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Abstract. Panjer’s recursion formula is used for the evaluation of
compound distributions. The use of this algorithm has become a
widespread standard technique for life and general insurance prob-
lems. This study reviews and extends Panjer’s recursion formula for
evaluation of compound negative binomial distributions. For gamma
and a mixture of gamma distributions, the theory has been developed
so that the software R can be directly applicable. The accuracy of
the method used in this study is better and the computation time is
faster.

1. Introduction

The study of Panjer’s recursion algorithm has received great attention
in many areas such as in actuarial sciences and operational research. Kass
et al. [5] give a detailed treatment for both its theory and application. Such
treatment has been investigated using negative binomial distribution and a
mixture of gamma distribution. Let N be a random variable which denotes
the number of claims produced by a portfolio of policies in a given time
period. Let X1 denote the amount of the first claim, X2 be the amount of
the second claim, and so on. Then SN = X1 +X2 + · · · + XN represents
the aggregate claims generated by a portfolio of N claims for the period
under study and let S = limN→∞ SN be known as the random sum. The
individual claim amounts X1, X2, . . . are also random variables and are said
to measure the severity of claims. In order to make the model tractable,
usually two fundamental assumptions are made:

(1) X1, X2, . . . are identically distributed random variables.
(2) The random variables N,X1, X2, . . . are mutually independent.

In literature, a very common choice for the distribution of N is the Pois-
son distribution. With this choice for the distribution of N , the distribution
of S is called a compound Poisson distribution. However, in many cases,
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the negative binomial distribution provides a better fit than does the Pois-
son distribution. For example, when the variance of the number of claims
exceeds its mean, the Poisson distribution is not appropriate. Since the be-
havior of policyholders is heterogeneous, a model that reflects the different
underlying risks is worth investigating. In this situation, the use of the neg-
ative binomial distribution has been suggested. When a negative binomial
distribution is chosen for N , the distribution of S is called a compound
negative binomial distribution. Compound negative binomial models arise
in insurance applications, such as motor vehicle and storm insurance. The
negative binomial was formulated as early as 1714, by Montmort, as the
distribution of the number of trials required in an experiment to obtain
a given number of successes. It arises as the results of so many different
chance mechanisms that it is now the most widely used among contagious
distributions [6, Lemaire,].

A useful class of parametric claim severity distributions (Xi, i = 1, . . . , N),
especially in the context of ruin theory, consists of mixtures of gamma dis-
tributions. Panjer [8] developed a recursive definition of the distribution
of total claims for a family of claim number distributions and arbitrary
claim amount distributions. In fact, the method can be traced back to as
early as Euler (Kaas et al. [5]). As a result of Panjer’s publication, a lot
of other articles have appeared in the actuarial literature covering similar
recursion relations. The goal of this study is to use the recursion formula
to calculate the distribution of aggregate claims in case of negative bino-
mial claim number process under gamma or mixed gamma claim amounts.
Statistical software R has been used to perform the calculation and it has
been observed that the execution time is much faster than that of other
software.

2. Definitions and Notation

A collective risk model turns out to be both computationally efficient
and rather close to reality. Different approaches have been made to cal-
culate the distribution of aggregate claim (S). An obvious but laborious
method is the convolution. Let G(y) = Pr(S ≤ y) denote the distribution
function of aggregate claims and F (y) = Pr(X1 ≤ y) denote the distribu-
tion function of individual claim amounts. Also, denote pn = Pr(N = n)
so that {pn}

∞

0 is the probability function for the number of claims. The
distribution function of S can be derived by noting that the event {S ≤ y}
occurs if n (where n = 0, 1, 2, . . .), claims occur and if the sum of these n
claims is no more than y. Thus,

{S ≤ y} =

∞⋃

n=0

{SN ≤ y and N = n} ,
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so that

G(y) = Pr(S ≤ y)

=
∞∑

n=0

Pr(SN ≤ y and N = n)

=

∞∑

n=0

Pr(N = n)Pr(SN ≤ y|N = n)

=

∞∑

n=0

pnPr

(
n∑

i=1

Xi ≤ y

)

=
∞∑

n=0

pnF
n∗(y). (1)

It should be noted that Fn∗ is called the n-fold convolution of the distri-
bution F with itself. Also, F 1∗ = F , and, by convention, F 0∗(y) = 1 for
y ≥ 0 with F 0∗(y) = 0 for y < 0.

