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Abstract. The design and implementation analysis of a K-step lin-
ear multistep method for direct integration of second order initial
value problems of ordinary differential equations without reformu-
lation into first order systems is discussed. The derivation of the
method and analysis of its basic properties are adopted from the
Taylor series expansion and Dahlquist stability model test methods.
The result when examined with step-number k = 6 shows that the
scheme is symmetric, consistent, zero-stable, and convergent.

1. Introduction

The general k-step method under consideration is of the form

k
∑

j=0

αjym+j = hm

k
∑

j=0

βjfn+j ,m = 2 (1.1)

where yn+j is the sequence of values for j = 0(1)k and fn+j ≡ ynn+j .

Operationally defined by [8] as ρ(E)yn = hmδ(E)fn, ρ(E) and δ(E) are
the first and second characteristic polynomials respectively, equation (1.1)
is proposed for the solution of the second order initial value problems of
ordinary differential equations of the form

y′′ = f(x, y, y′), y(a) = η0, y
′(a) = η1 (1.2)

for y, y′, f ∈ R
n, x ∈ [a, b]. From (1.1) yn+1 is the approximate numerical

solution obtained at xn+jfn+j ≡ f(xn+j , yn+j). It is assumed that 1.2
satisfies the existence and uniqueness theorem.

Differential equations are an important device used by scientists, engi-
neers and business managers to extract information about systems they

Key words and phrases. Symmetric; Consistent; Zero-stable; Convergent; Interval of
absolute stability and Error constant.
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wish to analyze. Most differential equation problems encountered in sci-
ence and engineering such as control theory, celestial mechanics, electrical
network, transonic, air flow, radio-active process, and transverse motion to
mention a few do not either admit a closed form solution or the analyti-
cal solution is too involved to be useful. In case of non-linear differential
equations, a closed form solution is often ruled out. For these reasons,
most problems in science and technology are approached numerically. In
the literature, problems of the form (1.2) are reformulated as first order
systems and solved conventionally. In [16], an attempt was made to solve
1.2 directly for step-number k = 3 when m = 2. In this paper, Problem 1.2
will be solved directly for any even k ≥ 6 with m = 2. Different researchers
have worked on the linear multistep method using different approaches (see
[14, 15, 8, 19, 3, 4, 12, 13, 2, 6, 20, 9, 10, 11, 18, 17]). These approaches
were adopted as a pilot guide in this paper.

2. THE ADOPTED METHOD WITH THE NEW SIX-STEP
FORMULA

Consideration is given to linear multistep methods of the form

yn+k =

k−1
∑

j=0

αjyn+j = h2
k

∑

j=0

βjfn+j, k = 6 (2.1)

subject to conditions αj = αk−j and βj = βk−j for j = O(1)k2 , αj ’s and
βj ’s are real constants, and α0 and β0 are not both equal zero. The values
of the coefficients are determined by the local truncation error.

Definition 1. The truncation error is the quantity T which must be added
to the true value representation of the computed quantity in order that the
result be exactly equal to the quantity we are seeking to generate.

Suppose

y(true representation) +T = y(exact).

From the definition above using equation (2.1) the local truncation error
becomes

Tn+k = yn+k −

k−1
∑

j=0

αjyn+j + h2
k
∑

j=0

βjfn+j . (2.2)
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Substituting the results obtained from the adoption of the Taylor series
expansion of yn+k, yn+j , and fn+j about xn to yield

Tn+k = yn + (kh)y1n +
(kh)2

2!
y2n + · · ·+

(kh)p

p!
ypn +

(kh)p+1

(p+ 1)!
yp+1
n +O(hp+2)

−

k−1
∑

j=0

αj

[

yn(jh)y
1
n +

(jh)2

2!
y2n + · · ·+

(jh)p

p!
ypn +

(jh)p+1

(p+ 1)!
yp+1
n

+O(hp+2)
]

− h2
k
∑

j=0

βj

[

y2n + (jh)y3n +
(jh)2

2!
y4n + · · ·+

(jh)p−2

(p− 2)!
ypn

+
(jh)p−1

(p− 1)!
yp+1
n +O(hp)

]

. (2.3)

