EXISTENCE OF NONOSCILLATORY SOLUTIONS OF HIGHER-ORDER NONLINEAR NEUTRAL DELAY DIFFERENCE EQUATIONS

ZHENYU GUO, MIN LIU, AND MINGMING CHEN

$$
\begin{aligned}
& \text { ABSTRACT. This paper studies the existence of nonoscillatory solu- } \\
& \text { tions of a higher-order nonlinear neutral delay difference equation } \\
& \qquad \begin{array}{r}
\Delta\left(a_{k n} \cdots \Delta\left(a_{2 n} \Delta\left(a_{1 n} \Delta\left(x_{n}+b_{n} x_{n-d}\right)\right)\right)\right) \\
\\
+f\left(n, x_{n-r_{1 n}}, x_{n-r_{2 n}}, \ldots, x_{n-r_{s n}}\right)=0, \quad n \geq n_{0}
\end{array}
\end{aligned}
$$

where $n_{0} \geq 0, n \geq 0, d>0, k>0, s>0$ are integers, $\left\{a_{i n}\right\}_{n \geq n_{0}}(i=$ $1,2, \ldots, k)$ and $\left\{b_{n}\right\}_{n \geq n_{0}}$ are real sequences, $f:\left\{n: n \geq n_{0}\right\} \times \mathbb{R}^{s} \rightarrow$ \mathbb{R} is a mapping and $\bigcup_{j=1}^{s}\left\{r_{j n}\right\}_{n \geq n_{0}} \subseteq \mathbb{Z}$. By applying Krasnoselskii's Fixed Point Theorem, some sufficient conditions for the existence of nonoscillatory solutions of this equation are established and indicated through five theorems according to the range of value of the sequence b_{n}.

1. Introduction and preliminaries

In recent years, more and more people are interested in the study of the solvability of difference equations; see $[1-17]$ and the references cited therein. Many authors have paid attention to various difference equations. For example,

$$
\begin{gather*}
\Delta\left(a_{n} \Delta x_{n}\right)+p_{n} x_{g(n)}=0, \quad n \geq 0, \tag{1.1}\\
\Delta\left(a_{n} \Delta x_{n}\right)=q_{n} x_{n+1}, \quad \Delta\left(a_{n} \Delta x_{n}\right)=q_{n} f\left(x_{n+1}\right), \quad n \geq 0, \tag{1.2}\\
\Delta^{2}\left(x_{n}+p x_{n-m}\right)+p_{n} x_{n-k}-q_{n} x_{n-l}=0, \quad n \geq n_{0}, \tag{11}\\
\Delta^{2}\left(x_{n}+p x_{n-k}\right)+f\left(n, x_{n}\right)=0, \quad n \geq 1, \tag{1.4}\\
\Delta^{2}\left(x_{n}-p x_{n-\tau}\right)=\sum_{i=1}^{m} q_{i} f_{i}\left(x_{n-\sigma_{i}}\right), \quad n \geq n_{0}, \tag{10}\\
\Delta\left(a_{n} \Delta\left(x_{n}+b x_{n-\tau}\right)\right)+f\left(n, x_{\left.n-d_{1 n}, x_{n-d_{2 n}}, \ldots, x_{n-d_{k n}}\right)=c_{n},} \quad n \geq n_{0},\right. \tag{1.5}\\
\Delta^{m}\left(x_{n}+c x_{n-k}\right)+p_{n} x_{n-r}=0, \quad n \geq n_{0}, \tag{1.6}\\
\Delta^{m}\left(x_{n}+c_{n} x_{n-k}\right)+p_{n} f\left(x_{n-r}\right)=0, \quad n \geq n_{0},
\end{gather*}
$$

$$
\begin{align*}
& \Delta^{m}\left(x_{n}+c x_{n-k}\right)+\sum_{s=1}^{u} p_{n}^{s} f_{s}\left(x_{n-r_{s}}\right)=q_{n}, \quad n \geq n_{0} \tag{1.9}\\
& \Delta^{m}\left(x_{n}+c x_{n-k}\right)+p_{n} x_{n-r}-q_{n} x_{n-l}=0, \quad n \geq n_{0} \tag{1.10}
\end{align*}
$$

