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Abstract. This paper deals with some classes of morphisms in a cate-

gory which we call networks of morphisms. These networks are linked with

full reflective subcategories. The notion of saturated subcategory is intro-

duced and studied. Each reflective subcategory is shown to be saturated.

1. Introduction and Terminologies. It is well-known that some

elementary types of morphisms in Mathematics play a crucial role. Among

these morphisms one can mention injections, surjections, and bijections in

the category SET of sets and more generally monics, epics, and isomor-

phisms in an arbitrary category.

The following properties are well-known.

(1) Each isomorphism is both monic and epic.

(2) The composite of two monics (resp. epics, resp. isomorphisms) is a

monic (resp. an epic, resp. an isomorphism).

(3) If A
f
−→ B and B

g
−→ C and gf is monic (resp. g is epic), then f

is monic (resp. epic).

(4) Let A
f1

−→ B and B
f2

−→ C be two morphisms and f3 = f2f1. If

two among the three morphisms f1, f2, f3 are isomorphisms, then so is

the third one.

It is known that several other types of morphisms satisfy at least one

of the previous properties.

These observations motivate us to introduce a new concept in order to

obtain information concerning reflective subcategories.

Notice that all undefined terms are standard as in [7].

Definition 1.1. Let C be a category. Suppose that for each object A, B

of C a subset Γ(A, B) of homC(A, B) is given. We consider the following

axioms.

(Net1) For each object A, B of C the set of isomorphisms IsomC(A, B)

from A to B is contained in Γ(A, B).
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(Net2) If θ1 ∈ Γ(A1, A2) and θ2 ∈ Γ(A2, A3), then θ3 = θ2θ1 ∈

Γ(A1, A3).

(Net3) If θ2 ∈ Γ(A2, A3) and θ3 = θ2θ1 ∈ Γ(A1, A3), then θ1 ∈

Γ(A1, A2).

(Net4) If θ1 ∈ Γ(A1, A2) and θ3 = θ2θ1 ∈ Γ(A1, A3), then θ2 ∈

Γ(A2, A3).

(1) We will say that Γ is a left network of morphisms (LNM , for short)

of C if it satisfies axioms (Neti), for each i ∈ {1, 2, 3}.

(2) Γ is said to be a right network of morphisms (RNM , for short) of

C if it satisfies axioms (Neti), for each i ∈ {1, 2, 4}.

(3) Γ is said to be a network of morphisms (NM , for short) of C if it

satisfies axioms (Neti), for each i ∈ {1, 2, 3, 4}.

A morphism f : A −→ B and an object X in a category C are called

orthogonal [5], if the mapping homC(f, X): homC(B, X) −→ homC(A, X)

which takes g to gf is bijective. For a class of morphisms Σ (resp. a class

of objects D), we denote by Σ⊥ the class of objects orthogonal to every f

in Σ (resp. by D⊥ the class of morphisms orthogonal to all X in D). The

internal saturation of Σ is Σ⊥⊥ and say that Σ is internally saturated if

Σ⊥⊥ = Σ [1].

As a fundamental example of networks of morphisms (see Example

2.10), we mention D⊥; and consequently each internally saturated class of

morphisms defines a network of morphisms.

There is another concept of saturation of a class of morphisms intro-

duced in [6] and [2]; the saturation of a class of morphisms Σ in a category

C consists of the morphisms rendered invertible by the canonical functor

from C to the category of fractions C[Σ−1]. This saturation is called the

external saturation Σ̂ of Σ [1]. The class Σ is said to be externally saturated

if Σ̂ = Σ [1].

Casacuberta and Frei [1] have remarked that a class of morphisms in

a category is externally saturated if and only if it is rendered invertible by

some functor, which was already pointed out in [2]. This makes clear the

fact that any externally saturated class of morphisms determines a network

of morphisms. Note also that if a class of morphisms in a category is

internally saturated, then it is externally saturated [1]. The converse does

not hold [1].
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All subcategories D of C considered in this paper are assumed to be

full and closed under isomorphisms (i.e., if A → B is an isomorphism of

objects in C, then A is in D if and only if so is B).