Collecting terms in equal powers of h

Tn+k =
(

1−

j−1
∑

j=0

αj

)

yn +
(

k −
k−1
∑

j=0

jαj

)

hy1n +
(k2

2!
−

k−1
∑

j=0

(j)2

2!
αj

−

k
∑

j=0

βj

)

h2y2n +
(k3

3!
−

k−1
∑

j=0

(j)3

3!
αj −

k
∑

j=0

jβj

)

h3y3n + · · ·

+
(kp

p!
−

k−1
∑

j=0

(j)p

p!
αj −

k
∑

j=0

(j)p−2

(p− 2)!
βj

)

hpypn

+
( kp+1

(p+ 1)!
−

k−1
∑

j=0

(j)p+1

(p+ 1)!
αj −

k
∑

j=0

(j)p−1

(p− 1)!
βj

)

hp+1yp+1
n

+O(hp+2). (2.4)

Six-step Method.

Setting k = 6 in Equation (2.1) yields

yn+6 = α0yn + α1yn+1 + α2yn+2 + α3yn+3 + α4yn+4 + α5yn+5 (2.5)

+ h2{β0fn + β1fn+1 + β2fn+2 + β3fn+3 + β4fn+4 + β5fn+5 + β6fn+6}

with local truncation error.
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Tn+6 = (1− α0 − α1 − α2 − α3 − α4 − α5)yn + (6− α1 − 2α2 − 3α3

− 4α4 − 5α5)hy
1
n +

(36

2
−

1

2!
(α1 + 4α2 + 9α3 + 16α4 + 25α5)

− (β0 + β1 + β2 + β3 + β4 + β5 + β6)
)

h2y2n +
(216

6
−

1

3!
(α1

+ 8α2 + 27α3 + 64α4 + 125α5)− (β1 + 2β2 + 3β3 + 4β4

+ 5β5 + 6β6)
)

h3y3n +
(1296

24
−

1

4!
(α1 + 16α2 + 81α3 + 256α4

+ 625α5)−
1

2!
(β1 + 4β2 + 9β3 + 16β4 + 25β5 + 36β6)

)

h4y4n

+
(7776

120
−

1

5!
(α1 + 32α2 + 243α3 + 1024α4 + 3125α5)

−
1

3!
(β1 + 8β2 + 27β3 + 64β4 + 125β5 + 216β6)

)

h5y5n

+
(46656

720
−

1

6!
(α1 + 64α2 + 729α3 + 4096α4 + 15625α5)

−
1

4!
(β1 + 16β2 + 81β3 + 256β4 + 625β5 + 1296β6)

)

h6y6n (2.6)

+
(279936

5040
−

1

7!
(α1 + 128α2 + 2187α3 + 16384α4 + 78125α5)

−
1

5!
(β1 + 32β2 + 243β3 + 1024β4 + 3125β5 + 7776β6

)

h7y7n

+
(1679616

40320
−

1

8!
(α1 + 256α2 + 6561α3 + 65536α4 + 390625α5)

−
1

6!
(β1 + 64β2 + 72β3 + 4096β4 + 15625β5 + 46656β6

)

h8y8n

+
(10077696

362880
−

1

9!
(α1 + 512α2 + 19683α3 + 262144α4 + 1953125α5)

−
1

7!
(β1 + 128β2 + 2187β3 + 16384β4 + 78125β5 + 279936β6

)

h9y9n

+
(60466176

3528800
−

1

10!
(α1 + 1024α2 + 59049α3 + 1048576α4

+ 9765625α5)−
1

8!
(β1 + 256β2 + 6561β3 + 65536β4 + 390625β5

+ 1679616β6

)

h10y10n +
(362797056

39916800
−

1

11!
(α1 + 2048α2 + 177147α3

+ 4914304α4 + 48828125α5)−
1

9!
(β1 + 512β2 + 19683β3 + 262144β4
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+ 1953125β5 + 10077696β6

)

h11y11n +
(21767782336

479001600
−

1

12!
(α1

+ 4096α2 + 531441α3 + 16777216α4 + 244140625α5)−
1

10!
(β1

+ 1024β2 + 59049β3 + 1048576β4 + 9765625β5 + 60466176β6

)

h12y12n

+O(h12). (2.7)

Definition 2. A linear multistep method (2.1) and the local truncation
error Tn+k is said to be of order p if C0 = C1 = C2 = · · · = Cp = Cp+1 = 0,
but Cp+2 6= 0.