Motivated and inspired by the papers mentioned above, in this paper we consider the following higher-order nonlinear neutral delay difference equation

$$
\begin{align*}
\Delta\left(a_{k n} \cdots \Delta\right. & \left.\left(a_{2 n} \Delta\left(a_{1 n} \Delta\left(x_{n}+b_{n} x_{n-d}\right)\right)\right)\right) \tag{1.11}\\
& +f\left(n, x_{n-r_{1 n}}, x_{n-r_{2 n}}, \ldots, x_{n-r_{s n}}\right)=0, \quad n \geq n_{0}
\end{align*}
$$

where $n_{0} \geq 0, n \geq 0, d>0, k>0, s>0$ are integers, $\left\{a_{i n}\right\}_{n \geq n_{0}}(i=$ $1,2, \ldots, k)$ and $\left\{b_{n}\right\}_{n \geq n_{0}}$ are real sequences, $f:\left\{n: n \geq n_{0}\right\} \times \mathbb{R}^{s} \rightarrow \mathbb{R}$ is a mapping and $\bigcup_{j=1}^{s}\left\{r_{j n}\right\}_{n \geq n_{0}} \subseteq \mathbb{Z}$. However, to the authors' knowledge, few papers in the literature can be found dealing with the existence of nonoscillatory solutions for (1.11), which is mainly due to the technical difficulties arising in its analysis, especially when there are more than two factors $a_{i n}$ before each forward difference Δ. Clearly, difference equations (1.1)-(1.10) are special cases of (1.11). By using Krasnoselskii's Fixed Point Theorem, the existence of nonoscillatory solutions of (1.11) is established.

Lemma 1.1 (Krasnoselskii's Fixed Point Theorem). Let Ω be a bounded closed convex subset of a Banach space X and $T_{1}, T_{2}: \Omega \rightarrow X$ satisfy $T_{1} x+T_{2} y \in \Omega$ for each $x, y \in \Omega$. If T_{1} is a contraction mapping and T_{2} is a completely continuous mapping, then the equation $T_{1} x+T_{2} x=x$ has at least one solution in Ω.

The forward difference Δ is defined as usual, i.e., $\Delta x_{n}=x_{n+1}-x_{n}$. The higher-order difference for a positive integer m is defined as $\Delta^{m} x_{n}=$ $\Delta\left(\Delta^{m-1} x_{n}\right), \Delta^{0} x_{n}=x_{n}$. Throughout this paper, assume $\mathbb{R}=(-\infty,+\infty)$, \mathbb{N} and \mathbb{Z} stand for the sets of all positive integers and integers, respectively, $\alpha=\inf \left\{n-r_{j n}: 1 \leq j \leq s, n \geq n_{0}\right\}, \beta=\min \left\{n_{0}-d, \alpha\right\}, \lim _{n \rightarrow \infty}(n-$ $\left.r_{j n}\right)=+\infty, 1 \leq j \leq s, l_{\beta}^{\infty}$ denotes the set of real sequences defined on the set of positive integers larger than β where any individual sequence is bounded with respect to the usual supremum norm $\|x\|=\sup _{n \geq \beta}\left|x_{n}\right|$ for $x=\left\{x_{n}\right\}_{n \geq \beta} \in l_{\beta}^{\infty}$. It is well-known that l_{β}^{∞} is a Banach space under the supremum norm. A subset Ω of a Banach space X is relatively compact if every sequence in Ω has a subsequence converging to an element of X.

EXISTENCE AND UNIQUENESS OF A SOLUTION

Definition 1.1 ([5]). A set Ω of sequences in l_{β}^{∞} is uniformly Cauchy (or equi-Cauchy) if for every $\varepsilon>0$, there exists an integer N_{0} such that

$$
\left|x_{i}-x_{j}\right|<\varepsilon
$$

for all $i, j>N_{0}, x=x_{k} \in \Omega$.
Lemma 1.2 (Discrete Arzela-Ascoli’s Theorem [5]). A bounded, uniformly Cauchy subset Ω of l_{β}^{∞} is relatively compact.