A subcategory D of a category C is called reflective in C when the

inclusion functor I :D −→ C has a left adjoint F :C −→ D. It is well-

known that F :C −→ D is a left adjoint functor of I if and only if there

is a natural transformation µ: 1C −→ IF such that for each object A of C

the couple (F (A), µA) is a universal to I from A.

If D is a reflective subcategory of C, we are aiming to give information

about the network of morphisms defined by D⊥. This is the main goal of

Section 2.

Let D be a class of objects of a category C. The saturation of D is

D⊥⊥. We will say that D is saturated if D⊥⊥ = D. Section 3 is devoted to

the study of saturated classes of objects. It is proved that each reflective

subcategory of a given category is saturated and the converse does not hold.

In Section 1 many examples of networks of morphisms are provided to

illustrate the theory.

2. Fundamental Constructions of Networks of Morphisms.

This section is devoted to some fundamental examples of networks of mor-

phisms.

Example 2.1. Let C be a category.

(1) There are two trivial networks of morphisms of C, namely

IsomC(−,−) and homC(−,−).

(2) By letting Monic(A, B) be the set of monics of C from A to B, we

define a left network of morphisms Monic(−,−).

(3) By letting Epic(A, B) be the set of epics of C from A to B, we

define a right network of morphisms Epic(−,−).

(4) - Monic is an LNM of SET but not an RNM .

- Epic is an RNM of SET but not an LNM .

- Both Epic and Monic are not NM .

Definition 2.2. Let Γ, Γ′ be two NM ’s (resp. LNM ’s, resp. RNM ’s)

of a category C.
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(1) We will say that Γ′ is a sub-network (resp. sub-left network,

resp. sub-right network) of Γ, if Γ′(A, B) ⊆ Γ(A, B), for each object

A, B of C. We write Γ ⊆ Γ′.

(2) We will say that Γ is equal to Γ′, if Γ ⊆ Γ′ and Γ′ ⊆ Γ.

Proposition 2.3. Let C be a category and (Γi, i ∈ I) a class of NM ’s

(resp. LNM ’s, resp. RNM ’s) of C. We define the intersection Γ of all Γi

by letting Γ(A, B) be the ∩i∈IΓi(A, B). Then Γ is an NM (resp. LNM ,

resp. RNM) of C.

The previous proposition leads to the following natural definition.

Definition 2.4. Let C be a category and Σ a class of morphisms of C.

The NM (resp. LNM , resp. RNM) generated by Σ is the intersection of

all NM ’s (resp. LNM ’s, resp. RNM ’s) of C containing Σ.

Example 2.5. In the category SET of sets, the network of morphisms

homC(−,−) is generated by the class of all one-to-one maps and onto maps.

The following two propositions give more examples of networks of mor-

phisms.

Proposition 2.6. Let C, D be two categories and F :C −→ D a co-

variant functor. Let Γ′ be an NM (resp. LNM , resp. RNM) of D. We

define Γ = F−1(Γ′) by letting Γ(A, B) be the set {f ∈ homC(A, B) |

F (f) ∈ Γ′(F (A), F (B))}. Then Γ is an NM (resp. LNM , resp. RNM) of

C (called the inverse image of Γ′ by F ).

Proposition 2.7. Let C, D be two categories and F :C −→ D a con-

travariant functor. Let Γ′ be an NM (resp. LNM , resp. RNM) of D. We

define Γ = F−1(Γ′) by letting Γ(A, B) be the set

{f ∈ homC(A, B) | F (f) ∈ Γ′(F (B), F (A))}.

(1) If Γ′ is an RNM of D, then Γ is an LNM of C.

(2) If Γ′ is an LNM of D, then Γ is an RNM of C.

(3) If Γ′ is an NM of D, then Γ is an NM of C.

Example 2.8. Let F :C −→ D be a functor. By letting Γ(F )(A, B)

be the set of all arrows f : A −→ B rendered invertible by F , we define a
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network of morphisms of C, called the network of morphisms associated to

F . In fact, Γ(F ) = F−1(Isom(−,−)).

Example 2.8 and [1] yield immediately the following.

Corollary 2.9. Any externally saturated class of morphisms of a cate-

gory C is a network of morphisms.