Imposing accuracy of order P on truncation error Tn+6, we have

Ci = 0, i = O(1)p+ 1,

and equation (2.7) now becomes

α0 + α1 + α2 + α3 + α4 + α5 = 1,

α1 + 2α2 + 3α3 + 4α4 + 5α5 = 6,

1

2!
(α1 + 4α2 + 9α3 + 16α4 + 25α5) + (β0 + β1 + β2 + β3 + β4 + β5

+ β6) =
36

2
1

3!
(α1 + 8α2 + 27α3 + 64α4 + 125α5) + (β1 + 2β2

+ 3β3 + 4β4 + 5β5 + 6β6) =
216

6
, (2.8)

...

1

12!
(α1 + 4096α2 + 531441α3 + 16777216α4 + 244140625α5) +

1

10!
(β1

+ 1024β2 + 59049β3 + 104857β4 + 9765625β5 + 60466176β6)

=
2176782336

479001600
.

In [16, 17], it was shown that the coefficients of first characteristic poly-
nomial ρ(r) always agree with the rule of Pascal’s triangle. Consequently,
on adoption of Pascal’s triangle, the values of α’s in (2.8) are found to be

α0 = −1, α1 = 6, α2 = −15, α3 = 20, α4 = −15, α5 = 6 (2.9)

which, by substitution, reduces (2.8) to
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β1 + β2 + β3 + β4 + β5 + β6 = 0,

β1 + 2β2 + 3β3 + 4β4 + 5β5 + 6β6 = 0,

β1 + 4β2 + 9β3 + 16β4 + 25β5 + 36β6 = 0,

β1 + 8β2 + 27β3 + 64β4 + 125β5 + 216β6 = 0,

β1 + 16β2 + 81β3 + 256β4 + 625β5 + 1296β6 = 24,

β1 + 32β2 + 243β3 + 1024β4 + 3125β5 + 7776β6 = 360, and

β1 + 64β2 + 729β3 + 4096β4 + 15625β5 + 46656β6 = 3420. (2.10)

It follows from the Gaussian process that

β0 =
1

12
, β1 =

6

12
, β2 = −

33

12
, β3 =

52

13
, β4 = −

33

12
, β5 =

6

12
, β6 =

1

12
.

(2.11)
Using (2.11) in (2.5) yields a symmetric scheme

yn+6 = 6yn+5 + 15yn+4 − 20yn+3 + 15yn+2 + 6yn+1 − yn

+
h2

12
{fn+6 + 6fn+5 − 33fn+4 + 52fn+3 − 33fn+2 + 6fn+1 − fn}.

(2.12)

3. Predictors

In order to use equation (2.12), it is necessary to know the previous
values yn+j of y and f at xn+j , j = O(1)6, h > 0. Applying the Taylor
series expansion technique about xn for yn+k is applied.

yn+k ={y(xn + kh) = y(xn) + (kh)y1(xn) +
(hk)2

2!
y2(xn)

+
(kh)3

3!
y3(xn) + · · ·+

(jk)p

p!
yp(xn) +O(hp+1) (3.1)

and its first derivative

y′n+k ={y′(xn + kh) = y1(xn) + (kh)y2(xn) +
(hk)2

2!
y3(xn)

+
(kh)3

3!
y4(xn) + · · ·+

(jk)p

p!
yp+1(xn) +O(hp+2). (3.2)

The procedure for development of predictors is the same as for the
main method. The discrete schemes and their required first derivatives are
determined by Taylor’s method. Note that fn+k = f(xn+1, yn+k, y

′

k+n),
k = O(1)6 also y′′n = fn (see [16, 17] and [3, 4] for details).
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4. Basic Property of Equation (2.12)

In order to ascertain the accuracy and suitability of equation (2.12), it
is important to carry out the analysis of its basic properties such as the
order of accuracy and error constant, symmetry, consistency, convergence,
zero stability, and region of absolute stability.