In theory, Equation (1) provides a means of calculating the aggregate
claims distribution. However, the convolution Fn∗ does not exist in a closed
form of many individual claim amount distributions of practical interest
such as Pareto and lognormal (Dickson [2]). Moreover, as it can be observed
from Equation (1) that even in cases when a closed form does exist, an
infinite sum is to be evaluated. Another approach is to use the Fast Fourier
Transform to invert the characteristic function.

In practice, a continuous distribution is used to fit the claim amount
data. However, even the continuous form of the Panjer’s recursion requires
a discrete distribution for the claim amounts. Thus, the fitted continuous
distribution needs to be discretized. Discussions of different procedures
to discretize a continuous distribution are given by Gerber [3] and Panjer
and Lutek [9]. In this study, one of the most straightforward discretization
techniques, referred to by Panjer and Lutek [9] as crude rounding, has been
applied. This method discretizes the continuous distribution on 0, h, 2h, . . .,
where h > 0, and matches cumulative probabilities at a given set of points.
Dickson [2] has also used the similar discretization method.

Let pn = Pr(N = n) for n = 0, 1, 2, . . ., denote the probability function
of the random variable, N . In other words, pn denotes the probability that
exactly n claims occur in the fixed time interval. Let fk = Pr[Xi = k] for
k = 0, 1, 2, . . ., i = 1, 2, . . . , n, and fn

k = Pr[X1 + X2 + · · · + Xn = k] for
k = 0, 1, 2, . . ., and n = 1, 2, 3, . . .. Then the total claim has a compound
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distribution with a probability function

gk = Pr[S = k] (2)

=

∞∑

n=1

pnf
n
k for all k = 0, 1, 2, . . . .

Panjer’s recursion formula applies when the probability function of N sat-
isfies the recursion formula:

pn =

(
a+

b

n

)
pn−1, for all n = 1, 2, 3 . . . ,

where a and b are constants. Sundt and Jewell [13] show that only the
following distributions satisfy this recursion formula:

• Poisson (λ) with a = 0 and b = λ ≥ 0,
• Binomial (k, p) with p = a

a−1
and k = − b+a

a ; so a < 0 and

b = −a(k + 1),
• Negative Binomial (α, p) with p = 1 − a and α = 1 + b

a ; so
0 < a < 1 and a+ b > 0.

Since geometric distribution is a special case of the negative binomial, it can
be considered as the fourth distribution which satisfies the above recursion.

Panjer [8] has shown that, if the claim severity is defined on the positive
integer with a probability function fk, k > 0, the compound distribution
in (1) can be evaluated recursively as

gk =
k∑

j=1

(
a+

bj

k

)
fjgk−j , for all k = 1, 2, 3, . . . ,

and

g0 = p0 = P (N = 0).

3. Panjer’s Recursion in Case of Negative Binomial

Distribution

The negative binomial with pair parameters (α, p) has probability func-
tion

pn =

(
α+ n− 1

n

)
pα(1− p)n, for all n = 0, 1, 2, . . . , (3)

with α > 1 and 0 < p < 1. The negative binomial distribution with
a = 1− p and b = (1− p)(α− 1) satisfies Panjer’s recursion. The recursion
formula for the compound negative binomial distribution is then

gk =

k∑

j=1

(1− p)

(
1 +

(α− 1)j

k

)
fjgk−j , for all k = 1, 2, 3, ..., (4)
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with g0 = pα.
It has been proved by Panjer and Wang [10] that the recursion formula

is stable for x > 0. Thus, the above algorithm requires no additional han-
dling of rounding errors. Moreover, the precision of modern computers and
availability of quality statistical software are sufficient to obtain meaningful
and applicable results.

