\left(p_{1} p_{3}-1\right)}{p_{2}^{2}-a^{2}}<\alpha=\frac{2\left(p_{2} p_{3}-1\right)}{p_{1}^{2}-a^{2}} .
$$

(2) The equation $\beta\left(E_{3}\right)-\gamma\left(E_{2}\right)$ gives

$$
2 p_{1}\left(\beta p_{2}-\gamma p_{3}\right)=\beta \gamma\left(p_{3}^{2}-p_{2}^{2}\right)+2(\beta-\gamma)
$$

Thus,

$$
2 p_{1}\left((\beta-\gamma) p_{2}-\gamma\left(p_{3}-p_{2}\right)\right)=\beta \gamma\left(p_{3}^{2}-p_{2}^{2}\right)+2(\beta-\gamma),
$$

which implies that

$$
\left.2(\beta-\gamma) p_{1} p_{2}=2 \gamma p_{1}\left(p_{3}-p_{2}\right)\right)+\beta \gamma\left(p_{3}^{2}-p_{2}^{2}\right)+2(\beta-\gamma) .
$$

So

$$
p_{1} p_{2}=\frac{\left(2 \gamma p_{1}+\beta \gamma\left(p_{3}+p_{2}\right)\right)\left(p_{3}-p_{2}\right)}{2(\beta-\gamma)}+1 .
$$

N. GHANMI AND I. AL-RASASI

As $p_{3}+p_{2}>2 p_{1}$, then

$$
p_{1} p_{2}>\frac{(2 \gamma+2 \beta \gamma) p_{1}\left(p_{3}-p_{2}\right)}{2(\beta-\gamma)}+1>\frac{\gamma(\beta+1)\left(p_{3}-p_{2}\right)}{\beta-\gamma} p_{1}
$$

Thus,

$$
p_{2}>\frac{\gamma(\beta+1)}{\beta-\gamma}\left(p_{3}-p_{2}\right)
$$

and hence,

$$
\frac{\gamma(\beta+1)}{\beta-\gamma} p_{3}<p_{2}\left(1+\frac{\gamma(\beta+1)}{\beta-\gamma}\right)
$$

and so

$$
p_{3}<\left(1+\frac{\beta-\gamma}{\gamma(\beta+1)}\right) p_{2}=\frac{\beta(\gamma+1)}{\gamma(\beta+1)} p_{2} .
$$

(3) The equations $\beta\left(E_{3}\right)-\gamma\left(E_{2}\right)$ and $\alpha\left(E_{2}\right)-\beta\left(E_{1}\right)$ give respectively

$$
2 p_{1}\left(\beta p_{2}-\gamma p_{3}\right)=\beta \gamma\left(p_{3}^{2}-p_{2}^{2}\right)+2(\beta-\gamma)
$$

and

$$
2 p_{3}\left(\alpha p_{1}-\beta p_{2}\right)=\alpha \beta\left(p_{2}^{2}-p_{1}^{2}\right)+2(\alpha-\beta)
$$

As $0<\gamma<\beta<\alpha$ and $p_{1}<p_{2}<p_{3}$, we obtain

$$
\gamma p_{3}<\beta p_{2}<\alpha p_{1}
$$

On the other hand, the equations $\left(E_{1}\right),\left(E_{2}\right)$, and $\left(E_{3}\right)$ are equivalent to

$$
\begin{cases}2 p_{2} p_{3}=\alpha\left(p_{1}^{2}-a^{2}\right)+2, & \left(E_{4}\right) \\ 2 p_{1} p_{3}=\beta\left(p_{2}^{2}-a^{2}\right)+2, & \left(E_{5}\right) \\ 2 p_{1} p_{2}=\gamma\left(p_{3}^{2}-a^{2}\right)+2 . & \left(E_{6}\right)\end{cases}
$$