4.1. Order of accuracy and error constant. Substituting the results
(2.9) and (2.11) into (2.8) yields

C0 = −1 + 6− 15 + 20− 15 + 6− 1 = 0

C1 = 6− 30 + 60− 60 + 30− 6 = 0

C2 =
1

2
(6− 60 + 180− 240 + 150− 36) +

1

12
(1 + 6− 33 + 52− 33

+ 6 + 1) = 0

...

C9 =
1

362880
(6 − 7680 + 393660− 3932160+ 11718750− 10077696)

+
1

60480
(6 − 4224 + 113724− 540672+ 468750 + 279936) = 0

C10 =
1

3628800
(6− 15360 + 1180980+ 58593750− 60466176)

+
1

483840
(6− 8444 + 341142− 2162688+ 2343750− 1679616)

= −
1

240
. (4.1.1)

Thus, C0 = C1 = · · · = C9 = 0, but C10 = Cp+2 6= 0, hence equation (2.12)
is of order 8, since p+ 2 = 10 with truncation error Cp+2 = − 1

240 .

4.2. Symmetry. Formula (2.12) is symmetry if αj = αk−j and βj = βk−j

for j = O(1)k2 and even k, that is

α0 = α6 = 1 β0 = β6 = 1
α1 = α5 = −6 β1 = β5 = 6
α2 = α4 = 15 β2 = β4 =−33
α3 = α3 =−20 β3 = β3 = 52
α4 = α2 = 15 β4 = β2 =−33
α5 = α1 = −6 β5 = β1 = 6
α6 = α0 = 1 β6 = β0 = 1

hence, Formula (2.12) is symmetric.
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4.3. Consistency. Method (2.12) is consistent because it satisfies the fol-
lowing:

(i) it has order p ≥ 1 since Formula (2.12) is order 8,

(ii)

k
∑

j

αj = O(1)6 (see (2.9)),

(iii) ρ(r) = ρ′(r) = 0, r = 1,
(iv) ρ′′(r) = 2!δ(r), r = 0 (see [17, 13] for details).

4.4. Zero stability. The stability polynomial of (2.12) is given by

π(r, h) = r6 − 6r5 + 15r4 − 20r3 + 15r2 − 6r + 1

−
h

12
(r6 + 6r5 − 33r4 + 52r3 − 33r2 + 6r + 1) = 0; (4.4.1)

ρ(r) in Section 4.3 is to have zero stability as demonstrated by

ρ(r) = r6 − 6r5 + 15r4 − 20r3 + 15r2 − 6r + 1 = 0

(r − 1)(r5 − 5r4 + 10r3 − 10r2 − 5r!) = 0

(r − 1)6 = 0.

Thus, equation (2.12) is zero stable since none of the roots of ρ(r) has
modulus greater than one (|r|, 1).

4.5. Convergence. Since equation (2.12) has been shown to be consistent
and zero stable, then it is convergent [1, 8, 13].

4.6. Region of absolute stability. To determine the region of absolute
stability of Method (2.12) as discussed in [12] and [8], let

h(r) =
ρ(r)

δ(r)
, (4.6.1)

where ρ(r), δ(r) remain the same as defined earlier. Adopting the values
of ρ(r) and δ(r) as in Section 4.3, equation (4.6.1) becomes

h(r) =
12(r6 − 6r5 + 15r4 − 20r3 + 15r2 − 6r + 1)

r6 + 6r5 − 33r4 + 52r3 − 33r2 + 6r + 1
. (4.6.2)

Replacing r by eiθ, 0 ≤ θ ≤ π, (4.6.2) becomes

h(θ) =
P (θ)

