
LOOKING FOR FIBONACCI BASE-2 PSEUDOPRIMES

DANIEL J. MONFRE AND DOMINIC KLYVE

Abstract. In this paper, we examine computationally the results
of combining two well-known, simple, and imperfect tests for pri-
mality: the Fermat base-2 test, and the Fibonacci test. Although
considerable attention has been paid to various properties of com-
posite integers which pass the base-2 test (base-2 pseudoprimes), no
comparable study of Fibonacci and base-2 Fibonacci tests exists in
the literature. Our study tabulates various empirical properties of
these numbers. Among other things, we conclude that there are no
base-2 Fibonacci pseudoprimes less than 1015 which are congruent
to 2 or 3 (modulo 5).

1. Introduction

Several primality tests are based on the simple expedient of taking the
converse of theorems about primes. Perhaps the most famous of these arises
from Fermat’s little theorem, which states (as a special case) that

2p−1 ≡ 1 (mod p) (1)

for any odd prime p. Its converse gives us the following test.

Primality Test 1.1 (Base-2 Fermat test). For a given integer n > 1, com-
pute 2n−1 (mod n). If the result is 1, return “probable prime.” Otherwise,
return “composite.”

The test is not perfect; in addition to returning probable prime for all
prime integers, it sometimes returns probable prime for composite integers.
A composite number n that “passes” the test (that is, for which the test
returns “probable prime”) is said to be a base-2 pseudoprime. It is known
that there are infinitely many base-2 pseudoprimes [1], the smallest of which
is 341 = 11 · 31.

A second theorem about primes concerns, a bit surprisingly, the Fi-
bonacci numbers. If we let Fi denote the ith number in the Fibonacci
sequence 1, 1, 2, 3, 5, . . . (where F0 = 0), then the following theorem holds
(see [4] for a proof).
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Theorem 1.2 (Fibonacci primality theorem). If n is prime, then

Fn−(n|5) ≡ 0 (mod n), (2)

where (n|5) =
(

n
5

)

denotes the Legendre symbol; that is,

(n

5

)

=











1 if n ≡ ±1 (mod 5)

−1 if n ≡ ±2 (mod 5)

0 if n ≡ 0 (mod 5).

As with the base-2 test, we can take the converse of this theorem and
use it as a primality test, (although it ends up being more useful to restrict
to the case of integers coprime to 5).

Primality Test 1.3 (Fibonacci primality test). Given a positive integer
n with (n, 5) = 1, compute Fn−(n|5) (mod n). If the result is 0, return
“probable prime.” Otherwise, return “composite.”

Just as the base-2 test was a special case of a more general test which
allows 2 to be replaced with any number base, the Fibonacci primality test
is a special case of a more general test which allows the Fibonacci sequence
to be replaced by an arbitrary Lucas sequence (see [6] for more information,
and [4] for additional discussion and a proof of the general theorem). Also,
as was the case with the base-2 test, the Fibonacci test is far from perfect;
once again, there are infinitely many Fibonacci pseudoprimes [7], the first
of which is 323 = 17 · 19.

Both of these tests run quite quickly (in fact, each can test an integer n
in O(log n) arithmetic operations), but the failure rate for each is too high
to use in practice (see Table 3). However, we might expect considerably
more success if we were to combine the tests into one large, stronger test.

Primality Test 1.4. [The Fibonacci Base-2 Primality Test] Given an in-
teger n,

(1) Subject n to a base-2 primality test. If that test returns composite,
return “composite” and stop. Else go to step 2.

(2) Subject n to a Fibonacci primality test. If this test returns compos-
ite, return “composite.” Else, return “probable prime.”

This test combines the identification power of both Tests 1.1 and 1.3,
and we expect that it will be considerably stronger than either test alone.
In fact, we might hope (if a bit naively) that no composite integers will pass
Primality Test 1.4. Alas, this is not the case: there are still infinitely many
Fibonacci Base-2 pseudoprimes, the smallest of which is 6601 = 7 ·23 ·41. It
turns out, however, that a study of the properties of these base-2 Fibonacci
pseudoprimes reveals some curious information about their distribution.
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2. Earlier Computational Work

2.1. Base-2 pseudoprimes (psp(2)’s). The computation of base-2 pseu-
doprimes (psp(2)’s) has a long history, dating back to at least 1820 when
Sarrus noted that the composite number 341 was a solution to Fermat’s
little theorem. The advent of computers has led to comprehensive searches
for psp(2)’s, the current record being an enumeration of all psp(2)’s not
greater than 1015 [5] (see also [8] for important searches with important
milestones and statistics). Beginning with [8], these searches involved the
clever use of theorems about psp(2)’s to limit the search space – that is,
not every composite number needed to be tested.

2.2. Fibonacci pseudoprimes (fpsp’s). By constrast, the Fibonacci pseu-
doprimes (fpsp’s) are comparative newcomers on the scene. They were first
defined by Emma Lehmer in 1964 [7], who proved in the same paper that
there exist infinitely many fpsp’s. Much less has been proven about fpsp’s,
and computational searches for these numbers are correspondingly less com-
prehensive. The most intensive previous search known to us was conducted
by Peter Anderson [2], who found all fpsp’s less than 2,217,967,487.