Example 2.10 (A Fundamental Example). Let C be a category and D

a subcategory of C. Then D⊥ determines a network of morphisms of C.

Proof. The proof is straightforward, but I would like to write it.

Let θ1: A −→ B, θ2: B −→ C be two morphisms of C and θ3 = θ2θ1.

Since homC(−, X) is a contravariant functor, then

homC(θ3, X) = homC(θ1, X)homC(θ2, X).

Thus, if two of the three maps homC(θ1, X), homC(θ2, X), homC(θ3, X)

are bijective, then so is the third one. Therefore, D⊥ is a network of mor-

phisms of C. In fact, this is an elementary proof. Note also that this may

be derived immediately combining the following facts; D⊥ is internally sat-

urated; each internally saturated class of morphisms is externally saturated

[1]; and then apply Corollary 2.9.

Question 2.11. Is there a network of morphisms which is not externally

saturated?

Particular networks of morphisms are introduced in the following.

Definition 2.12. Let Γ be an NM (resp. LNM , resp. RNM) of a cate-

gory C and F :C −→ C a functor. Γ is said to be compatible (resp. strongly

compatible) with F if Γ ⊆ F−1(Γ) (resp. Γ = F−1(Γ)).

The following proposition gives some examples of networks of mor-

phisms strongly compatible with a functor.

Proposition 2.13. Let C be a category and F :C −→ C a covariant

functor. Suppose that there exists a natural transformation µ: 1C −→ F .

Let Γ be a network of morphisms of C such that µA ∈ Γ(A, F (A)), for each

object A of C. Then Γ is strongly compatible with F .

5



Proof. We have to prove that for each u ∈ homC(A, B), the following

equivalence holds:

u ∈ Γ(A, B)⇐⇒ F (u) ∈ Γ(F (A), F (B)).

Let us first remark that the following diagram commutes.

A
u
−→ B

µA ↓ ↓ µB

F (A)
F (u)
−→ F (B)

[=⇒]. If we suppose that u ∈ Γ(A, B), then F (u)µA = µBu ∈ Γ(A, F (B)).

Thus, F (u) ∈ Γ(F (A), F (B)), since Γ is an RNM .

[⇐=]. Conversely, suppose that F (u) ∈ Γ(F (A), F (B)). Then F (u)µA ∈

Γ(A, F (B)); hence, µBu ∈ Γ(A, F (B)); so that u ∈ Γ(A, B), since Γ is an

LNM .

Remark 2.14. One may easily see that a compatible NM with a functor

F is not necessarily strongly compatible. It suffices to remark that the

network IsomC(−,−) is compatible with any functor F :C −→ C; however

the equality IsomC(−,−) = F−1(IsomC(−,−)) does not hold in general.

3. Reflective Sub-Categories. This section is devoted to shed some

light on the network of morphisms associated to a reflective subcategory D

of C.

Notation 3.1. Let D be a reflective subcategory of C. We denote by

D⊥(−,−) the network of morphisms associated to D (see Example 2.10).

The following result illustrates some type of “minimality” of the net-

work D⊥(−,−).

Theorem 3.2. Let D be a reflective subcategory of C, F a left adjoint

functor of the inclusion functor I :D −→ C and µ the unit of the adjunction.

Let Γ be an LNM of C such that the following properties hold:

(i) Γ(A, B) ⊆ D⊥(A, B) for each object A, B of C;

(ii) µA ∈ Γ(A, F (A)) for each object A of C.
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Then Γ = D⊥ = S(F ), where S(F ) is the class of morphisms of C

rendered invertible by the functor F .

Since the LNM D⊥(−,−) of C satisfies properties (i), (ii) of Theorem

3.2, it will be sufficient to show that Γ = S(F ). Thus, it suffices to prove

the following lemma.

Lemma 3.3. Under the same assumptions of Theorem 3.2, the following

statements are equivalent:

(i) f ∈ Γ(A, B);

(ii) F (f) is an isomorphism;

(iii) F (f) ∈ Γ(F (A), F (B)).

Proof.

[(i) ⇐⇒ (iii)]. This follows immediately from Proposition 2.13.