3.1. Gamma Distribution. In principle any distribution supported on
[0,∞) can be used to model claim size. However, in actuarial practice, a
clear distinction has been made between “well behaved” distribution and
“dangerous” distribution (Ramasubramanian [12]). In the aforementioned
literature, the light-tailed gamma distribution has been regarded as a well
behaved distribution. Moreover, for many types of insurance, the claim
amount distribution variable is only positive, and its distribution is skewed
to the right. In actuarial literature, Bowers et al. [1] suggested the use of
gamma distribution for these insurances. Consider the following gamma
probability density function:

fX(x) =
xk−1λke−λx

Γ(k)
, for all x > 0,

where k represents the shape parameter and λ represents the scale parame-
ter. For the cases where k is a nonnegative integer, the distribution is often
referred as the Erlang distribution. Its Laplace transform is

f̂X(x; k, λ) =

(
λ

λ+ x

)k

, for all x > 0.

The sum Xn of independent gamma G(ki, λ) for i = 1, . . . , n, follows a
gamma random variable G(K =

∑n
i=1

ki, λ). Therefore, the conditional
distribution of Xn, given N = n, is given as:

fXn
(x) =

xK−1λKe−λx

Γ(K)
, for all x > 0,

and its density function is:

f(x, n) =
Γ(n+ α)

n!Γ(α)Γ(K)
xK−1λKe−λxpα(1− p)n,

for all x > 0 and n = 0, 1, 2 . . . .

Hence,

log fn(x) = log

(
Γ(n+ α)

n!Γ(α)Γ(K)

)

+ (K − 1) log(x) +K logλ− λx+ α log p+ n log(1 − p).
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Based on data (X1, n1), . . . , (Xm, nm) a random sample of size m,

L(K, p, λ) = m

(
log

(
n+ α

n!Γ(α)Γ(K)

)
+ (K − 1)log(x)m +K logλ

− λx̄m + α log p+ n log(1− p)

)
,

where X̄m and log(X)m are the sample means of the Xi’s and log(Xi)’s for
i = 1, . . . ,m, respectively. Hence,

∂L

∂K
= m

(
logXm + logλ− ψ(K)

)
,

∂L

∂p
= m

(
α

p
−

n

1− p

)
, and

∂L

∂λ
= m

(
K

λ
−Xm

)
,

with ψ(K) the digamma function. Solving the above equations gives

λ̂ =
K

Xm

,

p̂ =
α

α+ n
, and

ψ(K) = log(X)m + logλ.

Next, the performance of this new technique has been illustrated by
considering simulated data. The idea is similar to that of Massaoui et
al [7], but at the cost of a slightly computationally increased complexity
because of the large sample sizes for the negative binomial distribution.
First samples of 100 observations for 1000 iterations have been chosen from
a gamma distribution with parameters, α = 2 and p = 0.4. Also considering
K = λ = 2, aggregate claim distribution has been derived with explicit
probability estimates from Equation (4) by using R. The gamma density has
been discretized on 1/20 of its mean as in Dickson [2]. Thus, the computed
value, gk, provides Pr[S = 0.05k] for k = 0, 1, 2, . . .. Table 1 shows the
percentiles for the aggregate claim distribution. Only the higher percentiles
have been mentioned in the table, because those would be of interest to
actuaries since these would allow us to make probabilistic statements about
whether or not the reserves are adequate. For instance, it can be observed
from Table 1 that there is a 1% probability that the aggregate claims exceed
the premium income of 81. Also, as a simple application, it should be noted
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Table 1. Percentiles of the aggregate claim distributions
in case of gamma claim density.

x 43 51 56 63 69 81
Pr[S ≤ x] 0.50 0.70 0.80 0.90 0.95 0.99

that

E(S) = E(N)× E(X)

= 30.

It should be noted that the rule of thumb stating that the mean (30) is
right of the median (43, Table 1) under right skewness does not hold here.
In fact, this rule of thumb has a surprising number of exceptions. In a
skewed distribution, it is quite possible for the median to be further out in
the long tail than the mean [4, Hippel]. The rule of thumb fails in discrete
distributions where the areas to the left and right of the median are not
equal. However, the skewness of the distribution of aggregate claims has
been examined by the definition of skewness. It has been found that

γ1 =
E[(S − E(S))3]

(E[(S − E(S))2])3/2

is positive for N ∼ NB(20,0.4) and X ∼ Gamma(2,2). For a specific combi-
nation of parameters, the resulted probability found for S has been shown in
Figure 1, clearly illustrating the positive skewness of the distribution. Note
that the large number of points plotted gives the graph the appearance of
a density function rather than a probability function.