2.3. Base-2 Fibonacci pseudoprimes (fpsp(2)’s). Beginning with the
work of Pomerance, Selfridge, and Wagstaff [8], some computational work
has been expended on finding those composite integers which are both
psp(2)’s and fpsp’s. These base-2 Fibonacci pseudoprimes (fpsp(2)’s) are
comparatively rare, but still exist in large enough numbers to obviate the
immediate utility of any primality test based on these tests. However,
Pomerance et al. noted that none of the fpsp(2)’s yet found is congruent
to 2 or 3 modulo 5. The authors of [8] offered a $30 prize for the first such
integer found. This prize, which has since been increased to $620 with the
three offering ($20 + $100 + $500) for the first integer found, or ($500 +
$100 + $20) for a proof that no such integer exists.

2.4. Present work and computational methods. Our work involves
extending Anderson’s fpsp search by a factor of more than 200 and compil-
ing statistical information about fpsp’s and fpsp(2)’s. Because our primary
concern was an extension of the search bound for fpsp’s, we first searched
the range [1, 5 · 1011] for fpsp’s, and then from that set of fpsp’s, we ap-
plied the base-2 test to find all the fpsp(2)’s. A second data set of fpsp(2)’s
was generated using Galway’s data on psp(2)’s up to 1015. We acquired
Galway’s data, and checked each pseudoprime for fpsp status. We thereby
acquired two datasets: a smaller set of all integers up to 5 · 1011 which are
fpsp’s, psp(2)’s, or fpsp(2)’s, and a largest set of all integers up to 1015

which are psp(2)’s and fpsp(2)’s.
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All of our computations were performed using PARI/gp. Checking equa-
tion (1) was done by using the built-in binary ladder for modular exponen-
tiation. To check whether our integers satisfied equation (2), and were
therefore candidates for being fpsp’s, we needed a method to calculate
Fn−(n|5) (mod n). Following a suggestion of Peter Anderson, we used a
simple method based on an elementary identity concerning matrix expo-
nentiation and Fibonacci numbers, namely:

Theorem 2.1. Let Fn be, as before, the nth Fibonacci number. Then
(

1 1
1 0

)n

=

(

Fn+1 Fn

Fn Fn−1

)

.

By considering the matrix entries (mod n), the matrix exponentiation
was carried out in time O(log n) using the same binary ladder technique
used in the base-2 test. We were able thereby to test even “large” integers
for their fpsp status quite easily. Our code ran on a computer in a lab at
Carthage College, over weekends and during other periods of low use. The
machines were Windows PC’s with 2.8GHz Pentium processors, and tested
all integers coprime to 5 for fpsp status. In practice, we found we could
search a range of a billion integers in about 24 hours, so that our entire
computation (minus separate runs to double-check certain ranges of our
calculation) consumed about 500 CPU days.

3. Results

We begin with a simple enumeration of pseudoprimes up to a given
bound, (Table 3), giving an idea of the efficacy of combining the two tests.

x fpsp’s psp(2)’s fpsp(2)’s
103 2 3 0
104 9 22 1
105 50 78 4
106 155 245 15
107 511 750 50
108 1460 2057 134
109 4152 5597 377
1010 11049 14884 968
1011 29334 38975 2517
5× 1011 57238 76242 4734
1012 101629 6222
1013 264239 15589
1014 687007 38749
1015 1801533 98116

(3)

Table 3. Number of pseudoprimes less than x.
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Here we quickly see that the base-2 Fibonacci tests, when combined, are
quite powerful. Fewer than 100, 000 integers are pseudoprimes up to 1015;
that is, the probability of a composite integer less than 1015 being a fpsp(2)
is about 1 in 3× 108.

Recalling the observation of Pomerance et al., however, we note that of
even more interest than the count may be the distribution of pseudoprimes
in residue classes.

k all composites fpsp’s psp(2)’s fpsp(2)’s
% # % # % # %

2 13 33792 59 34373 23 2309 50
3 21 6478 11 8007 54 665 14
4 23 8144 14 13562 9 894 19
5 19 6733 12 14168 10 678 14
6 12 1922 3 5465 4 152 3
7 7 167 0.3 648 0.4 17 0.3
8 3 2 0 17 0 0 0
9 1 0 0 0 0 0 0

Number and percentage of numbers below 5 · 1011

with exactly k prime divisors.

4. The distribution of pseudoprimes in residue classes

Table 4 gives the distribution of psp(2)’s, fpsp’s, and fpsp(2)’s up to
5× 1011 in various residue classes, together with the same information for
psp(2)’s and fpsp(2)’s up to 1015. Looking at this data, it is easy to observe
that for any n, the largest residue class seems to be 1 (mod n). Following
the example of [8], we have computed a similar table for all moduli ≤ 200.

