RECOGNIZABILITY OF THE SIMPLE
 \mathbf{K}_{n}-GROUPS $(\mathrm{n}=3,4)$

Behrooz Khosravi*, Bahman Khosravi, and Behnam Khosravi

Abstract

Let G be a finite group. Based on the prime graph of G, the order of G can be divided into a product of co-prime positive integers. These integers are called order components of G and the set of order components is denoted by $O C(G)$. Some non-abelian simple groups are known to be uniquely determined by their order components. In this paper we discuss the recognizability of simple K_{n}-groups $(n=3,4)$ by their order components.

1. Introduction. We denote by $\pi(m)$ the set of all prime divisors of $m \in \mathbb{N}$ and if G is a finite group, then $\pi(G)$ is defined to be $\pi(|G|)$. We say that G is a K_{n}-group when $|\pi(G)|=n$.

We construct the prime graph of G as follows. The prime graph (Gruenberg-Kegel graph) $\Gamma(G)$ of a group G is the graph whose vertex set is $\pi(G)$, and two distinct primes p and q are joined by an edge (we write $p \sim q$) if and only if G contains an element of order $p q$. Let $t(G)$ be the number of connected components of $\Gamma(G)$ and let $\pi_{1}, \pi_{2}, \ldots, \pi_{t(G)}$ be the connected components of $\Gamma(G)$. If $2 \in \pi(G)$, then we always suppose $2 \in \pi_{1}$. Now $|G|$ can be expressed as a product of co-prime positive integers $m_{i}, i=1,2, \ldots, t(G)$, where $\pi\left(m_{i}\right)=\pi_{i}$. These integers are called the order components of G. The set of order components of G will be denoted by $O C(G)$. Also, if $2||G|$, then 2$| m_{1}$ and we call $m_{2}, \ldots, m_{t(G)}$ the odd order components of G. The order components of non-abelian simple groups can be obtained by using the tables in $[5,7,9]$. It is obvious that $O C(G)$ is a finite subset of \mathbb{N} consisting of co-prime integers. But not every subset of co-prime elements of \mathbb{N} can be the order components of a finite group. That is, for a given subset A of \mathbb{N}, groups G such that $O C(G)=A$ do not necessarily exist. We denote by $k(A)$ the number of isomorphism classes of finite groups G satisfying $O C(G)=A$. Hence, if G is a finite group, then $k(O C(G)) \geq 1$. Using this function, we introduce the following definition.

Definition 1.1. A group G is called an r-recognizable group if $k(O C(G))=r$. Usually a 1-recognizable group is called a characterizable group.

If p is a prime number, then $k\left(O C\left(\mathbb{Z}_{p}\right)\right)=1$. Similarly, $k\left(O C\left(\mathbb{Z}_{4}\right)\right)=$ 2.

[^0]Therefore, we divide all groups into the following classes: characterizable groups and r-recognizable groups, where $r>1$.

In this paper, we give some new classes of finite simple groups which are characterizable by their order components. In particular, we discuss the simple K_{n}-groups for $n=3,4$.
2. Preliminary Results. For finite characterizable groups, Chen, the first author and their collaborators, and some other authors obtained many results, which can be summarized as follows.

Theorem 2.1. (See the references of [6]) The following groups are characterizable:
(1) Alternating groups A_{n}, where $n=p, p+1$, or $p+2$, and p is an odd prime number,
(2) Symmetric groups S_{n}, where $n=p$ or $p+1$, and p is an odd prime number,
(3) All almost sporadic simple groups except $\operatorname{Aut}(M c L)$ and $A u t\left(J_{2}\right)$,
(4) Simple groups of Lie type: $E_{6}(q),{ }^{2} E_{6}(q), E_{8}(q), F_{4}(q),{ }^{2} D_{n}(q)$, $\operatorname{PSL}(p, q), \operatorname{PSU}(p, q), G_{2}(q)$ where $q \equiv 0(\bmod 3)$, Suzuki-Ree groups,
${ }^{3} D_{4}(q)$ where $q>2$.
Lemma 2.1. ([6]) Let G be a finite group and let M be a finite group with $t(M)=2$ satisfying $O C(G)=O C(M)$. Let $O C(M)=\left\{m_{1}, m_{2}\right\}$. Then one of the following holds:
(a) G is a Frobenius or 2-Frobenius group;
(b) G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that G / K is a π_{1}-group, H is a nilpotent π_{1}-group, and K / H is a non-abelian simple group.
Moreover, $O C(K / H)=\left\{m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{s}^{\prime}, m_{2}\right\}$, where $m_{1}^{\prime} m_{2}^{\prime} \ldots m_{s}^{\prime} \mid m_{1}$. Also, $G / K \leq \operatorname{Out}(K / H)$.