The division of $\left(E_{4}\right)$ by $\left(E_{5}\right)$ gives $\frac{p_{2}}{p_{1}}=\frac{\alpha\left(p_{1}^{2}-a^{2}\right)+2}{\beta\left(p_{2}^{2}-a^{2}\right)+2}$, and so

$$
p_{1}\left(\alpha\left(p_{1}^{2}-a^{2}\right)+2\right)=p_{2}\left(\beta\left(p_{2}^{2}-a^{2}\right)+2\right)
$$

It follows that

$$
\alpha p_{1}^{3}-\beta p_{2}^{3}=a^{2}\left(\alpha p_{1}-\beta p_{2}\right)+2\left(p_{2}-p_{1}\right)>0
$$

As $p_{1}<p_{2}$ and by $\left(F_{10}\right)$ we have $\beta p_{2}<\alpha p_{1}$, then $\beta p_{2}^{3}<\alpha p_{1}^{3}$.
With the same idea, the division of $\left(E_{5}\right)$ by $\left(E_{6}\right)$ gives

$$
\beta p_{2}^{3}-\gamma p_{3}^{3}=a^{2}\left(\beta p_{2}-\gamma p_{3}\right)+2\left(p_{3}-p_{2}\right)
$$

As $p_{2}<p_{3}$ and by $\left(F_{10}\right)$ we have $\gamma p_{3}<\beta p_{2}$, then $\gamma p_{3}^{3}<\beta p_{2}^{3}$.
Finally we conclude that

$$
\gamma p_{3}^{3}<\beta p_{2}^{3}<\alpha p_{1}^{3}
$$

(4) As $\gamma p_{3}^{3}<\beta p_{2}^{3}<\alpha p_{1}^{3}$, we obtain

$$
p_{3}\left(\frac{\gamma}{\alpha}\right)^{\frac{1}{3}}<p_{1} \text { and } p_{3}\left(\frac{\gamma}{\beta}\right)^{\frac{1}{3}}<p_{2}
$$

As by $\left(E_{3}\right)$, we have $2\left(p_{1} p_{2}-1\right)=\gamma\left(p_{3}^{2}-a^{2}\right)$, then $\left(F_{11}\right)$ gives

$$
2\left(\frac{\gamma^{\frac{2}{3}}}{(\alpha \beta)^{\frac{1}{3}}} p_{3}^{2}-1\right)<2\left(p_{1} p_{2}-1\right)=\gamma\left(p_{3}^{2}-a^{2}\right) .
$$

Therefore,

$$
\begin{equation*}
\frac{\gamma^{\frac{2}{3}}\left(2-(\alpha \beta \gamma)^{\frac{1}{3}}\right)}{(\alpha \beta)^{\frac{1}{3}}} p_{3}^{2}<2-\gamma a^{2} . \tag{12}
\end{equation*}
$$

Two cases are to be considered:

- If $a \geq 2$, then $2-\gamma a^{2}<0$ and by $\left(F_{12}\right)$ we obtain $2<(\alpha \beta \gamma)^{\frac{1}{3}}$. Hence, $8<\alpha \beta \gamma$.
- Suppose that $a=1$ and $\alpha \beta \gamma \leq 8$. Then

$$
(\alpha, \beta, \gamma) \in\{(3,2,1),(4,2,1)\} .
$$

Then by $\left(E_{2}\right)$, we get $2\left(p_{1} p_{3}-1\right)=2\left(p_{2}^{2}-1\right)$. Therefore, $p_{1} p_{3}=p_{2}^{2}$ which implies that $p_{1}=p_{2}=p_{3}$, a contradiction.
So we conclude that

$$
8<\alpha \beta \gamma .
$$

Theorem 4.3. Let a be a nonzero positive integer. There exist only finitely many W_{a}-numbers with three prime factors.

Proof. Let a be a fixed positive integer and $N=p_{1} p_{2} p_{3}$ be a W_{a}-number such that $p_{1}<p_{2}<p_{3}$.