[(i) =⇒ (ii)]. Since µBf ∈ Γ(A, F (B)) ⊆ D⊥(A, F (B)), there exists

a unique morphism g: F (B) −→ F (A) such that g(µBf) = µA. Hence,

(gF (f))µA = µA. Thus, the diagram

A
µA

−→ F (A)
µA ↘

F (A)

is rendered commutative by the two morphisms 1F (A) and gF (f). As µA ∈

D⊥(A, F (A)), we get gF (f) = 1F (A).

Now, µBf ∈ D⊥(A, F (B)) and the diagram

A
µBf
−→ F (B)

µBf ↘
F (B)

is rendered commutative by the two morphisms 1F (B) and F (f)g. This

yields immediately F (f)g = 1F (B). Therefore, F (f) is an isomorphism.

[(ii) =⇒ (iii)]. Clearly Isom(F (A), F (B)) ⊆ Γ(F (A), F (B)).

Next, we give further information about reflective subcategories.
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Proposition 3.4. Let D be a reflective subcategory of C, F a left adjoint

functor of the inclusion functor I :D −→ C and µ the unit of the adjunction

(F, I). Then the following properties hold.

(1) If A is in D, then µA is an isomorphism.

(2) For each A, B in D, D⊥(A, B) = Isom(A, B).

(3) F (µA) = µF (A) for each A in C.

Proof.

(1) There exists a unique morphism g: F (A) −→ A such that gµA = 1A.

Hence, (µAg)µA = µA. It follows that the diagram

A
µA

−→ F (A)
µA ↘

F (A)

is rendered commutative by the two morphisms 1F (A) and µAg; so that

µAg = 1F (A). Therefore, µA is an isomorphism.

(2) Let A, B in D and f ∈ D⊥(A, B). By (1), µA and µB are iso-

morphisms. Hence, f = (µB)−1F (f)µC . On the other hand, F (f) is an

isomorphism, by Theorem 3.2. Now clearly, f is an isomorphism.

(3) By letting f = F (µA)µA = µF (A)µA, the following diagram

A
µA

−→ F (A)
f ↘

F (F (A))

is rendered commutative by the two morphisms µF (A) and F (µA). Since,

in addition, µA ∈ D⊥(A, F (A)), we easily obtain F (µA) = µF (A).

Next, we give an interesting result about reflective subcategories.

Theorem 3.5. Let D be a subcategory of a category C and F :C −→ D

a covariant functor. Then the following statements are equivalent.

(1) F is a left adjoint functor of the inclusion functor I :D −→ C.

(2) There exists a natural transformation µ: 1C −→ IF such that the

following properties hold:

(i) for each object A in C, F (µA) is an isomorphism.

(ii) for each object A in D, µA is an isomorphism.
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Proof.

[(1) =⇒ (2)]. Here D is a reflective subcategory of C. Now, since

µA ∈ D⊥(A, F (A)), we conclude that µA is an isomorphism, by Theorem

3.2.

If A is in D, then, according to Proposition 3.4, µA is an isomorphism.

[(2) =⇒ (1)]. We are aiming to prove that (F (A), µA) is universal to

the inclusion functor I :D −→ C from A.

Let C be an object of D and f : A −→ C a morphism in C. We must

prove that there is a unique morphism f̃ : F (A) −→ C such that f̃µA = f .

Suppose that such a morphism f̃ exists. Then we have F (f̃)F (µA) = F (f).

Thus, F (f̃) = F (f)(F (µA))−1.

On the other hand, the diagram

F (A)
f̃
−→ C

µF (A) ↓ ↓ µC

F (F (A))
F (f̃)
−→ F (C)

commutes. Consequently,

f̃ = (µC)−1F (f̃) ◦ µF (A) = (µC)−1F (f)(F (µA))−1µF (A).

This implies the uniqueness of f̃ , if it exists. Now, it suffices to verify

that f̃ = (µC)−1F (f)(F (µA))−1µF (A) does the job. Indeed, the following

diagrams are commutative.

