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Abstract. Let X be Banach space and let T, T̄ = T + δT be bounded

linear operators on X . Suppose that T has the Drazin inverse T D and

Ind(T ) = n. In this paper, we show that if ‖δT‖ is sufficiently small and

Ran(T̄ n)∩Ker((T D)n) = {0}, then T̄ is Drazin invertible with Ind(T̄ ) ≤ n.

In this case, the expression of T̄ D is given and the upper bounds of ‖T̄ D‖
and

‖T̄ D − T D‖
‖T D‖

are established. If dim X < ∞, replacing Ran(T̄ n) ∩ Ker((T D)n) = {0}
by rank(T̄ n) = rank(T n), we obtain the same perturbation results of the

Drazin invertible matrix T as in the case of dim X = ∞.

1. Introduction. Throughout the paper, (X, ‖ · ‖) is a Banach space

over the field C and B(X) is the set of all bounded linear operators T

on X . For T ∈ B(X), we write Ran(T ) (resp. Ker(T )) to denote the

range (resp. null space) of T . A nonzero operator T in B(X) is said to be

generalized invertible if there is A ∈ B(X) such that TAT = T, ATA = A.

Then A is called the generalized inverse of T , denoted by T +. If X is a

Hilbert space, T+ is required to satisfy

TT+T = T, T+TT+ = T+, (T+T )∗ = T+T, (TT+)∗ = TT+. (1.1)

In this situation, T+ is called the Moore-Penrose inverse of T [11]. Recall

from [6] that T ∈ B(X)\{0} is Drazin invertible, if there is an A ∈ B(X)

and a natural number k such that

T kAT = T k, ATA = A, AT = TA. (1.2)

The least k such that (1.2) holds for some A is called the index of T , denoted

by Ind(T ) = k. In this case, the A in (1.2) is called the Drazin inverse of T .

We denote it by T D. When Ind(T ) = 1, T D is called the group inverse of T .

We use the symbol T # to denote it. Put RG(X) = {T ∈ B(X)|T + exists}
and

DI(X) = {T ∈ B(X)|T D exists}, GI(X) = {T ∈ DI(X)| Ind(T ) = 1}.
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Let T ∈ B(X) and T̄ = T + δT be the small perturbation of T by

δT ∈ B(X). The perturbation theory of generalized inverse (or Drazin

inverse) is concerned with the question that if T ∈ RG(X) (or DI(X)),

then when is T̄ in RG(X) (or DI(X))? What are the upper bounds of

‖T̄ γ‖ and

‖T̄ γ − T γ‖
‖T γ‖ ,

where the symbol γ is + or D? When X is a finite dimensional Hilbert

space, ‖T+‖‖δT‖ < 1 and Rank (T̄ ) = Rank (T ) (rank-preserving pertur-

bation), we have

‖T̄+‖ ≤ ‖T+‖
1− ‖T+‖‖δT‖

‖T̄+ − T+‖
‖T+‖ ≤ 1 +

√
5

2

‖T+‖‖δT‖
1 − ‖T+‖‖δT‖ (1.3)

[13]. If X is a finite dimensional Banach space and T, T̄ ∈ B(X) with

Rank (T̄ l) = Rank (T l), then the upper bounds of ‖T D‖ and

‖T̄ D − T D‖
‖T D‖

have also been obtained recently in [14], where l = max{Ind(T̄ ), Ind(T )}.
When X = ∞, we need a new notation which can replace the rank-

preserving perturbation in matrix theory. Let T ∈ RG(X) and T̄ = T +

δT ∈ B(X). Recall that T̄ is the stable perturbation of T , if Ran(T̄ ) ∩
Ker(T+) = {0} (or equivalently, Ran(T̄ ) ∩ [Ran(T )]⊥ = {0}, when X is a

Hilbert space) [3] and [15]. It is proved in [3] that Ran(T̄ )∩Ker(T+) = {0}
if and only if Rank(T̄ ) = Rank(T ) when dim X < ∞ and ‖T +‖‖δT‖ <

1. Moreover, some conditions to characterize the stable perturbation of

operators in Hilbert spaces and Banach spaces have been obtained by J.

