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Abstract. Newton’s Method, the recursive algorithm for computing
the roots of an equation, is one of the most efficient and best known nu-
merical techniques. The basics of the method are taught in any first-year
calculus course. However, in most cases the two most important questions
are often left unanswered. These questions are, “Where do I start?” and
“When do I stop?” We give criteria for determining when a given value
is a good starting value and how many iterations it will take to ensure
that we have reached an approximate solution to within any predetermined
accuracy.

Newton’s Method. In his work Of the Method of Fluxions and Infi-

nite Series, [3], Newton explains, by way of example, a recursive procedure
for approximating roots of equations. This procedure is known to us today
as Newton’s Method and is a standard topic in every introductory Cal-
culus course. Briefly, the technique, as presented in most Calculus texts,
is as follows. Let f be a real valued function of one real variable that is
continuous on [a, b] and differentiable on (a, b). We compute a sequence of
approximations to the zero of f via the recursive formula:

zi+1 = zi −
f(zi)

f ′(zi)

where z0 ∈ (a, b) is chosen as a first approximation. Some texts go so far
as to provide some criteria for convergence of this sequence. For example,
in [2] we are told that a sufficient condition for convergence of Newton’s
Method to a zero of f is
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on an open interval containing the zero. Many Calculus texts go on to give
examples in which this procedure fails to converge to a root. For example,
the function f(z) = z

1

3 for which the sequence {zi} diverges for all z0 6= 0.
Or the function f(z) = −z3 +3z2−z+1 for which an initial approximation
of z0 = 1 yields z2k = 1 and z2k+1 = 0 for all k ∈ Z+.

However, even though Newton’s Method generally converges quickly
to a root, students (and others, too) are generally left with the questions of
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“How should one choose an initial approximation?” and “How many itera-
tions will provide a good (meaning to within some predetermined accuracy)
approximation to the root?” In other words,

“Where do I start?”

and

“When do I stop?”

Certainly, these are fundamental questions behind any algorithm. Pro-
viding the answers to these questions should help students appreciate the
true power behind Newton’s Method by “completing the process” in the
sense that the student will now know how to begin and when to end the
algorithm.

The answers to the above questions are provided through two key re-
sults, Theorem 2.2 and Theorem 3.2. Both of these theorems are stated
without proof as their proofs require the development of many preliminary
results. For a detailed development, the interested reader should consult
[1].

2. Where to Start: Approximate Zeros. Let f be a differen-
tiable function of one real variable. We begin the discussion of how to best
pick an initial approximation to the root of an equation with the following
definition.

Definition 2.1. We say that z is an approximate zero of f if the se-
quence given by z0 = z and zi+1 = zi − (f ′(zi))

−1f(zi) is defined for all
i ∈ N and there is a ξ such that f(ξ) = 0 with

|zi − ξ| ≤
(

1

2

)

2i−1|z − ξ|, for all i ∈ N.

We will call ξ the associated zero.

One should take the time to note how quickly the quantity on the right
side of this inequality diminshes as i increases. If we take |z − ξ| = 1, then
for i = 1, the right side of the inequality is 1/2, for i = 2 we have 1/8,
for i = 3 it is down to 1/128, at i = 4 the right side is 1/32768, and by
the time one gets to i = 5 the right side of the inequality is of the order
of magnitude of 10−10. This says the distance between the ith iterate of
Newton’s Method and the true zero, ξ, is rapidly approaching zero.

We next define an auxiliary quantity

γ(f, z) = sup
k≥2

∣
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f ′(z)−1f (k)(z)

k!
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.
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We are now prepared to state the following theorem.

Theorem 2.2. Suppose f(ξ) = 0 and f ′(ξ)−1 exists. If

|z − ξ| ≤ 3−
√

7

2γ

for γ = γ(f, z), then z is an approximate zero of f with associated zero ξ.

This theorem guarantees that all z in a certain domain containing ξ
will act as approximate zeros for f . However, it does require us to already
know a root ξ of f(z) = 0 in order to determine these approximate zeros.
But if we know ξ already, why do we need z? We now resolve this dilemma.

3. When to Stop: Point Estimates for Approximate Zeros.

We would like to develop a method of determining if a given z0 is an ap-
proximate zero for f(z) = 0 from data available at the point z0. We first
define two additional quantities.

Definition 3.1. Let f(z) be a differentiable function. Let

β(f, z) = |f ′(z)−1f(z)|,

and
α(f, z) = β(f, z)γ(f, z).

We utilize these new quantities in the following result.