3.2. Mixture of Gamma Distribution. A useful class of parametric
claim severity distributions consists of mixtures of gamma distributions.
A mixture arises if the parameters of a gamma distribution are random
variables. Suppose that the claim amount density is given by a mixture of
gamma density with

f(x) =

2∑

r=1

qr
xK−1λKe−λx

Γ(K)
, for all x ≥ 0,

where q1 + q2 = 1. To estimate the coefficient parameters (q1, q2) a Monte
Carlo Markov chain algorithm (Peel and McLachlan [11]) has been used,
where the gamma parameters (K,λ) are simulated using the algorithm
given in Moussaoui et al. [7], capturing the compound negative binomial
form. Here again, the mixed gamma distribution has been discretized on
1/20 of its mean. Thus, the computed value gk provides Pr[S = 0.05K]
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Figure 1. The probability function of aggregate claims
for X ∼Gamma(2,2) and N ∼ NB(20,0.4).

for K = 2, 3, . . . , 9. Table 2 shows the percentiles for the aggregate claim
distribution in the mixture of the bivariate gamma densities.

Such probabilities can also be described by adding a compound negative
binomial source to the coefficients K. The results associated with those
probabilities are presented in Table 2. This study encounters the same
problem that Dickson [2] mentioned in the use of the recursive formula-
tion, although the log normal distribution was used instead of the negative
binomial. It should also be mentioned that the probability functions for
the compound negative binomial are clearly right skewed. Tables 1 and 2
are extremely useful in comparing the gamma distribution with its mixture
in terms of aggregated claim sizes. The findings show that for the same
probabilities, the model with gamma mixture has stronger decrement in
claims than that in the non-mixture case. Thus, it is suggested that there
is an influence for the predictions based on the magnitudes of the frequen-
cies that are used which underscores the importance of the mixture case
in Panjer’s recursion using the compound negative binomial distribution.
To compare the execution time, the same algorithm has been used for R,
and Maple. The particular versions we have worked in are R 2.9.2, and
Maple 11. Since R is an open source language, it gets better quickly with
successive releases. This version of R works faster than does Maple, es-
pecially in loop and vector algorithms. Calculation of the values of gk in
case of mixed gamma distribution for k from 1 to 3000 took R a mere 45
seconds. Maple, however, executes the same computation in 22 minutes.
For these computations, a computer with the following configuration: Intel
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Table 2. Aggregate Claim Distribution for Mixture of
Gamma Distribution.

gs K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9
g2 0.9 1 1 1 1 0.9 0.9 0.9
g3 0.9 0.8 0.9 0.9 0.8 0.9 0.9 0.8
g4 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7
g5 0.8 0.7 0.7 0.6 0.6 0.7 0.6 0.6
g6 0.6 0.6 0.6 0.6 0.5 0.5 0.6 0.6
g7 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.6
g8 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4
g9 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3
g10 0.3 0.4 0.3 0.4 0.4 0.3 0.3 0.3
g15 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.2
g20 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
g25 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Core 2 Duo, 1.8 GHz, 800 MHz, has been used. The reason could be that
Maple uses a loop of loops in a matrix format, and R considers an incre-
mental array, not allowing it to define memory in advance, and decrease
computational time while maximizing speed.

4. Conclusion

In this study, applications of Panjer’s recursion formula have been re-
viewed. Panjer’s recursion formula for compound negative binomial with
gamma mixture has been derived. Associated properties have been given.
Simulations are presented to illustrate the usefulness of incorporating the
negative binomial component to the model. Extensions to this procedure
could include distributions such as the generalized gamma, and the issue
associated with the number of mixing parameters to consider for mixed
data sources. It has also been observed that R can execute Panjer’s recur-
sion, in most of the cases, much faster than Maple can. In case of mixed
gamma claim sizes, this difference of execution time is significant.
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