Ding in [5]. Using this notion, the authors in [2], [4], and [15] showed that

(1.3) also holds when X is a Hilbert space, ‖T +‖‖δT‖ < 1 and Ran(T̄ ) ∩
Ker(T+) = {0}; when X is a general Banach space, T ∈ RG(X) and

T̄ = T + δT with

‖T+‖‖δT‖ <
1

1 + ‖I − TT+‖ ,
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then T̄ ∈ RG(X) if and only if T̄ is the stable perturbation of T if and only

if (I + δTT+)−1T̄ maps Ker(T ) into Ran(T ) [3]. This result generalized a

famous theorem of Nashed’s in [11].

As to the perturbation analysis of the Drazin invertible operators on

X , there are also some results concerning the estimation of ‖T̄ D‖ and

‖T̄ D − T D‖
‖T D‖

[7, 8, 10]. But we also notice that these results are based on the hypotheses

that T̄ is Drazin invertible and ‖T̄ T̄ D − TT D‖ is small enough. Thus,

the problem is: how can we guarantee T̄ ∈ DI(X) and ‖T̄ T̄ D − TT D‖ is

sufficiently small? These two problems have been solved in this paper in

terms of the stable perturbation of bounded linear operators. Our main

result of the paper is the following.

Let T ∈ DI(X) with Ind(T ) = n and T̄ = T + δT ∈ B(X) with

κn
D(T )εT <

1

(2n − 1)(1 + ‖T π‖) .

If Ran(T̄ n) ∩ Ker(T D)n = {0}, then T̄ ∈ DI(X) with Ind(T̄ ) ≤ n, where

κD(T ) = ‖T‖‖T D‖, εT =
‖δT‖
‖T‖ , and T π = I − TT D.

In this case, the upper bounds of ‖T̄ D‖ and

‖T̄ D − T D‖
‖T D‖

are given.

2. Some Lemmas. Let T ∈ DI(X) with Ind(T ) = k and put T π =

I − TT D. Then T πT = TT π and T DT π = T πT D = 0. Thus,

TD = T
∣

∣

(I−T π)X
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is invertible in B((I − T π)X) with the inverse

T−1
D = T D

∣

∣

(I−T π)X
and TN = T

∣

∣

T πX

is a nilpotent operator in B(T πX) with T k
N = 0. Therefore, T D =

(T l)#T l−1 and (T D)l = (T l)#, for all l ≥ k. Conversely, we have the

following.

Lemma 2.1. Let T ∈ B(X) with T n ∈ GI(X) for some n ≥ 1. Then

T ∈ DI(X) with Ind(T ) ≤ n.

Proof. If T n is group invertible, then by [9], T is invertible or 0 is an

isolated point of T . Hence, T = T1 ⊕ T2, where T1 is invertible and T2

is quasi-nilpotent. Then T n = T n
1 ⊕ T n

2 , and the group inverse of T n is

given by T−n
1 ⊕0. Hence, A = T−1

1 ⊕0 satisfies the definition of the Drazin

inverse with the index ≤ n.

Lemma 2.2. Let T ∈ RG(X) and T̄ = T + δT ∈ B(X) with

‖T+‖‖δT‖ <
1

1 + ‖I − TT+‖ .

Then Ran(T̄ ) ∩ Ker(T+) = {0} if and only if

(I−TT+)δT (I−T+T ) = (I−TT+)δT (I+T+δT )−1T+δT (I−T+T ). (2.1)

Proof. By [3], Ran(T̄ ) ∩ KerT+ = {0} if and only if

(I − TT+)δT (I + δTT+)−1T̄ (I − T+T ) = 0. (2.2)

Since (I + T+δT )−1T+ = T+(I + δTT+)−1, it follows that

(I−TT+)δT (I + T+δT )−1T+δT (I − T+T )

= (I − TT+)[I + δTT+ − I ](I + δTT+)−1δT (I − T+T )

= (I − TT+)δT (I − T+T ) − (I − TT+)δT (I + δTT+)−1T̄ (I − T+T )

so (2.1) is equivalent to (2.2).
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Lemma 2.3. Let T ∈ GI(X) and T̄ = T + δT ∈ B(X) with

κ#(T )εT <
1

1 + ‖T π‖ , where κ#(T ) = ‖T‖‖T#‖.