Lemma 2.2. ([3]) Let G be a finite group with $t(G) \geq 2$ and let N be a normal subgroup of G. If N is a π_{i}-group for some prime graph component of G and $m_{1}, m_{2}, \ldots, m_{r}$ are some order components of G but not π_{i}-numbers, then $m_{1} m_{2} \cdots m_{r}$ is a divisor of $|N|-1$.

Theorem 2.2. [1] If G is a simple K_{3}-group, then G is isomorphic to one of the following groups: $A_{5}, A_{6}, L_{2}(7), L_{2}(8), L_{2}(17), L_{3}(3), U_{3}(3)$, and $U_{4}(2)$.

Theorem 2.3. [1] If G is a simple K_{4}-group, then G is isomorphic to one of the following groups: $A_{7}, A_{8}, A_{9}, A_{10}, M_{11}, M_{12}, J_{2}, L_{3}(4), L_{3}(5)$, $L_{3}(8), L_{3}(17), L_{4}(3), O_{5}(4), O_{5}(5), O_{5}(7), O_{5}(9), O_{7}(2), O_{8}^{+}(2), G_{2}(3)$, ${ }^{3} D_{4}(2),{ }^{2} F_{4}(2)^{\prime}, S z(8), S z(32), U_{3}(4), U_{3}(5), U_{3}(7), U_{3}(8), U_{3}(9), U_{4}(3)$, $U_{5}(2)$, and $L_{2}(q)$, where q is a prime power satisfying

$$
q\left(q^{2}-1\right)=\operatorname{gcd}(2, q-1) 2^{\alpha_{1}} 3^{\alpha_{2}} p^{\alpha_{3}} r^{\alpha_{4}}
$$

where $\alpha_{i} \in \mathbb{N}(1 \leq i \leq 4)$ and p, r are distinct primes.

3. Recognizability of K_{n}-groups.

Theorem 3.1. Let M be a simple K_{3}-group. Then M is characterizable by its order components.

Proof. By using Theorems 2.1 and 2.2, it follows that if $M \neq U_{4}(2)$, then M is characterizable by its order components. Now let $M=U_{4}(2)$ and $O C(G)=O C(M)$. Then $O C(G)=\left\{2^{6} \times 3^{4}, 5\right\}$ and hence, G has a non-connected prime graph. Therefore, we can use Lemma 2.1.

If G is a Frobenius group, then $|G|$ is even and by using Lemma 2.3 in [6], we have $O C(G)=\{|H|,|K|\}$, where H and K are the Frobenius complement and the Frobenius kernel of G, respectively. Since $|H|<|K|$, we conclude that $|H|=5$ and $|K|=2^{6} \times 3^{4}$. By using the properties of Frobenius groups we have $|H| \mid(|K|-1)$, which is a contradiction. Therefore, G is not a Frobenius group.

If G is a 2-Frobenius group, then there is a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K and G / H are Frobenius groups with kernels H and K / H, respectively. Therefore, by using Lemma 2.4 in [6], we have $|K / H|=5$ and $|G / K| \mid 4$ with $|G / K| \neq 1$. If $|G / K|=4$, then since G / H is a Frobenius group with kernel K / H, it follows that $5 \mid(4-1)$, which is a contradiction. If $|G / K|=2$, then $|H|=2^{5} \times 3^{4}$ and $|K|=2^{5} \times 3^{4} \times 5$. Since K is a Frobenius group with kernel H, it follows that $5 \mid(2592-1)$, which is impossible. Therefore, G is not a 2-Frobenius group. Hence, by using Lemma 2.1, G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that G / K is a π_{1-} group, H is a nilpotent π_{1}-group and K / H is a non-abelian simple group. Also, 5 will be an odd order component of K / H. Moreover, K / H will be a simple K_{3}-group since G is a simple K_{3}-group. Obviously, $\pi(G)=\{2,3,5\}$ and hence, $\pi(K / H)=\{2,3,5\}$. Therefore, K / H is A_{5}, A_{6}, or $U_{4}(2)$. If $K / H=A_{5}$, then $|G / K| \cdot|H|=2^{4} \times 3^{3}$. Also, $|O U T(K / H)|=2$ and hence, $|G / K| \mid 2$, by Lemma 2.1, and so $3^{3}| | H \mid$. Let P be a 3 -Sylow subgroup of H. Since H is nilpotent and $H \triangleleft G$, we conclude that $P \triangleleft G$. Hence, $5 \mid(|P|-1)$, by Lemma 2.2, which is a contradiction.

