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Abstract. During the course of studying freely falling bodies, Galileo
observed a wonderful property that is unique to the sequence of positive
odd integers. In this paper, we present and explore a generalized variation
of this classical result. We exhibit some properties of our variation and
leave the reader with some open questions for possible further exploration.

1. Background. For each positive integer n, consider the following
identity

1

3
=

1 + 3

5 + 7
=

1 + 3 + 5

7 + 9 + 11
=

1 + 3 + · · · + (2n − 1)

(2n + 1) + (2n + 3) + · · · + (4n − 1)
= · · · .

(1.1)
Galileo first observed this property of positive odd integers in relation to his
work on falling bodies [2,3]. Identity (1.1) may be interpreted as follows.
The distance traveled by a falling body in the first n units of time is always
one-third the distance in the next n units of time. From what we can sur-
mise since then, not much has been written about this beautiful identity.
Noteworthy exceptions are generalizations to a family of Galileo sequences
[5] and a combinatorial proof without words [4] of (1.1). The identity is a
prime example of the sort of mathematical fact that seems innocuous and
perhaps even mildly interesting at first, but then anyone willing to delve
into its depths quickly uncovers wonderful balance and harmony. Galileo
observed that the sequence of positive odd integers was the only integer-
valued sequence in arithmetical progression with this property. It is not
clear how Galileo proved this and so we present an elementary proof of a
generalized version of Galileo’s result. We also define a generalized alter-
nating version of (1.1) and present analogous results. In conclusion, we
offer some open problems for further exploration.

2. Definitions. For any positive, real-valued sequence an, consider
the nth partial sum Sn = a1 +a2 + · · ·+an. Then an is called a (standard)
Galileo sequence (GS) if for each positive integer n we have S2n −Sn = cSn

for some fixed (independent of n) constant c. Thus, (1.1) implies that
the sequence of positive odd integers is an example of a Galileo sequence.
So, what about sequences where not all terms are positive? To answer
this question, we propose a modified definition of a Galileo sequence. An
(ordinary) alternating even (respectively, odd) Galileo sequence (AEGS, re-
spectively AOGS) is one where Sn = a1 − a2 + · · · + (−1)(n−1)an and we
have S2n − Sn = ceSn for all even (respectively, odd) n and for some con-
stant ce (respectively, co). Next, we define a generalized version. For each
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positive integer k, we call an = an(k) a k-alternating even Galileo sequence
(k-AEGS) if the nth partial sum is given by

Sn(k) = (a1 + a2 + · · · + ak) − (ak+1 + ak+2 + · · · + a2k) + · · ·

+ (−1)(n−1)(a(n−1)k+1 + a(n−1)k+2 + · · · + ank)

and we have S2n(k) − Sn(k) = ceSn(k) for all even n and some constant
ce. Analogously, we define a k-AOGS. We will refer to the expression
(a1 +a2 + · · ·+ak) as the 1-block of Sn(k), (ak+1 +ak+2 + · · ·+a2k) as the
2-block of Sn(k), etc. A k-alternating Galileo sequence that is both even
and odd is said to be simply a k-AGS. Clearly, a 1-AGS corresponds to the
ordinary AGS. Note that we do not require that ce = co (for otherwise,
the sequence is a Galileo sequence by definition). It is easy to see that if
a sequence is a GS or AGS, then any multiple of it is also a GS or AGS,
respectively. Hence, it makes sense to define a primitive GS (or AGS) as
one that is minimal with respect to scaling [3]. For the remainder of this
paper, all Galileo sequences will be assumed to be primitive.

3. Results.

3.1. Alternating Galileo Sequences. We begin with a generaliza-
tion of the classical result due to Galileo.

Theorem 1. Let an be a real-valued sequence in arithmetical progres-
sion with common difference d. Then an is a Galileo sequence if and only
if c = 3 and d = 2a1.

Proof. First, recall that the nth partial sum of a sequence an in arith-
metical progression is given by Sn = n

2 [2a1 + (n − 1)d]. Consequently,
S2n − Sn = n

2 [2(a1 + nd) + (n − 1)d].