Then

Φ(T ) = I + δT (I − TT #)δT [(I + T#δT )−1T#]2 (2.3)

is invertible in B(X) and

‖Φ−1(T )‖ ≤ (1 − κ#(T )εT )2

(1 − κ#(T )εT )2 − ‖T π‖(κ#(T )εT )2
.

Proof. We have

‖(I + T#δT )−1‖ ≤ 1

1 − κ#(T )εT

and

‖I − Φ(T )‖ ≤ ‖T π‖ (κ#(T )εT )2

(1 − κ#(T )εT )2
<

1

‖T π‖ ≤ 1.

Thus, Φ(T ) is invertible in B(X) and

‖Φ−1(T )‖ ≤ 1

1 − ‖I − Φ(T )‖ ≤ (1 − κ#(T )εT )2

(1 − κ#(T )εT )2 − ‖T π‖(κ#(T )εT )2
.

Let T ∈ GI(X) and T̄ = T + δT ∈ B(X). Then with respect to the

decomposition, X = (I − T π)X + T πX , we have

T =

[

T# 0
0 0

]

, T# =

[

T−1
# 0
0 0

]

, δT =

[

δ1 δ2

δ3 δ4

]

,
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where, δ1 = (I−T π)δT (I−T π), δ2 = (I−T π)δTT π, δ3 = T πδT (I−T π), and

δ4 = T πδTT π. Let I1 (resp. I2) denote the identity operator on (I −T π)X

(resp. T πX). Then

T̄ =

[

T# + δ1 δ2

δ3 δ4

]

, I + T#δT =

[

I1 + T#δ1 δ2

0 I2

]

.

So if

κ#(T )εT <
1

1 + ‖T π‖ ,

then I1 + T#δ1 is invertible and

(I + T#δT )−1T# =

[

(I1 + T#δ1)
−1T−1

# 0
0 0

]

and moreover, I1 + δ2δ3[(I1 + T−1
# δ1)

−1T#]2 is also invertible, since

Φ(T ) =

[

I1 + δ2δ3[(I1 + T−1
# δ1)

−1T#]2 0

δ4δ3[(I1 + T−1
# δ1)

−1T#]2 I2

]

is invertible by Lemma 2.3.

Lemma 2.4. Let T ∈ GI(X) and T̄ = T + δT ∈ B(X) with

κ#(T )εT <
1

1 + ‖T π‖ .

Put C(T ) = T πδT (I + T#δT )−1T#, D(T ) = (I + T#δT )−1T#Φ−1(T ).

Then T̄ ∈ GI(X) with

T̄# = (I + C(T ))(D(T ) + D2(T )δTT π)(I − C(T )) (2.4)

if and only if Ran(T̄ ) ∩ Ker(T#) = {0}.
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Proof. Let δ1, . . . , δ4 and T# be as above. Put ∆ = δ4 − δ3(I1 +

T−1
# δ1)

−1T−1
# δ2. It is easy to check that (I + C(T )))(I − C(T )) = (I −

(T ))(I + (T )) = I ,

I ± C(T ) =

[

I1 0
±δ3(I1 + T−1

# δ1)
−1T−1

# I2

]

,

and (2.1) is equivalent to ∆ = 0 when replacing T + by T# in (2.1). Notice

that

(I − C(T ))T̄ (I + C(T )) =

[

T# + δ1 + δ2δ3(T# + δ1)
−1 δ2

∆δ3(T# + δ1)
−1 ∆

]

= T̄0. (2.5)

So if Ran(T̄ ) ∩ Ker(T#) = {0}, then

T̄0 =

[

T# + δ1 + δ2δ3(T# + δ1)
−1 δ2

0 0

]

and

T̄
#
0 =

[

T# + δ1 + δ2δ3(T# + δ1)
−1]−1 T# + δ1 + δ2δ3(T# + δ1)

−1]−2δ2

0 0

]

= D(T ) + D2(T )δTT π.