Two cases are to be considered:

- If $p_{1}<a$, then there is a finite number of possibilities for p_{1}. For each possibility for p_{1}, and by Theorem 3.4 there are only finitely many K_{-a}-numbers and K_{a}-numbers $N=p_{1} p_{2} p_{3}$. Hence, there are only finitely many W_{a}-numbers $N=p_{1} p_{2} p_{3}$ with $p_{1}<a$.
- Now, suppose that $a<p_{1}$. By Lemma 4.3, we have $8<\alpha \beta \gamma$, this leads us to discuss the two following cases.
Case 1: If $(\gamma, \beta)=(1,2)$.
(a) Suppose that $\alpha=5$.

The relation $\left(E_{1}\right)+\left(E_{2}\right)+\left(E_{3}\right)$ gives

$$
5 p_{1}^{2}+2 p_{2}^{2}+p_{3}^{2}-2 p_{1} p_{2}-2 p_{1} p_{3}-2 p_{2} p_{3}=8 a^{2}-6
$$

N. GHANMI AND I. AL-RASASI

Thus,

$$
5\left(p_{1}-\frac{p_{2}+p_{3}}{5}\right)^{2}+\frac{9}{5}\left(p_{2}-\frac{2}{3} p_{3}\right)^{2}=8 a^{2}-6
$$

It follows that
$\frac{9}{5}\left(p_{2}-\frac{2}{3} p_{3}\right)^{2}<8 a^{2}-6$.
But, as $p_{3}<\frac{\beta(\gamma+1)}{\gamma(\beta+1)} p_{2}=\frac{4}{3} p_{2}$ and by $\left(F_{13}\right)$, we obtain

$$
\frac{1}{5}\left(\frac{p_{3}}{4}\right)^{2}<\frac{9}{5}\left(p_{2}-\frac{2}{3} p_{3}\right)^{2}<8 a^{2}
$$

Therefore,

$$
p_{3}<8 \sqrt{10} a
$$

(b) Now, suppose that $\alpha \geq 6$, then by equation $\left(E_{1}\right)$ we obtain

$$
6\left(p_{1}^{2}-a^{2}\right) \leq 2\left(p_{2} p_{3}-1\right)
$$

$$
\left(F_{14}\right)
$$

Now, the relation $\left(F_{14}\right)+\left(E_{2}\right)+\left(E_{3}\right)$ gives
$6\left(p_{1}^{2}-a^{2}\right)+2\left(p_{2}^{2}-a^{2}\right)+\left(p_{3}^{2}-a^{2}\right) \leq 2\left(p_{2} p_{3}-1\right)+2\left(p_{1} p_{3}-1\right)+2\left(p_{1} p_{2}-1\right)$.
This implies that
$6\left(p_{1}-\frac{p_{2}+p_{3}}{6}\right)^{2}+\frac{11}{6}\left(p_{2}-\frac{7}{11} p_{3}\right)^{2}+\frac{p_{3}^{2}}{11} \leq 9 a^{2}-6$.
On the other hand as $p_{3}<\frac{\beta(\gamma+1)}{\gamma(\beta+1)} p_{2}=\frac{4}{3} p_{2}$, we have

$$
\frac{11}{6}\left(p_{2}-\frac{7}{11} p_{3}\right)^{2}>\frac{25}{1056} p_{3}^{2}
$$

Hence,
$\frac{11}{6}\left(p_{2}-\frac{7}{11} p_{3}\right)^{2}+\frac{p_{3}^{2}}{11}>\frac{25}{1056} p_{3}^{2}+\frac{p_{3}^{2}}{11}=\frac{97}{1056} p_{3}^{2}$.
Then by $\left(F_{15}\right)$, we obtain

$$
\frac{97}{1056} p_{3}^{2}<9 a^{2}
$$

and so

$$
p_{3}<10 a
$$

Case 2: Now, suppose that $(\gamma, \beta) \neq(1,2)$ which is equivalent to ($\alpha \geq 4, \beta \geq 3$ and $\gamma \geq 1$).
The equations $\left(E_{1}\right),\left(E_{2}\right)$, and $\left(E_{3}\right)$ give respectively

$$
\begin{array}{cl}
4\left(p_{1}^{2}-a^{2}\right) \leq 2\left(p_{2} p_{3}-1\right), \\
3\left(p_{2}^{2}-a^{2}\right) \leq 2\left(p_{1} p_{3}-1\right), \tag{8}\\
p_{3}^{2}-a^{2} \leq 2\left(p_{1} p_{2}-1\right) & \left(E_{7}\right) \\
\end{array}
$$