Let
$A(M, N)=\left\{x=\left\{x_{n}\right\}_{n \geq \beta} \in l_{\beta}^{\infty}: M \leq x_{n} \leq N, n \geq \beta\right\} \quad$ for $\quad N>M>0$.
Obviously, $A(M, N)$ is a bounded closed and convex subset of l_{β}^{∞}. Put

$$
\bar{b}=\limsup _{n \rightarrow \infty} b_{n} \quad \text { and } \quad \underline{b}=\liminf _{n \rightarrow \infty} b_{n}
$$

By a solution of (1.11), we mean a sequence $\left\{x_{n}\right\}_{n \geq \beta}$ with a positive integer $N_{0} \geq n_{0}+d+|\alpha|$ such that (1.11) is satisfied for all $n \geq N_{0}$. As is customary, a solution of (1.11) is said to be oscillatory about zero, or simply oscillatory if the terms x_{n} of the sequence $\left\{x_{n}\right\}_{n \geq \beta}$ are neither eventually all positive nor eventually all negative. Otherwise, the solution is called nonoscillatory.

2. Existence of nonoscillatory solutions

In this section, five existence results of nonoscillatory solutions of (1.11) are offered.

Theorem 2.1. Assume that there exist constants b, M and N with $N>$ $M>0$ and sequences $\left\{a_{i n}\right\}_{n \geq n_{0}}(1 \leq i \leq k),\left\{b_{n}\right\}_{n \geq n_{0}},\left\{h_{n}\right\}_{n \geq n_{0}},\left\{q_{n}\right\}_{n \geq n_{0}}$ such that for $n \geq n_{0}$

$$
\begin{gather*}
\left|b_{n}\right| \leq b<\frac{N-M}{2 N} \tag{2.1}\\
\left|f\left(n, u_{1}, u_{2}, \ldots, u_{s}\right)-f\left(n, v_{1}, v_{2}, \ldots, v_{s}\right)\right| \\
\leq h_{n} \max \left\{\left|u_{i}-v_{i}\right|: u_{i}, v_{i} \in[M, N], 1 \leq i \leq s\right\} \tag{2.2}\\
\left|f\left(n, u_{1}, u_{2}, \ldots, u_{s}\right)\right| \leq q_{n}, u_{i} \in[M, N], 1 \leq i \leq s \tag{2.3}\\
\sum_{t=n_{0}}^{\infty} \max \left\{\frac{1}{\left|a_{i t}\right|}, h_{t}, q_{t}: 1 \leq i \leq k\right\}<+\infty \tag{2.4}
\end{gather*}
$$

Then (1.11) has a nonoscillatory solution in $A(M, N)$.

Proof. Choose $L \in(M+b N, N-b N)$. By (2.1) and (2.4), an integer $N_{0}>n_{0}+d+\alpha$ can be chosen such that

$$
\begin{equation*}
\left|b_{n}\right| \leq b<\frac{N-M}{2 N}, \text { for all } n \geq N_{0} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{t_{1}=N_{0}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \ldots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{q_{t}}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \leq \min \{L-b N-M, N-b N-L\} \tag{2.6}
\end{equation*}
$$

Define two mappings $T_{1}, T_{2}: A(M, N) \rightarrow X$ by

$$
\left(T_{1} x\right)_{n}=\left\{\begin{array}{lr}
L-b_{n} x_{n-d}, & n \geq N_{0} \tag{2.7}\\
\left(T_{1} x\right)_{N_{0}}, & \beta \leq n<N_{0}
\end{array}\right.
$$

$$
\begin{align*}
& \left(T_{2} x\right)_{n}= \\
& \left\{\begin{array}{l}
(-1)^{k} \sum_{t_{1}=n}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{f\left(t, x_{t-r_{1 t}}, x_{\left.t-r_{2 t}, \ldots, x_{t-r_{s t}}\right)}^{\prod_{i=1}^{k} a_{i t_{i}}}, n \geq N_{0},\right.}{\left(T_{2} x\right)_{N_{0}}, \beta \leq n<N_{0}}
\end{array}\right. \tag{2.8}
\end{align*}
$$

for all $x \in A(M, N)$.
(i) We claim that $T_{1} x+T_{2} y \in A(M, N)$, for all $x, y \in A(M, N)$.