Theorem 3.2. There is a universal constant α0 with the following prop-
erty. If α(f, z) < α0, then z is an approximate zero of f . Moreover, the
distance from z to the associated zero is at most 2β(f, z).

In [1], we are told that we may take α0 = 0.03. In [4], the value α0 =
0.130707 is given. More recently, the value α0 = 1

4 (13 − 3
√

7) ≈ 0.15671 is
found in [5].

We may now use Theorem 3.2 together with the definition of approx-
imate zero to determine the number of iterations of Newton’s Method re-
quired to reach any predetermined accuracy.

Let us summarize the procedure. Suppose we are given a differentiable
function f(z) for which we want to find a root, ξ, with an expected level of
accuracy of ε, then the steps are as follows.

Where do I start?

(1) Determine the functions γ(f, z), β(f, z), and α(f, z).
(2) Using the current best estimate of α0 ≈ 0.15671, solve the inequality

α(f, z) < α0
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for z. This solution could be estimated graphically.
(3) Choose an approximate zero, z0, from within the interval determined

in step 2 above.

When do I stop?
(4) By Theorem 3.2, we know

|z0 − ξ| < 2β(f, z0) = B

so we have a bound for |z0 − ξ|.
(5) By our definition of approximate zero, we know that

|zi − ξ| ≤
(

1

2

)2i−1

|z0 − ξ|.

Combining this inequality with that from step 4 above we get

|zi − ξ| ≤
(

1

2

)2i−1

B.

We solve

(

1

2

)2i−1

B < ε

for i in order to determine the number of iterations of Newton’s Method
required to obtain the expected accuracy, ε, of the root, ξ.

4. An Example. Newton’s example in his Of the Method of Fluxions

and Infinite Series is to approximate a root of the equation y3−2y−5 = 0.

Fig. 1
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After four iterations of his method, Newton gives the approximate root
as y = 2.09455148. If we substitute this value into the expression y3−2y−5
we get (approximately) -0.0000000172. (Pretty close to zero!)

Let us try Newton’s example. Let f(z) = z3−2z−5 and take ε = 10−8.
Clearly, f has a zero near z = 2.

STEP 1. In order to apply Theorem 3.2, we observe that f ′(z) =
3z2 − 2, f ′′(z) = 6z, f ′′′(z) = 6, and f (k)(z) = 0 for all k ≥ 4. Computing
(for z near 2) we have

γ(f, z) =

∣

∣

∣

∣

1

3z2 − 2
· 6z

2!
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3z2 − 2
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β(f, z) =

∣
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1

3z2 − 2
(z3 − 2z − 5)

∣

∣
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=
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∣
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z3 − 2z − 5

3z2 − 2

∣
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∣

α(f, z) =
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3z

3z2 − 2
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∣

∣

∣

∣

z3 − 2z − 5

3z2 − 2

∣

∣

∣

∣

=

∣

∣

∣

∣

3z4 − 6z2 − 15z

9z4 − 12z2 + 4

∣

∣

∣

∣

.

STEP 2. Using the value α0 = 0.15, Theorem 3.2 guarantees that z
will be an approximate zero of f if

∣

∣

∣

∣

3z4 − 6z2 − 15z

9z4 − 12z2 + 4

∣

∣

∣

∣

< 0.15.

If we graph the function

α(f, z) =
3z4 − 6z2 − 15z

9z4 − 12z2 + 4

we see that the above inequality is easily satisfied for 1.9 < z < 2.3.
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Fig. 2

STEP 3. Like Newton, we choose z = 2 as our first approximate zero.
Note that z = 2 is within the interval (1.9, 2.3) determined in step 2 above.

STEP 4. Again by Theorem 3.2, if ξ is the associated zero to our
approximate zero, then we have

|z − ξ| < 2β(f, z) = 2

∣

∣

∣

∣

z3 − 2z − 5

3z2 − 2

∣

∣

∣

∣

.

At z = 2 we get

|2 − ξ| < 2β(f, 2) = 2

∣

∣

∣

∣

23 − 2 · 2 − 5

3 · 22 − 2

∣

∣

∣

∣

= 0.2.

STEP 5. According to our definition of approximate zero we will have

|zi − ξ| ≤
(

1

2

)2i−1

|z − ξ| ≤
(

1

2

)2i−1

(0.2).

If our desire is to approximate ξ to within ε = 10−8 then we solve

(

1

2

)2i−1

(0.2) < 10−8
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for i to get i ≥ 5. Hence, we will have the value of ξ to (at least) eight
decimal places of accuracy after (at most) 5 iterations of Newton’s Method.
After five iterations we have z5 = 2.094551481542327 which agrees with
Newton’s approximation to eight decimal places.