If $K / H=A_{6}$, then $|G / K| \cdot|H|=2^{3} \times 3^{2}$. Similar to the last case, it follows that $|G / K|$ divides 2 and if P is a 3-Sylow subgroup of H, then $P \triangleleft G$ and $5 \mid\left(3^{2}-1\right)$, which is a contradiction. Therefore, $K / H=U_{4}(2)$ and hence, $K=G$ and $H=1$. Hence, $U_{4}(2)$ is uniquely determined by its order components.

Theorem 3.2. Let M be a simple K_{4}-group. Then M is characterizable by its order components, except when $M=A_{10}$.

Proof. If M is a simple K_{4}-group, then M is one of the finite groups listed in Theorem 2.3. Also, by using Theorems 2.1 and 2.3, we conclude that the theorem is proved for the following groups:
$A_{7}, A_{8}, A_{9}, M_{11}, M_{12}, J_{2}, L_{2}(q), L_{3}(4), L_{3}(8), L_{3}(5), L_{3}(17), C_{2}(7), C_{2}(9)$, $G_{2}(3), U_{3}(7), U_{3}(8), U_{3}(9), U_{5}(2), S z(8), S z(32)$. Also, since A_{10} has a connected prime graph, it follows that $O C\left(A_{10}\right)=O C\left(\mathbb{Z}_{1814400}\right)=\{1814400\}$.

Therefore, A_{10} is not characterizable by its order component. Now we prove the theorem for the rest of them. Since the technique is similar for some of these groups, we only state a few of them.
$\underline{\text { Case I. }} \quad M=L_{4}(3)$
Let G be a finite group such that $O C(G)=O C(M)$. We claim that G is not a Frobenius group nor a 2 -Frobenius group.

If G is a Frobenius group, then by using [6], it follows that $|H|=13$ and $|K|=2^{7} \times 3^{6} \times 5$, where H and K are the Frobenius complement and the Frobenius kernel of G, respectively. But $|H| \nmid(|K|-1)$, which is a contradiction. Therefore, G is not a Frobenius group.

If G is a 2 -Frobenius group, then there is a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K and G / H are Frobenius groups. Therefore, $|K / H|=13$ and $|G / K| \mid 12$ with $|G / K| \neq 1$. Let P be a 5 -Sylow subgroup of H. Then $P \unlhd G$ and hence, $13 \mid(5-1)$, which is a contradiction. Therefore, by Lemma 2.1, G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that G / K is a π_{1}-group, H is a nilpotent π_{1}-group, and K / H is a non-abelian simple group such that 13 is an odd order component of K / H. Also, $|\pi(K / H)| \leq 4$ and hence, K / H is a simple K_{n}-group, where $n=3$ or 4 . Moreover, $\pi(K / H) \subseteq\{2,3,5,13\}$. Therefore, K / H can be equal to $L_{4}(3), C_{2}(5),{ }^{2} F_{4}(2)^{\prime}, U_{3}(4), L_{2}(25)$, or $L_{3}(3)$. Now we consider these cases separately.

If $K / H=L_{3}(3)$, then $|G / K| \cdot|H|=2^{3} \times 3^{3} \times 5$ and $|G / K| \mid 2$. Let P be a 5 -Sylow subgroup of H. Then $P \triangleleft G$ and hence, $13 \mid(5-1)$, which is a contradiction.

If $K / H=C_{2}(5),{ }^{2} F_{4}(2)^{\prime}, U_{3}(4)$ or $L_{2}(25)$, then $5^{2}| | K / H \mid$ but $5^{2} \nmid|G|$, which is a contradiction. Therefore, $K / H=L_{4}(3)$ and hence, $K=G=$ $L_{4}(3)$ and $H=1$. Hence, $L_{4}(3)$ is characterizable by its order components.

Case II. $M=C_{2}(4)$
If $O C(G)=O C(M)$, then G is not a Frobenius group, since $17 \nmid\left(2^{8} \times\right.$ $3^{2} \times 5^{2}-1$). Also, by using the 5 -Sylow subgroup of H, it follows that G is not a 2-Frobenius group. Therefore, G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K / H is a non-abelian simple group and 17 is an odd order component of $K / H,|\pi(K / H)| \leq 4$, and $\pi(K / H) \subseteq\{2,3,5,17\}$. Therefore, K / H is $L_{2}(17), L_{2}(16)$, or $C_{2}(4)$.