In fact, for every $x, y \in A(M, N)$ and $n \geq N_{0}$, it follows from (2.3), (2.5) and (2.6) that

$$
\begin{aligned}
& \left(T_{1} x+T_{2} y\right)_{n} \\
& \geq L-b N-\sum_{t_{1}=n}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{\left|f\left(t, y_{t-r_{1 t}}, y_{t-r_{2 t}}, \ldots, y_{t-r_{s t}}\right)\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \\
& \geq L-b N-\sum_{t_{1}=N_{0}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{q_{t}}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \\
& \geq M
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(T_{1} x+T_{2} y\right)_{n} \\
& \leq L+b N+\sum_{t_{1}=N_{0}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{q_{t}}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \leq N
\end{aligned}
$$

That is, $\left(T_{1} x+T_{2} y\right)(A(M, N)) \subseteq A(M, N)$.
(ii) We claim that T_{1} is a contraction mapping on $A(M, N)$.

In reality, for any $x, y \in A(M, N)$ and $n \geq N_{0}$, it is easy to derive that

$$
\left|\left(T_{1} x\right)_{n}-\left(T_{1} y\right)_{n}\right| \leq\left|b_{n}\right|\left|x_{n-d}-y_{n-d}\right| \leq b\|x-y\|
$$

which implies that

$$
\left\|T_{1} x-T_{1} y\right\| \leq b\|x-y\|
$$

$b<\frac{N-M}{2 N}<1$ ensures that T_{1} is a contraction mapping on $A(M, N)$.
(iii) We claim that T_{2} is completely continuous.

We first show that T_{2} is continuous. Let $x^{(u)}=\left\{x_{n}^{(u)}\right\} \in A(M, N)$ be a sequence such that $x_{n}^{(u)} \rightarrow x_{n}$ as $u \rightarrow \infty$. Since $A(M, N)$ is closed, $x=\left\{x_{n}\right\} \in A(M, N)$. For $n \geq N_{0},(2.2)$ guarantees that

$$
\begin{aligned}
& \left|T_{2} x_{n}^{(u)}-T_{2} x_{n}\right| \\
& \leq \sum_{t_{1}=n}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{t_{1}=n}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \ldots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{h_{t} \max \left\{\left|x_{t-r_{j t}}^{(u)}-x_{t-r_{j t}}\right|: 1 \leq j \leq s\right\}}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \\
& \leq\left\|x^{(u)}-x\right\| \sum_{t_{1}=N_{0}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{h_{t}}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} .
\end{aligned}
$$

This inequality and (2.4) imply that T_{2} is continuous.
Next we show $T_{2} A(M, N)$ is relatively compact. By (2.4), for any $\varepsilon>0$, take $N_{1} \geq N_{0}$ large enough so that

$$
\begin{equation*}
\sum_{t_{1}=N_{1}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{q_{t}}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|}<\frac{\varepsilon}{2} \tag{2.9}
\end{equation*}
$$

Then, for any $x=\left\{x_{n}\right\} \in A(M, N)$ and $n_{1}, n_{2} \geq N_{1}$, (2.9) ensures that

$$
\begin{aligned}
\mid T_{2} x_{n_{1}} & -T_{2} x_{n_{2}} \mid \\
\leq & \sum_{t_{1}=n_{1}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{\left|f\left(t, x_{t-r_{1 t}}, x_{t-r_{2 t}}, \ldots, x_{t-r_{s t}}\right)\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \\
& +\sum_{t_{1}=n_{2}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{\mid f\left(t, x_{\left.t-r_{1 t}, x_{t-r_{2 t}}, \ldots, x_{t-r_{s t}}\right) \mid}^{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|}\right.}{\leq} \\
\leq & \sum_{t_{1}=N_{1}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{q_{t}}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \\
& +\sum_{t_{1}=N_{1}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{q_{t}}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

which means $T_{2} A(M, N)$ is uniformly Cauchy. Therefore, by Lemma 1.2, $T_{2} A(M, N)$ is relatively compact. By Lemma 1.1, there exists $x=\left\{x_{n}\right\} \in$ $A(M, N)$ such that $T_{1} x+T_{2} x=x$, which is a bounded nonoscillatory solution of (1.11). This completes the proof.