Since the roots of the previous example can be determined exactly
by purely algebraic methods, let us consider a second example in which
the roots are not so easily determined. Let f(z) = sin (z − π

2 ) − z and
approximate to eight decimal places the root which lies in the interval
[−1, 0], see Fig. 3.

Fig. 3

STEP 1. In order to apply Theorem 3.2, we observe that f ′(z) =
cos (z − π

2 )−1, f ′′(z) = − sin (z − π

2 ), f ′′′(z) = − cos (z − π

2 ), and f (4)(z) =
sin (z − π

2 ) and the pattern continues. Computing (for −1 ≤ z ≤ −0.5) we
have

γ(f, z) =

∣

∣

∣

∣

sin (z − π

2 )

2[cos (z − π

2 ) − 1]

∣

∣

∣

∣

(the case k = 2 is the supremum for −1 ≤ z ≤ −0.5),

β(f, z) =

∣

∣

∣

∣

sin (z − π

2 ) − z

cos (z − π

2 ) − 1

∣

∣

∣

∣

,

and

α(f, z) =

∣

∣

∣

∣

sin (z − π

2 )

2[cos (z − π

2 ) − 1]

∣

∣

∣

∣

·
∣

∣

∣

∣

sin (z − π

2 ) − z

cos (z − π

2 ) − 1

∣

∣

∣

∣

.
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STEP 2. Using the value α0 = 0.15, Theorem 3.2 ensures that z will
be an approximate zero of f if

∣

∣

∣

∣

sin (z − π

2 )

2[cos (z − π

2 ) − 1]

∣

∣

∣

∣

·
∣

∣

∣

∣

sin (z − π

2 ) − z

cos (z − π

2 ) − 1

∣

∣

∣

∣

< 0.15.

If we graph the function

α(f, z) =

∣

∣

∣

∣

sin (z − π

2 )

2[cos (z − π

2 ) − 1]

∣

∣

∣

∣

·
∣

∣

∣

∣

sin (z − π

2 ) − z

cos (z − π

2 ) − 1

∣

∣

∣

∣

we see that the above inequality is easily satisfied for −1 < z < −0.5.

Fig. 4

STEP 3. In this case, we choose z = −0.75 as our first approximate
zero. Note that z = −0.75 is within the interval (−1,−0.5) determined in
step 2 above.

STEP 4. Again by Theorem 3.2, if ξ is the associated zero to our
approximate zero, then we have

|z − ξ| < 2β(f, z) = 2

∣

∣

∣

∣

sin (z − π

2 ) − z

cos (z − π

2 ) − 1

∣

∣

∣

∣

.
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At z = −0.75 we get

| − 0.75− ξ| < 2β(f,−0.75) = 2

∣

∣

∣

∣

sin (−0.75− π

2 ) − (−0.75)

cos (−0.75− π

2 ) − 1

∣

∣

∣

∣

≤ 0.1089.

STEP 5. According to our definition of approximate zero we will have

|zi − ξ| ≤
(

1

2

)2i−1

|z − ξ| ≤
(

1

2

)2i−1

(0.1089).

Since we want to approximate ξ to within ε = 10−8, we need to solve

(

1

2

)2i−1

(0.1089) < 10−8

for i. Doing so, we get i ≥ 5. Hence, we will have the value of the true zero,
ξ, to (at least) eight decimal places of accuracy after (at most) 5 iterations
of Newton’s Method.

5. Conclusion. In [1], Newton’s Method is called the “‘search algo-
rithm’ sine qua non of numerical analysis and scientific computation.” As
evidence of the speed and efficiency of Newton’s Method, we observe that
Newton’s Method forms the basis of the FindRoot command in Mathe-

matica, [6]. For such an efficient and effective algorithm, it is crucial that
one has a well-defined condition for when to terminate the process. The
above strategy provides exactly the information needed to determine the
number of iterations of Newton’s Method required to reach a predetermined
level of accuracy based upon the function and initial approximation.

It should be noted that while we generally associate Newton’s Method
with approximating zeros of a function of one real variable, the above treat-
ment immediately allows for f : C → C. In fact, the results can be extended
to systems of equations f : Cn → Cn and even to maps of Banach spaces
f : E → F. In these cases, we view f ′(z) as a continuous linear map which
has an inverse. It is for this reason that we have adopted the notation

zi+1 = zi − (f ′(zi))
−1f(zi)

9



as opposed to the more traditional

zi+1 = zi −
f(zi)

f ′(zi)
.

In any setting, it is the simplicity, efficiency, and applicability of New-
ton’s Method that ranks this technique amongst the great theorems of
mathematics.
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