If $K / H=L_{2}(17)$, then $|G / K| \cdot|H|=2^{4} \times 5^{2}$ and $|G / K| \mid 2$. Let P be a 5 -Sylow subgroup of H. Then $17 \nmid\left(5^{2}-1\right)$, which is a contradiction.

If $K / H=L_{2}(16)$, then $|G / K| \cdot|H|=2^{4} \times 3 \times 5$ and $|G / K| \mid 4$. Let P be a 3 -Sylow subgroup of H. Then $17 \nmid(3-1)$, which is a contradiction.

Hence, $K / H=C_{2}(4)$ and hence, $K=G=C_{2}(4)$ and $H=1$. Hence, $C_{2}(4)$ is characterizable by its order components.

Since the proofs of the other cases are similar, we omit the details.
Order components have an important role in research in group theory. For example, by using the order components of finite groups, we can prove
the validity of Thompson's conjecture and Shi-Bi's conjecture [8] for some finite groups.

Corollary 3.1. (Thompson's conjecture) Let G be a finite group with $Z(G)=1$ and let M be a simple K_{n}-group, where $n=3,4$. Let $N(G)=$ $\{k \mid G$ has a conjugacy class of size $k\}$. If $N(G)=N(M)$, then $G \cong M$.

Corollary 3.2. (Shi-Bi's conjecture) Let G be a group and let M be a simple K_{n}-group, where $n=3,4$. Then $G \cong M$ if and only if
(i) $|G|=|M|$ and
(ii) $\pi_{e}(G)=\pi_{e}(M)$, where $\pi_{e}(G)$ denotes the set of orders of elements in G.

Proof. The assumptions of these two corollaries imply that $O C(G)=$ $O C(M)$, by Lemmas 2.6 and 2.7 in [6]. Thus, the corollaries follow by Theorems 3.1 and 3.2.

Acknowledgements. The authors express their gratitude to Professor McLaughlin, Professor So, and the referees for carefully reading the manuscript and for their many valuable pointers, which improved the manuscript. The first author would like to thank IPM for the financial support. We dedicate this paper to our parents, Professor Amir Khosravi and Mrs. Soraya Khosravi, for their unending love and support.

References

1. Y. Bugeaud, Z. Cao, and M. Mignotte, "On Simple K_{4}-Groups," J. Algebra, 241 (2001), 658-668.
2. G. Y. Chen, "On Thompson's Conjecture," J. Algebra, 185 (1996), 184-193.
3. G. Y. Chen, "Further Reflections on Thompson's Conjecture," J. Algebra, 218 (1999), 276-285.
4. J. Conway, R. Curtis, S. Norton, R. Parker, and R. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
5. A. Iranmanesh, S. H. Alavi, and B. Khosravi, "A Characterization of $\operatorname{PSL}(3, q)$ Where q is an Odd Prime Power," J. Pure and Applied Algebra, 170 (2002), 243-254.
6. A. Khosravi and B. Khosravi, "A New Characterization of $\operatorname{PSL}(p, q)$," Comm. Algebra, 32 (2004), 2325-2339.
7. A. S. Kondtrat'ev, "Prime Graph Components of Finite Groups," Math. USSR-sb., 67 (1990), 235-247.
8. E. I. Khukhro and V. D. Mazurov, Unsolved Problems in Group Theory, The Kourovka Notebook, No. 12, Inst. Mat. (Novosibrisk), Novosibrisk, 1992.
9. J. S. Williams, "Prime Graph Components of Finite Groups," J. Algebra, 69 (1981), 487-513.

Mathematics Subject Classification (2000): 20D05, 20D60, 20D08

Behrooz Khosravi
Department of Pure Mathematics
Faculty of Mathematics and Computer Science
Amirkabir University of Technology (Tehran Polytechnic)
424, Hafez Avenue
Tehran 15914, IRAN
Institute for Studies in Theoretical Physics and Mathematics (IPM)
email: khosravibbb@yahoo.com
Bahman Khosravi
Department of Mathematics
Faculty of Mathematical Sciences
Shahid Beheshti University, Evin
Tehran 19838, IRAN
Behnam Khosravi
Department of Mathematics
Faculty of Mathematical Sciences
Shahid Beheshti University, Evin
Tehran 19838, IRAN

[^0]: * The first author was supported in part by a grant from IPM (No. 83200023).