Theorem 2.2. Assume that there exist constants M and N with $N>$ $\frac{2-\underline{\underline{b}}}{1-\bar{b}} M>0$ and sequences $\left\{a_{i n}\right\}_{n \geq n_{0}}(1 \leq i \leq k),\left\{b_{n}\right\}_{n \geq n_{0}},\left\{h_{n}\right\}_{n \geq n_{0}}$, $\left\{q_{n}\right\}_{n \geq n_{0}}$, satisfying (2.2)-(2.4) and

$$
\begin{equation*}
b_{n} \geq 0, \text { and } 0 \leq \underline{b} \leq \bar{b}<1 \tag{2.10}
\end{equation*}
$$

Then (1.11) has a nonoscillatory solution in $A(M, N)$.
Proof. Choose $L \in\left(M+\frac{1+\bar{b}}{2} N, N+\frac{\underline{b}}{2} M\right)$. By (2.10) and (2.4), an integer $N_{0}>n_{0}+d+\alpha$ can be chosen such that

$$
\begin{equation*}
\frac{b}{\overline{2}} \leq b_{n} \leq \frac{1+\bar{b}}{2}, \text { for all } n \geq N_{0} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{t_{1}=N_{0}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{q_{t}}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \tag{2.12}\\
\leq & \min \left\{L-M-\frac{1+\bar{b}}{2} N, N-L+\frac{b}{2} M\right\} .
\end{align*}
$$

Define two mappings $T_{1}, T_{2}: A(M, N) \rightarrow X$ as (2.7) and (2.8). The rest of the proof is analogous to that in Theorem 2.1. This completes the proof.

Similar to the proof of Theorem 2.2, we have the following theorem.
Theorem 2.3. Assume that there exist constants M and N with $N>$ $\frac{2+\bar{b}}{1+\underline{b}} M>0$ and sequences $\left\{a_{i n}\right\}_{n \geq n_{0}}(1 \leq i \leq k),\left\{b_{n}\right\}_{n \geq n_{0}},\left\{h_{n}\right\}_{n \geq n_{0}}$, $\left\{q_{n}\right\}_{n \geq n_{0}}$, satisfying (2.2)-(2.4) and

$$
\begin{equation*}
b_{n} \leq 0, \text { and }-1<\underline{b} \leq \bar{b} \leq 0 . \tag{2.13}
\end{equation*}
$$

Then (1.11) has a nonoscillatory solution in $A(M, N)$.
Theorem 2.4. Assume that there exist constants M and N with $N>$ $\left.\frac{b}{\overline{\bar{b}}\left(\underline{b}^{2}-\underline{b}\right)} \underline{b}^{2}-\bar{b}\right) M>0$ and sequences $\left\{a_{i n}\right\}_{n \geq n_{0}}(1 \leq i \leq k),\left\{b_{n}\right\}_{n \geq n_{0}},\left\{h_{n}\right\}_{n \geq n_{0}}$, $\left\{\bar{q}_{n}\right\}_{n \geq n_{0}}$, satisfying (2.2)-(2.4) and

$$
\begin{equation*}
b_{n}>1, \quad 1<\underline{b} \text { and } \bar{b}<\underline{b}^{2}<+\infty . \tag{2.14}
\end{equation*}
$$

Then (1.11) has a nonoscillatory solution in $A(M, N)$.