(⇒) If an is a Galileo sequence, then by definition, there exists a con-
stant c such that

n

2
[2(a1 + nd) + (n − 1)d] = c

n

2
[2a1 + (n − 1)d]

⇔ (2a1 + 3nd − d) = 2ca1 + cnd − cd

⇔ d =
2a1(c − 1)

n(3 − c) + c − 1
.

We now note that the common difference d is independent of n if and only
if c = 3. Finally, it is easy to see from the last equation above that if c = 3,
then d = 2a1.

(⇐) This follows from the definition of a GS.

Corollary 1. (Galileo) The sequence of positive odd integers is the only
primitive GS in arithmetical progression.
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Proof. Choose a1 = 1 in Theorem 1.

Next, we explore some properties of a generalized alternating version
of the sequence of positive odd integers and find results that are analogous
to Galileo’s original observation.

Lemma 1. For each positive integer k, if an(k) = (−1)(n−1)[{2((n −
1)k + 1) − 1} + {2((n − 1)k + 2) − 1} + · · · + {2nk − 1}], then Sn(k) =
(−1)n−1k2n.

Proof. The proof is by induction on n. Note that each block of Sn(k)
consists of k consecutive odd integers. Using the definition of Sn(k), for
n = 1, we have S1(k) = a1 + a2 + · · · + ak = 1 + 3 + · · · + (2k − 1) = k2.
On the other hand, (−1)(1−1)k2(1) = k2. This establishes the base case.
Next, assume that for arbitrary but fixed n, we have Sn(k) = (−1)n−1k2n

and consider the (n + 1)st partial sum S(n+1)(k). Again, by the definition
of Sn(k), we have

S(n+1)k = Sn(k) + a(n+1)k

= (−1)n−1k2n + (−1)n[{2(nk + 1) − 1}+ {2(nk + 2) − 1}

+ · · · + {2(nk + k) − 1}]

= (−1)n−1[k2n − (2nk2 + (1 + 3 + · · · + (2k − 1))]

= (−1)n−1[−nk2 − k2]

= (−1)nk2(n + 1),

as required. This completes the proof.

Lemma 2. For a sequence an(k) as defined in Lemma 1, we have

S2n(k) − Sn(k) =

{

−k2n, if n is even;

−3k2n, if n is odd.

Proof. From Lemma 1, Sn(k) = (−1)n−1k2n. Hence, S2n(k)−Sn(k) =
(−1)2n−1k2(2n)−(−1)n−1k2n. Now, we see that if n is even, then S2n(k)−
Sn(k) = −2k2n + k2n = −k2n. On the other hand, if n is odd, then
S2n(k) − Sn(k) = −2k2n − k2n = −3k2n.

Theorem 2. For each positive integer k, the sequence given by an(k) =
(−1)(n−1)[{2((n− 1)k + 1)− 1}+ {2((n− 1)k + 2)− 1}+ · · ·+ {2nk − 1}],
consisting of k-blocks of alternating consecutive odd integers is a k-AGS.

Proof. For any k, if n is even, then from Lemmas 1 and 2, we observe
that Sn(k) = S2n(k) − Sn(k) = −k2n. Hence, the sequence an(k) is a k-
AEGS with ce = 1. On the other hand, if n is odd, then again from Lemmas
1 and 2, we see that S2n(k)− Sn(k) = −3Sn(k). Thus, the sequence an(k)
is a k-AOGS with co = −3. Consequently, by definition, an(k) is a k-AGS.
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To get a better feeling for Theorem 2, we provide an example.

Example 1. Let k = 3. Then Theorem 2 states that for even n, we
have

(1 + 3 + 5) − (7 + 9 + 11)

(13 + 15 + 17)− (19 + 21 + 23)

=
(1 + 3 + 5) − (7 + 9 + 11) + (13 + 15 + 17)− (19 + 21 + 23)

(25 + 27 + 29) − (31 + 33 + 35) + (37 + 39 + 41) − (43 + 45 + 47)

= · · · = 1

and, for odd n, we have

(1 + 3 + 5)

−(7 + 9 + 11)

=
(1 + 3 + 5) − (7 + 9 + 11) + (13 + 15 + 17)

−(19 + 21 + 23) + (25 + 27 + 29)− (31 + 33 + 35)

= · · · = −
1

3
.