Consequently, T̄# = (I + C(T ))(D(T ) + D2(T )δTT π)(I − C(T )).

On the other hand, if T̄ ∈ GI(X) and T̄# has the expression (2.4),

then by (2.5), T̄
#
0 = D(T ) + D2(T )δTT π. From T̄0T̄

#
0 T̄0 = T̄0, we get that

∆ = 0. Thus, Ran(T̄ ) ∩ Ker(T#) = {0} by Lemma 2.2.

3. Perturbation Analysis for Drazin Inverse. We first consider

the perturbation of group inverse under stable perturbation. We have the

following theorem.

Theorem 3.1. Let T ∈ GI(X) and T̄ = T + δT ∈ B(X) with

κ#(T )εT <
1

1 + ‖T π‖ .
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Assume that T̄ is the stable perturbation of T . Then T̄ ∈ DI(X) and

‖T̄#‖ ≤ ‖T#‖
[1 − (1 + ‖T π‖)κ#(T )εT ]2

,

‖T̄ π − T π‖ <
2‖T π‖κ#(T )εT

1 − (1 + ‖T π‖)κ#(T )εT

,

‖T̄# − T#‖
‖T#‖ ≤ (1 + 2‖T π‖)κ#(T )εT

[1 − (1 + ‖T π‖)κ#(T )εT ]2
.

Proof. We keep C(T ), D(T ) in Lemma 2.4. Then by Lemma 2.4,

T̄ ∈ DI(X). Since D(T )(I − C(T )) = D(T ), it follows from (2.4) that

T̄# = (I + C(T ))D(T ) + (I + C(T ))D2(T )δTT π(I − C(T )) (3.1)

‖T̄#‖ ≤ (1 + ‖C(T )‖)‖D(T )‖
+ (1 + ‖C(T )‖)2‖D(T )‖2‖δT‖‖T π‖. (3.2)

We now estimate 1 + ‖C(T )‖ and ‖D(T )‖, respectively. We have

1 + ‖C(T )‖ ≤ 1 + ‖T π‖ κ#(T )εT

1 − κ#(T )εT

=
1 + (‖T π‖ − 1)κ#(T )εT

1− κ#(T )εT

‖D(T )‖ ≤ (1 − κ#(T )εT )‖T#‖
[1 − (1 + ‖T π‖)κ#(T )εT ][1 + (‖T π‖ − 1)κ#(T )εT ]

.

Thus,

(1 + ‖C(T )‖)2‖D(T )‖2‖δT‖‖T π‖ ≤ ‖T#‖‖T π‖κ#(T )εT

[1 − (1 + ‖T π‖)κ#(T )εT ]2

and hence, by (3.2),

‖T̄#‖ ≤ (1 − κ#(T )εT )‖T#‖
[1 − (1 + ‖T π‖)κ#(T )εT ]2

≤ ‖T#‖
[1 − (1 + ‖T π‖)κ#(T )εT ]2

.
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By (2.4) and (2.5), T̄ T̄# = (I +C(T ))[I −T π +D(T )δTT π](I −C(T )). So

‖T̄ π − T π‖ ≤ ‖C(T )(I − T π)‖ + ‖(I + C(T ))D(T )δTT π(I − C(T ))‖
≤ ‖C(T )‖+ (1 + ‖C(T )‖)2‖D(T )‖‖δT‖‖T π‖

≤ 2‖T π‖κ#(T )εT

1− (1 + ‖T π‖)κ#(T )εT

.

Finally, by (3.1)

‖T̄# − T#‖
≤ ‖D(T ) − T#‖ + ‖C(T )D(T )‖+ (1 + ‖C(T )‖)2‖D(T )‖2‖δT‖‖T π‖.