EXISTENCE AND UNIQUENESS OF A SOLUTION

Proof. Take $\varepsilon \in(0, \underline{b}-1)$ sufficiently small satisfying

$$
\begin{equation*}
1<\underline{b}-\varepsilon<\bar{b}+\varepsilon<(\underline{b}-\varepsilon)^{2} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left((\bar{b}+\varepsilon)(\underline{b}-\varepsilon)^{2}-(\bar{b}+\varepsilon)^{2}\right) N>\left((\bar{b}+\varepsilon)^{2}(\underline{b}-\varepsilon)-(\underline{b}-\varepsilon)^{2}\right) M \tag{2.16}
\end{equation*}
$$

Choose $L \in\left((\bar{b}+\varepsilon) M+\frac{\bar{b}+\varepsilon}{\underline{b}-\varepsilon} N,(\underline{b}-\varepsilon) N+\frac{b}{\bar{b}+\varepsilon} M\right)$. By (2.15) and (2.4), an integer $N_{0}>n_{0}+d+\alpha \overline{\text { can }}$ be chosen such that

$$
\begin{equation*}
\underline{b}-\varepsilon<b_{n}<\bar{b}+\varepsilon, \quad \text { for all } b \geq N_{0} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{t_{1}=N_{0}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{q_{t}}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \tag{2.18}\\
& \quad \leq \min \left\{\frac{b}{\bar{b}+\varepsilon} L-(\underline{b}-\varepsilon) M-N, \frac{b}{\bar{b}+\varepsilon} M+(\underline{b}-\varepsilon) N-L\right\}
\end{align*}
$$

Define two mappings $T_{1}, T_{2}: A(M, N) \rightarrow X$ by

$$
\left(T_{1} x\right)_{n}=\left\{\begin{array}{lr}
\frac{L}{b_{n+d}}-\frac{x_{n+d}}{b_{n+d}}, & n \geq N_{0} \tag{2.19}\\
\left(T_{1} x\right)_{N_{0}}, & \beta \leq n<N_{0}
\end{array}\right.
$$

$$
\begin{align*}
& \left(T_{2} x\right)_{n}= \\
& \left\{\begin{array}{l}
\frac{(-1)^{k}}{b_{n+d}} \sum_{t_{1}=n}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{f\left(t, x_{t-r_{1 t}}, x_{t-r_{2 t}}, \ldots, x_{t-r_{s t}}\right)}{\prod_{i=1}^{k} a_{i t_{i}}}, n \geq N_{0} \\
\left(T_{2} x\right)_{N_{0}}, \beta \leq n<N_{0}
\end{array}\right. \tag{2.20}
\end{align*}
$$

for all $x \in A(M, N)$. The rest of the proof is analogous to that in Theorem 2.1. This completes the proof.

Similar to the proof of Theorem 2.4, we have the following theorem.
Theorem 2.5. Assume that there exist constants M and N with $N>$ $\frac{1+\underline{\underline{b}}}{1+\bar{b}} M>0$ and sequences $\left\{a_{i n}\right\}_{n \geq n_{0}}(1 \leq i \leq k),\left\{b_{n}\right\}_{n \geq n_{0}},\left\{h_{n}\right\}_{n \geq n_{0}}$, $\left\{q_{n}\right\}_{n \geq n_{0}}$, satisfying (2.2)-(2.4) and

$$
\begin{equation*}
b_{n}<-1, \quad-\infty<\underline{b} \text { and } \bar{b}<-1 \tag{2.21}
\end{equation*}
$$

Then (1.11) has a nonoscillatory solution in $A(M, N)$.
Remark 2.1. Theorems 2.1-2.5 extend and improve Theorem 1 of Cheng [6] and Theorems 2.3-2.7 of Liu, Xu and Kang [8].

3. An example

In this section, an example is given to illustrate the advantage of the above result.

Example 3.1. Consider the following third-order nonlinear neutral delay difference equation:

$$
\begin{gather*}
\Delta\left(\left(2^{n}-n\right) \Delta\left(\left(n^{2}-n+1\right) \Delta\left(x_{n}+\frac{3^{n}-2}{4^{n}} x_{n-4}\right)\right)\right) \\
\quad+\frac{\cos \left(2 x_{n-2}\right)}{n^{2}}-\frac{\sin \left(3 x_{n-3}\right)}{n^{3}}=0, \quad n \geq 5 \tag{3.1}
\end{gather*}
$$

where

$$
\begin{aligned}
& a_{1 n}=n^{2}-n+1, \quad a_{2 n}=2^{n}-n, \quad b_{n}=\frac{3^{n}-2}{4^{n}} \\
& f\left(n, u_{1}, u_{2}\right)=\frac{\cos \left(2 u_{1}\right)}{n^{2}}-\frac{\sin \left(3 u_{2}\right)}{n^{3}}, \quad h_{n}=q_{n}=\frac{2}{n^{2}}
\end{aligned}
$$