Next, we develop another familiar example of an alternating even (but
not odd) Galileo sequence. This time consider a generalized sequence where
each k-block of a partial sum consists of a sum of k consecutive positive
integers. In other words, each block is the sum of the terms of a subsequence
of a sequence corresponding to a triangular number [1].

Lemma 3. For each positive integer k and n, if an = (−1)n−1[{(n −

1)k + 1} + {(n − 1)k + 2} + · · · + {nk}], then Sn(k) = −k2n
2 for all even

values of n.

Proof. Just like Lemma 1, this result is a standard proof by induction.
Of course, since the formula for Sn(k) is valid for only even values of n, the
base case corresponds to n = 2. In this case,

S2(k) = (1 + 2 + · · · + k) − ((k + 1) + (k + 2) + · · · + (2k)))

= (1 + 2 + · · · + k) − k(k) − (1 + 2 + · · · + k)

= −k2 = (−1)2−1 k2 · 2

2
.

This establishes the base case. Next, assume that for some arbitrary (but
fixed) positive integer m, we have

S2m(k) = −
k22m

2
= −k2m,
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and consider the partial sum S2m+2(k). Observe that

S2m+2(k) = S2m(k) + a2m+1(k) + a2m+2(k)

= −k2m + (−1)2m[(2mk + 1) + · · · + (2mk + k)]

+ (−1)2m+1[{(2m + 1)k + 1}+ · · · + {(2m + 1)k + k}]

= −k2m + [2mk2 + (1 + 2 + · · · + k)] − [(2m + 1)k2 + (1 + 2 + · · · + k)]

= −k2m + 2mk2 − (2m + 1)k2 = −k2m − k2

= −k2(m + 1) = −
k2(2m + 2)

2
,

as required and this completes the proof.

Now, we are ready to exhibit another example of a k-AEGS.

Theorem 3. For each positive integer k, the sequence given by an =
(−1)n−1[{(n−1)k +1}+{(n−1)k +2}+ · · ·+{nk}], consisting of k-blocks
of alternating consecutive integers is a k-AEGS with ce = 1.

Proof. From Lemma 3, for each positive integer k and m, we observe
that

S4m(k) − S2m(k) = −
k2(4m + 2)

2
+

k2(2m + 2)

2

= −k2(2m + 1) + k2(m + 1)

= −k2m

= S2m(k),

which completes the proof.

However, it can be easily checked that the sequence an(k) defined in
Lemma 3 is not a k-AOGS and consequently, not a k-AGS. As an illustration
of Theorem 3, consider the following example.

Example 2. Let k = 4 and for m and n positive integers let

Sm,n =

n
∑

i=m

i.

Then, Theorem 3 states that when n is even, we have

S1,4 − S5,8

S9,12 − S13,16

=
S1,4 − S5,8 + S9,12 − S13,16

S17,20 − S21,24 + S25,28 − S29,32

= · · · = 1.
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3.2 Combinatorial Proofs. As is common with many results on
properties of integers that have inductive proofs, it turns out that Theorems
3 and 4 may also be proved using a combinatorial argument commonly
referred to as a proof without words. We give one such proof and leave
the others for the reader to verify. In the context of alternating Galileo
sequences, Figure 1 proves Theorem 2 in the case where k = 2 and n is even.
To see this, note that the lower half of the diagram is a partition of S2n(k)−
Sn(k) into three parts that sum to just Sn(k). In other words, S2n(k) −
Sn(k) = Sn(k), proving Theorem 2 for even n and k = 2. In general, the
other proofs without words for all other cases involve rearranging the terms
of S2n(k) − Sn(k) as desired.

Proof Without Words of Theorem 2 for k = 2 and even n.

4. Concluding Remarks. The main purpose of this paper is to
illustrate the rich structure that lies within the original observation by
Galileo. Furthermore, all of the methods used are easily accessible to any
undergraduate student. Hence, some of the questions posed below may
provide wonderful avenues for further exploration. Below are some natural
questions that have risen from this study.

(1) Find other examples of alternating Galileo sequences.
(2) Explore the physical interpretations (if any) of ordinary and general-

ized alternating Galileo sequences.
(3) Study other generalizations of Galileo sequences.
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