Q(θ)
, (4.6.3)

where P (θ) = 12(cos 6θ−6 cos5θ+15 cos4θ−20 cos3θ+15 cos2θ−6 cosθ+
1)+12i(sin 6θ−6 sin5θ+15 sin4θ−20 sin3θ+15 sin2θ−6 sin θ) and Q(θ) =
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(cos 6θ+6 cos 5θ− 33 cos 4θ+52 cos 3θ− 33 cos 2θ+6 cos θ+1)+ i(sin 6θ+
6 sin 5θ − 33 sin 4θ + 52 sin 3θ − 33 sin2θ + 6 sin θ).
Rationalizing and simplifying (4.6.3),

h(θ) = x(θ) + iy(θ),

where x(θ) = 12(−2 cos 5θ−4 cos 4θ+102 cos 3θ−432 cos 2θ+924 cos θ−588)
−2 cos 5θ−28 cos 4θ+6 cos 3θ+624 cos 2θ−2052 cos θ+1452 and

y(θ) = 0.
Evaluation of x(θ), 0 ≤ θ ≤ 180◦ at intervals of 30◦ yields these results.
Thus, the interval of absolute stability of (2.12) is (−6,∞).

θ 0 30 60 90 120 150 180
x(θ) ∞ −0.274 −1.091 −2.400 −4.000 −5.417 −6.000

5. Numerical Experiments

In order to ascertain the applicability and accuracy of method 2.12,
two numerical examples, linear and nonlinear for special and general case
problems of second order initial value problems are solved to demonstrate
the accuracy of the new method. The accuracy of the new method is
determined via the size of the discretization error estimates `n obtained by
subtracting the approximate solution from the corresponding exact solution
of the problems. The results are compared with [16, 17] for h = 1

40 and [5]

for h = 1
320 .

Problem 1. y′′ + y = 0, y(0) = 0, y′(0) = 1.

Exact solution: y(x) = sinx.

Problem 2. y′′ = x(y′)2, y(0) = 1, y′(0) = 1
2 .

Exact solution: y(x) = 1 + 1
2 ln

(

2+x
2−x

)

.
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n xn Owolobi&
Ademiluyi
(2010) error

Owolobi (2011)
error

Newmethod
error

6 0.150 0.000311837 0.000000641 0.000000536
8 0.200 0.000872254 0.000002652 0.000001237
11 0.275 0.002564847 0.000012845 0.000000477
13 0.325 0.004438400 0.000029504 0.000009269
16 0.400 0.008664817 0.000083148 0.000054330
17 0.425 0.010509789 0.000112593 0.000084281
20 0.500 0.017553657 0.000431670 0.000251442

Table 1. Numerical sol. to Prob. 1 with step-size h = 1
40

n xn Owolobi&
Ademiluyi
(2010) error

Owolobi (2011)
error

New
method
error

6 0.150 0.000137210 0.000001907 0.000000192
8 0.200 0.000220060 0.000006437 0.000000451
11 0.275 0.000653028 0.000033855 0.000007224
13 0.325 0.001138210 0.000047207 0.000016427
16 0.400 0.002250195 0.000113964 0.000098560
17 0.425 0.002742171 0.000148177 0.000051409
20 0.500 0.003938079 0.000241637 0.000012189

Table 2. Numerical sol. to Prob. 2 with step-size h = 1
40

xn Exact solution Computedwith
newmethod

Absolute error
(method in [5])

Absolute error
(New method)

0.1 1.050041729278491 1.050041695187980 5.891000e-06 3.409051e-008

0.2 1.100335347731076 1.100334606520453 8.239900e-05 7.412106e-007

0.3 1.151140435936467 1.15113589185372 3.464210e-04 4.544082e-006

0.4 1.202732554054082 1.202706513180778 7.521010e-04 2.604087e-005

0.5 1.255412811882995 1.255283475630027 1.380283e-03 1.293363e-004

Table 3. Comparison of errors arising from Method ([5])
and the new method for Problem 2 with h = 1

320
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6. Conclusion

General higher order k-step method for direct integration of second order
initial value problems of ordinary differential equations has been proposed
as an alternative to [16] and [17]. Two test problems on both general and
special cases of nonlinear and linear second order ODE’s were solved ear-
lier by Owolabi and Ademiluyi [16] and by Owolabi [17]. The new method,
whose results as shown in the tables above, is significantly better in ac-
curacy than the results in [16, 17, 5] (see Table 3 for (2.1)). It was also
revealed from the analysis of the basic properties that the new method
is symmetric, consistent, convergent, zero stable with interval of absolute
stability (−6,∞).
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