Choose $M=1$ and $N=5$. It can be verified that the assumptions of Theorem 2.2 are fulfilled. It follows from Theorem 2.2 that (3.1) has a nonoscillatory solution in $A(1,5)$.

4. Acknowledgment

The authors are grateful to the editor and the referee for their kind help, careful reading and editing, valuable comments and suggestions.

References

[1] R. P. Agarwal, Difference Equations and Inequalities, 2nd ed., Dekker, New York, 2000.
[2] R. P. Agarwal, S. R. Grace, and D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Kulwer Academic, 2000.
[3] R. P. Agarwal, E. Thandapani, and P. J. Y. Wong, Oscillations of higher-order neutral difference equations, Appl. Math. Lett., 10 (1997), 71-78.
[4] R. P. Agarwal and S. R. Grace, The oscillation of higher-order nonlinear difference equations of neutral type, Appl. Math. Lett., 12 (1999), 77-83.
[5] S. S. Cheng and W. T. Patula, An existence theorem for a nonlinear difference equation, Nonlinear Anal., 20 (1993), 193-203.
[6] J. F. Cheng, Existence of a nonoscillatory solution of a second-order linear neutral difference equation, Appl. Math. Lett., 20 (2007), 892-899.
[7] I. Gyori and G. Ladas, Oscillation Theory for Delay Differential Equations with Applications, Oxford Univ. Press, London 1991.
[8] Z. Liu, Y. Xu, and S. M. Kang, Global solvability for a second order nonlinear neutral delay difference equation, Comput. Math. Appl., 57 (2009), 587-595.
[9] Q. Meng and J. Yan, Bounded oscillation for second-order nonlinear difference equations in critical and non-critical states, J. Comput. Appl. Math., 211 (2008), 156-172.

EXISTENCE AND UNIQUENESS OF A SOLUTION

[10] M. Migda and J. Migda, Asymptotic properties of solutions of second-order neutral difference equations, Nonlinear Anal., 63 (2005), 789-799.
[11] E. Thandapani, M. M. S. Manuel, J. R. Graef, and P. W. Spikes, Monotone properties of certain classes of solutions of second-order difference equations, Comput. Math. Appl., 36 (2001), 291-297.
[12] F. Yang and J. Liu, Positive solution of even order nonlinear neutral diference equations with variable delay, J. Systems Sci. Math. Sci., 22 (2002), 85-89.
[13] B. G. Zhang and B. Yang, Oscillation of higher order linear difference equation, Chinese Ann. Math., 20 (1999), 71-80.
[14] Z. G. Zhang and Q. L. Li, Oscillation theorems for second-order advanced functional difference equations, Comput. Math. Appl., 36 (1998), 11-18.
[15] Y. Zhou, Existence of nonoscillatory solutions of higher-order neutral difference equations with general coefficients, Appl. Math. Lett., 15 (2002), 785-791.
[16] Y. Zhou and Y. Q. Huang, Existence for nonoscillatory solutions of higher-order nonlinear neutral difference equations, J. Math. Anal. Appl., 280 (2003), 63-76.
[17] Y. Zhou and B. G. Zhang, Existence of nonoscillatory solutions of higher-order neutral delay difference equations with variable coefficients, Comput. Math. Appl., 45 (2003), 991-1000.

MSC2010: 34K15, 34C10
School of Sciences, Liaoning Shihua University, Fushun, Liaoning 113001, China

E-mail address: guozy@163.com
School of Sciences, Liaoning Shihua University, Fushun, Liaoning 113001, China

E-mail address: min_liu@yeah.net
School of Sciences, Liaoning Shihua University, Fushun, Liaoning 113001, China