For 178 of these 200 moduli, the residue class 1 (mod m) contains the
largest number of fpsp’s. The smallest modulus which serves as a counter-
example is m = 41, in which there are 2563 fpsp(2)’s in 0 (mod 41), and
only 2115 in 1 (mod 41). In the set of fibpsp(2)’s up to 1015, the smallest
residue class for which 1 (mod m) is not the largest class mod m is m = 31,
for which there are 6790 fpsp(2)’s which are 0 (mod 31), and 6778 which
are 1 (mod 31).

The following table lists the number of pseudoprimes by residue class.
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Less than 5× 1011 Less than 1015

Modulus Class fpsp’s psp(2)’s fpsp(2)’s psp(2)’s fpsp(2)’s
3 0 792 1789 14 20607 66
3 1 35794 64908 4298 1547871 87896
3 2 20652 9545 422 233055 10154
4 1 34803 67670 4305 1603709 87818
4 3 22435 8572 429 197824 10298
5 0 0 4417 0 69477 0
5 1 34882 45519 4586 1123305 94620
5 2 9103 9470 0 224513 0
5 3 8283 9225 0 212523 0
5 4 4970 7611 148 171715 3496
6 1 35794 64908 4298 1547871 87896
6 3 792 1789 14 20607 66
6 5 20652 9545 422 233055 10154
7 0 2317 6553 130 119752 1694
7 1 19189 31621 2200 807226 46386
7 2 6128 7162 349 160842 6270
7 3 6509 8364 718 193593 16460
7 4 5856 6936 339 156600 6354
7 5 6356 7774 428 180257 8391
7 6 10883 7832 570 183263 12561
8 1 23594 45147 2703 1090108 55082
8 3 8912 4258 213 98976 5116
8 5 11209 22523 1602 513601 32736
8 7 13523 4314 216 98848 5182
9 1 21541 40895 2927 1004546 60831
9 2 5168 3242 152 77457 3361
9 3 415 895 4 10260 35
9 4 7162 11923 699 271353 13616
9 5 5109 3138 133 77914 3398
9 6 377 894 10 10347 31
9 7 7091 12090 672 271972 13449
9 8 10375 3165 137 77684 3395
12 1 26421 57758 3890 1385497 78321
12 3 111 69 0 585 0
12 5 7701 8192 401 198190 9431
12 7 9373 7150 408 162374 9575
12 9 681 1720 14 20022 66
12 11 12951 1353 21 34865 723
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5. Relationship to other primality tests

For many practical purposes, it is convenient to have a very fast primality
test, even if it may occasionally gives wrong information (e.g., it declares
that a composite number is prime). Perhaps the most frequently used
primality test today is the BPSW test, which involves modifications by
Baille and Wagstaff [3] to the work of Pomerance, Selfridge, and Wagstaff
described above [8]. The test has been described in several similar related
forms, but the canonical statement is probably the following test.

Primality Test 5.1 (BPSW Primality Test). Given an integer n,

(1) Perform a strong base-2 pseudoprime test on n (see below).
(2) If n passes the test above, find the first a in the sequence 5, −7, 9,

−11, . . . for which the Jacobi symbol
(

a
n

)

= −1. Then, perform a
Lucas pseudoprimality test with discriminant a on n.

(3) If n passes this test also, return “probable prime.”

For the purposes of the current article, it suffices to think of step one as
a slightly slower (but more rigorous) version of our Base-2 test, and step 2
as a similar analog to our Fibonacci test. Much has been written about this
test, which to date has no known exceptions. For more detailed information
about the BPSW test, see [3, 4]. Like the Base-2 and Fibonacci tests, the
BPSW test runs on time O(log n). However, in practice it requires more
bit operations than the base-2 Fibonacci described in this work. There
may, therefore, be some time savings to be found in deterministic programs
which determine the primality of many small integers (that is, those not
greater than 1015), by replacing the standard BPSW test with one that
uses the base-2 Fibonacci test for integers congruent to 2 or 3 modulo 5.

6. Distribution of pseudoprimes according to number of prime

divisors

Table 1 gives the number of Fibonacci pseudoprimes, base-2 pseudo-
primes, and Fibonacci/base-2 pseudoprimes below 5 · 1011 which have ex-
actly k distinct prime factors.

The percentage of all composites with k prime factors was calculated
via the formula Πk(x)/(x −Π1(x)), with x = 5× 1011, where Πk(x) is the
count of integers not greater than x with exactly k prime factors (counting
multiplicity). We used the asymptotic estimate

Πk(x) ∼
x

log x

(log log x)k−1

(k − 1)!
.

We find the same strange results that were reported in [8] – namely, that
there are a lot of pseudoprimes with two prime factors, and more with four

122 MISSOURI J. OF MATH. SCI., VOL. 24, NO. 2



LOOKING FOR FIBONACCI BASE-2 PSEUDOPRIMES

or five prime factors than there are with three. Like the authors of the
previous work, we have no idea why this should be.
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