C
f
←− A

µA

−→ F (A)
µC ↓ µA ↓ ↓ µF (A)

F (C)
F (f)
←− F (A)

F (µA)
−→ F (F (A))

Hence,

f̃µA = (µC)−1F (f)(F (µA))−1µF (A)µA

= (µC)−1F (f)(F (µA))−1F (µA)µA

= (µC)−1F (f)µA

= (µC)−1µCf

= f.
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4. Saturated Subcategories. An interesting example of saturated

subcategories is given in the following.

Theorem 4.1. If D is a reflective subcategory of C, then D is saturated

(i.e., D⊥⊥ = D).

Proof. Let F :C −→ D be a left adjoint functor of the canonical

inclusion functor I :D −→ C. Let µ be a natural transformation from the

functor 1C to the functor IF such that (F (A), µA) is a universal of A to I ,

for each object A of C.

According to Theorem 3.2, it suffices to show that S(F ) = D.

(•) X ∈ ob(D) =⇒ X ∈ S(F )⊥.

Let X ∈ ob(D), q: A −→ B in S(F ) and f : A −→ X . We look for a

unique arrow f̃ : B −→ X such that f̃q = f . Suppose that such an arrow

exists. Then we have F (f̃)F (q) = F (f). In this way, F (f̃) = F (f)(F (q))−1.

On the other hand, the diagram

B
f̃
−→ X

µB ↓ ↓ µX

F (B)
F (f̃)
−→ F (X)

is commutative. Hence, µX f̃ = F (f̃)µB . But µX is an isomorphism, by

Proposition 3.4 (1). Thus,

f̃ = (µX)−1F (f̃)µB = (µX )−1F (f)(F (q))−1µB .

This shows the uniqueness of f̃ . Now, it suffices to check that f̃ =

(µX)−1F (f)(F (q))−1µB does the job. Indeed,

f̃ q = (µX)−1F (f)(F (q))−1µBq

= (µX)−1F (f)(F (q))−1F (q)µA

= (µX)−1F (f)µA

= (µX)−1µXf

= f.
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(•) X ∈ S(F )⊥ =⇒ X ∈ ob(D).

As D is closed under isomorphisms, it suffices to show that µX is an

isomorphism.

It is known that µX ∈ D⊥. Hence, µX ∈ S(F ), by Theorem 3.2. Thus,

X ⊥ µX ; consequently, there is a unique arrow g: F (X) −→ X such that

gµX = 1X . This leads to µXgµX = µX . As F (X) ⊥ µX , we easily obtain

µXg = 1F (X), completing the proof.

The next example shows that the converse of Theorem 4.1 does not

hold.

Example 4.2. Let C be the category whose objects are W, X, Y, Z

and with arrows

1W , 1X , 1Y , 1Z , f1, f1, f2, f3, f4

such that the following diagram is commutative.

Z
f4

←− W
f1

−→ X

f2 ↓ ↙ f3

Y

Let D = {Y }. Then

D⊥ = {1W , 1X , 1Y , 1Z , f1, f1, f2, f3}.

and D⊥⊥ = D⊥. Thus, D is saturated, however D is not reflective in C.

Particular saturated subcategories are provided by the following defi-

nition.

Definition 4.3. Let C be a category. An object A of C is said to be

saturated if {A}⊥⊥ = 〈A〉, where 〈A〉 is the class of objects of C which are

isomorphic to A.

The following proposition, which has a straightforward proof, links

saturated objects with terminal ones.
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Proposition 4.4. Let C be a category. Then the following properties

hold.

(1) If T is a terminal object of C, then {T}⊥ = homC(−,−).

(2) If A, B ∈ homC(−,−)⊥ and there is an arrow θ: A −→ B, then θ

is an isomorphism.

(3) If T is a terminal object of C, then it is the unique saturated object

(up to an isomorphism).

Example 4.5. A saturated object which is not terminal.

Let C be a multiplicative monoid (M,×) such that M is of cardinality

≥ 2. Hence, C may be regarded as a category with single object A, ob(C) =

{A} with homC(A, A) = M . Thus, A is a saturated object; however, A is

not terminal, since the cardinality of M is ≥ 2.

Example 4.6. A category without saturated objects.

Let C be the full subcategory of SET whose objects are sets of car-

dinality ≥ 2. If X is an object of C, then {X}⊥ = IsomC(−,−). Hence,

{X}⊥⊥ = C.
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