Now, using Lemma 2.2 and the fact that

(κ#(T )εT )2 ≤ κ#(T )εT < 1

we have

‖D(T ) − T#‖ = ‖[(I + T πδT )−1T# − T#]Φ−1(T ) + T#(Φ−1(T ) − I)‖

≤ T#κ#(T )εT

1 − κ#(T )εT

‖Φ−1(T )‖ + ‖T#‖‖Φ−1(T )‖‖Φ(T )− I‖

≤ ‖T#‖κ#(T )εT

1 − (1 + ‖T π‖)κ#(T )εT

‖C(T )D(T )‖ ≤ ‖T#‖‖T π‖κ#(T )εT

1 − (1 + ‖T π‖)κ#(T )εT

.

Therefore,

‖T̄# − T#‖

≤ ‖T#‖κ#(T )εT

1 − (1 + ‖T π‖)κ#(T )εT

[

1 + ‖T π‖ +
‖T π‖

1 − (1 + ‖T π‖)κ#(T )εT

]

≤ (1 + 2‖T π‖)‖T#‖κ#(T )εT

[1 − (1 + ‖T π‖)κ#(T )εT ]2
.
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Let T, T̄ = T + δT ∈ B(X) and δT j = (T + δT )j −T j , j = 1, . . . , n. Then

‖δT j‖ ≤ (‖T‖+ ‖δT‖)j−1‖δT‖+ ‖T‖‖δT j−1‖. (3.3)

Suppose εT < 1. From (3.3), we can deduce that

‖δT n‖ ≤ ‖δT‖
n−1
∑

j=0

‖T‖j(‖T‖+ ‖δT‖)n−1−j

= ‖T‖nεT

n−1
∑

j=0

(1 + εT )j < (2n − 1)‖T‖nεT .

Now we present the main result of the paper as follows.

Theorem 3.2. Let T ∈ DI(X) with Ind(T ) = n and T̄ = T+δT ∈ B(X)

with

κn
D(T )εT <

1

(2n − 1)(1 + ‖T π‖) .

Assume that Ran(T̄ n)∩Ker(T D)n = {0}. Then T̄ ∈ DI(X) with Ind(T̄ ) ≤
n and

T̄ D = (I +C(T n))(D(T n)+D2(T n)δT nT π)(I +C(T n))(T +δT )n−1, (3.4)

‖T̄ D‖ ≤ 2n−1κn−1
D (T )‖T D‖

[1 − (2n − 1)(1 + ‖T π‖)κn
D(T )εT ]2

,

‖T̄ π − T π‖ ≤ 2(2n − 1)κn
D(T )εT‖T π‖

1 − (2n − 1)(1 + ‖T π‖)κn
D(T )εT

‖T̄ D − T D‖
‖T D‖ ≤ 2n−1(2n − 1)(1 + 2‖T π‖)κ2n−1

D (T )εT

[1 − (2n − 1)(1 + ‖T π‖)κn
D(T )εT ]2

+ (2n−1 − 1)κn
D(T )εT .
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Proof. We have T n ∈ GI(X) and (T D)n = (T n)#, T n(T n)# = I −T π.

Noting that κD(T ) ≥ ‖TT D‖ ≥ 1, we have εT < 1 and

‖δT n‖‖(T n)#‖ < (2n − 1)κn
D(T )εT <

1

1 + ‖T π‖ . (3.5)

Applying Theorem 3.1 to T n and T̄ n = T n + δT n, we get that T̄ n ∈ DI(X)

and

‖(T̄ n)#‖ ≤ ‖(T n)#‖
[1 − (1 + ‖T π‖)‖δT n‖‖(T n)#‖]2 (3.6)

‖T̄ n(T̄ n)# − T n(T n)#‖ ≤ 2‖T π‖‖δT n‖‖(T n)#‖
1 − (1 + ‖T π‖)‖δT n‖‖(T n)#‖) (3.7)

‖(T̄ n)# − (T n)#‖ ≤ (1 + 2‖T π‖)‖δT n‖‖(T n)#‖2

[1 − (1 + ‖T π‖)‖δT n‖‖(T n)#‖]2 . (3.8)

By Lemma 2.1, T̄ ∈ DI(X) with Ind(T̄ ) ≤ n. So T̄ D = (T̄ n)#T̄ n−1.