Then the relation $\left(E_{7}\right)+\left(E_{8}\right)+\left(E_{9}\right)$ gives
$4\left(p_{1}^{2}-a^{2}\right)+3\left(p_{2}^{2}-a^{2}\right)+\left(p_{3}^{2}-a^{2}\right) \leq 2\left(p_{2} p_{3}-1\right)+2\left(p_{1} p_{3}-1\right)+2\left(p_{1} p_{2}-1\right)$.
This implies that
$4\left(p_{1}-\frac{p_{2}+p_{3}}{4}\right)^{2}+\frac{11}{4}\left(p_{2}-\frac{5}{11} p_{3}\right)^{2}+\frac{2 p_{3}^{2}}{11} \leq 8 a^{2}-6$.
$\left(F_{16}\right)$
On the other hand as $p_{3}<\frac{\beta(\gamma+1)}{\gamma(\beta+1)} p_{2} \leq 2 p_{2}$, we have

$$
\frac{11}{4}\left(p_{2}-\frac{5}{11} p_{3}\right)^{2}>\frac{1}{176} p_{3}^{2}
$$

Therefore,

$$
\frac{11}{4}\left(p_{2}-\frac{5}{11} p_{3}\right)^{2}+\frac{2 p_{3}^{2}}{11}>\frac{1}{176} p_{3}^{2}+\frac{2 p_{3}^{2}}{11}=\frac{363}{1936} p_{3}^{2}
$$

Then by $\left(F_{16}\right)$, we get

$$
\frac{363}{1936} p_{3}^{2}<8 a^{2}
$$

and so

$$
p_{3}<7 a
$$

Thus, in all cases, p_{3} is bounded. Since $p_{1}<p_{2}<p_{3}$, the number of possibilities for $N=p_{1} p_{2} p_{3}$ such that $a<p_{1}$ is finite.

Finally, we conclude that for each fixed a there are only finitely many W_{a}-numbers with three prime factors.

5. Acknowledgement

We thank the referee for his/her report improving both presentation and the mathematical content of the paper.

N. GHANMI AND I. AL-RASASI

References

[1] K. Bouallegue, O. Echi, and R. Pinch, Korselt numbers and sets, International Journal Of Number Theory, 6 (2010), 257-269.
[2] R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, New York, 2005.
[3] O. Echi, Williams numbers, Mathematical Reports of the Academy of Sciences of the Royal Society of Canada, 29.2 (2007), 41-47.
[4] O. Echi and N. Ghanmi, The Korselt set of pq, International Journal of Number Theory, 8.2 (2012), 299-309.
[5] S. Kohl, On Carmichael numbers with 3 factors, Short Note (2006), http://www.gap-system.org/ DevelopersPages/StefanKohl/publications_kohl.html
[6] A. Korselt, Problème chinois, L'intermediaire des Mathématiciens, 6 (1899), 142143.
[7] H. C. Williams, On numbers analogous to the Carmichael numbers Cand. Math. Bull., 20 (1977), 133-143.

MSC2000: 11Y16, 11Y11, 11A51.
Key words and phrases: Carmichael number, Korselt number, Williams number, Prime number, squarefree composite number.
(Al-Rasasi) King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics PO.Box 5046, Dhahran 31261, Kingdom of Saudi Arabia.

E-mail address: irasasi@kfupm.edu.sa
(Ghanmi) University College in Makkah, Department of Mathematics, Azizia PO.Box 2064, Makkah, Kingdom of Saudi Arabia.

E-mail address: naghanmi@uqu.edu.sa and neghanmi@yahoo.fr