Replacing T by T n in (2.4), we obtain the expression of (T̄ n)# and hence,

we get (3.4). Furthermore, ‖T̄ D‖ ≤ ‖(T̄ n)#‖‖T‖n−1(1 + εT )n−1 and

‖T̄ D − T D‖ = ‖‖(T̄ n)#T̄ n−1 − (T n)#T n−1‖
≤ ‖(T̄ n)# − (T̄ n)#‖‖T‖n−1(1 + εT )n−1 + ‖(T n)#‖‖T̄ n−1 − T n−1‖
< 2n−1‖(T̄ n)# − (T̄ n)#‖‖T‖n−1 + (2n−1 − 1)‖T D‖κn−1

D (T )εT .

Combining these inequalities with (3.5), (3.6), (3.7), and (3.8), we can get

the assertions easily.

Let V1, V2 be two closed subspaces of X . Put

δ(V1, V2) = sup{dist (x, V2)|x ∈ V1, ‖x‖ = 1},

δ̂(V1, V2) = max{δ(V1, V2), δ(V2, V1)}.

Suppose that {Tn}∞n=0 ⊂ DI(X) and

lim
n→∞

Tn = T0.
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Let Tn = Cn + Nn be the core nilpotent decomposition of Tn, n ≥ 0 [12].

Using δ̂(Ran(Cn), Ran(C0)), Rakočević characterized

lim
n→∞

T D
n = T D

0 .

Now we give a relatively simple condition such that

lim
n→∞

T D
n = T D

0

as follows.

Corollary 3.3. Let Tn ∈ DI(X), (n ≥ 0) with

lim
n→∞

Tn = T0.

Suppose that

l = sup
n≥0

Ind(Tn) < +∞.

Then

lim
n→∞

T D
n = T D

0

if and only if Ran(T l
n) ∩ Ker(T l

0)
# = {0} eventually.

Proof. We have T l
n = Cl

n ∈ GI(X) and Ran(C l
n) = Ran(Cn), n ≥ 0. If

Ran(T l
n) ∩ Ker(T l

0)
# = {0}, then by Theorem 3.1,

lim
n→∞

‖(T l
n)# − (T l

0)
#‖ = 0.

Since T D
n = (T l

n)#(Tn)l−1, it follows that

lim
n→∞

T D
n = T D

0 .

Conversely, if

lim
n→∞

T D
n = T D

0 ,

then

lim
n→∞

δ̂(Ran(Cn), Ran(C0)) = 0
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by [12]. Since

lim
n→∞

‖T l
n − T l

0‖ = 0,

it follows from [3] that Ran(T l
n) ∩ Ker(T l

0)
# = {0} eventually.

We end the paper with the following remark.

Remark 3.4. Let T ∈ DI(X) with Ind(T ) = n and T̄ = T +δT ∈ B(X).

(1) When dim X < ∞, Rank (T̄ n) = Rank(T n) and εT is sufficiently

small, Theorem 3.2 gives perturbation results of Drazin invertible ma-

trices.

(2) When dim X < ∞, Corollary 3.3 is the equivalent condition of the

continuity of Drazin invertible matrices given by Campbell and Meyer

in [1].

(3) If we require T̄ ∈ DI(X) with Ind(T̄ ) ≤ n and

lim
δT→0

T̄ D = T D,

then by Corollary 3.3, Ran(T̄ n) ∩ Ker(T n)# = {0} when ‖δT‖ is suf-

ficiently small. So in this case, the expression of T̄ D given by (3.4) is

unique. This means that Theorem 3.2 solves the problem of continuous

perturbation of Drazin invertible operators or matrices.
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