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A NOTE ON THE DIOPHANTINE EQUATION

lx3 − kx2 + kx − l = y2:

THE CASES k = 3l± 1

Konstantine Zelator

Abstract. In this work, we investigate the Diophantine equation lx3−

kx2 + kx − l = y2 where k and l are positive integers. The two results are
Theorems 1.1 and 1.2. The first theorem states that if k = 3l−1 and l = ρ2,
the above equation has a unique integer solution, namely (x, y) = (1, 0).
The second theorem says that if k = 3l + 1 and l ≡ 0, 1, 4, 5, 7 (mod 8) the
above equation also has a unique solution, the pair (x, y) = (1, 0).

1. Introduction. The motivating problem behind this work is the
following problem. Find all integer solutions of the Diophantine equation
x3−2x2 +2x−1 = y2. In other words, we are looking for the pairs (x, y) in
Z × Z, which satisfy the preceding equation. As it turns out, this problem
has a unique solution, namely the pair (x, y) = (1, 0). This equation is a
special case of the two-variable Diophantine equation which we will study
in this article, (with l = 1, k = 2):

lx3 − kx2 + kx − l = y2, (1.1)

where l and k are positive integers. It is worth mentioning that Diophantine
equations of the form ay2 = f(x), where a is a nonzero integer and f is a cu-
bic polynomial with integer coefficients, and also equations like ay3 = g(x)
where g is a quadratic polynomial with integer coefficients, when studied
from the point of view of finding rational solutions, lead to the theory of
rational points on elliptic curves, as such plane curves are known. Rational
points on elliptic curves is a subject well beyond the scope of this paper.
When it comes to finding the integer solutions to such equations, the situa-
tion is quite different, the same kind of unified theory does not really exist.
In [1], one can find historical information on such Diophantine equations.
The main results of this article are the following theorems.

Theorem 1.1. Let l, k be positive integers which satisfy the conditions
k = 3l − 1 and l = ρ2 for some positive integer ρ. Then the Diophantine
equation

lx3 − kx2 + kx − l = y2,

has a unique solution, the pair (x, y) = (1, 0).

Theorem 1.2. Let l, k be positive integers such that k = 3l + 1 and
l ≡ 0, 1, 4, 5 or 7 (mod 8). Then the Diophantine equation,

lx3 − kx2 + kx − l = y2,
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has a unique solution, the pair (x, y) = (1, 0).

The organization of this paper is as follows. In Section 2 we prove a
lemma and a proposition. Lemma 2.1 is used in the proof of Proposition
2.2, which in turn is used to establish the two theorems. The proofs of the
two theorems are found in Section 3.

2. A Lemma, A Proposition, and Their Proofs.

Note. The author of this work wishes to extend his gratitude to the
referee for the valuable suggestions and comments. Because of these com-
ments and meticulous work on the part of the referee, the original more
complicated structure of this paper has been significantly simplified.

Lemma 2.1. If l, k are positive integers such that either k = 3l − 1; or
k = 3l + 1 and l 6= 2, then the quadratic equation lx2 + (l− k)x + l = 0 has
no integer roots.

Proof. We introduce a new variable t: t = x − 1; t + 1 = x. Then, the
said quadratic equation takes the form l · (t + 1)2 + (l − k)(t + 1) + l = 0;
or equivalently

lt2 + (3l − k)t + 3l − k = 0. (2.1)

Accordingly,
{

lt2 + t + 1 = 0, if k = 3l − 1

lt2 − t − 1 = 0, if k = 3l + 1.
(2.2)

If the quadratic equation in the hypothesis of Lemma 2.1 has an integer
root, then so must one of the equations in (2.2). Hence, if r is such an
integer root of the first equation in (2.2), then r(lr + 1) = −1; while if r is
an integer root of the second equation in (2.2), then r(lr−1) = 1. In either
case, r must be a divisor of 1, and so r = 1 or −1.

If r = 1 is a root of the first equation in (2.2) we obtain

l = −2. (2.3)

If r = −1 is a root of the first equation in (2.2), then

l = 0. (2.4)

If r = 1 is a root of the second equation in (2.2) we have

l = 2. (2.5)

Finally, if r = −1 is a root of the second equation in (2.2), then

l = 0. (2.6)
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It is clear that in all cases (2.3)–(2.6) the hypothesis on l is violated; namely
that l 6= 2 and l being a positive integer.

The next proposition will be used in the proof of the main result.

Proposition 2.2. Let k and l be positive integers. Consider the equation

lx3 − kx2 + kx − l = y2. (2.7)

(1) Equation (2.7) has no integer solutions (x, y) with x ≤ 0.
(2) The pair (x, y) = (1, 0) is a solution to equation (2.7).
(3) If k = 3l − 1, then equation (2.7) has a solution (x, y) ∈ Z × Z with

x > 1 if and only if x = a2 + 1, y = ±ab for some positive integers a

and b satisfying the condition la4 + a2 + 1 = b2.
(4) If k = 3l+1 and l 6= 2, then equation (2.7) has a solution (x, y) ∈ Z×Z

with x > 1 if and only if x = a2 +1, y = ±ab for some positive integers
a and b satisfying the condition la4 − a2 − 1 = b2.

Proof. Statements (1) and (2) follow simply by inspection.

(3) First we prove the sufficiency case. Assume that a and b are positive
integers satisfying the condition la4+a2+1 = b2. A substitution shows
that the two pairs (x, y) = (a2 + 1, ±ab) are solutions to the equation
(2.7). The calculations are straightforward and are left to the reader.
Next, we prove the necessity. Suppose that (x, y) is an integral solution
of equation (2.7) with x > 1. It follows that

(x − 1)(lx2 + (l − k)x + l) = y2. (2.8)

Note that y 6= 0. For if y = 0, then since x > 1, (2.8) would imply
lx2 + (l − k)x + l = 0, which is impossible by Lemma 2.1. Therefore,
x > 1 and y 6= 0; x > 1 and y2 > 0 in (2.8) which implies lx2 + (l −
k)x+ l > 0. Let d be the greatest common divisor of the two factors on
the left hand side of equation (2.8). Then x− 1 = dq for some positive
integer q. We have lx2 + (l− k)x + l = l(dq + 1)2 + (l − k)(dq + 1) + l,
which implies that

lx2 + (l − k)x + 1 = d(lq2 + 2lq + q(l − k)) + 3l − k. (2.9)

Since d is a divisor of the left hand side of (2.9), it follows that d must
be a divisor of 3l − k = 1. Hence, d = 1. Therefore, the two factors
on the left hand side are relatively prime. Hence, we conclude that
the two factors must be perfect squares. This implies that x − 1 = a2

and lx2 + (l − k)x + l = b2 for some positive integers a and b. It
follows, based on equation (2.8), that y = ±ab and x = a2 + 1. Also,
lx2 + (l − k)x + l = l(a2 + 1)2 + (l − k)(a2 + 1) + l = b2 and hence,
la4 + a2 + 1 = b2, since k = 3l − 1.
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(4) We go back to equation (2.8). Suppose that (x, y) is an integral solution
of (2.8) with x > 1. We have (x − 1)(lx2 + (l − k)x + l) = y2, and
with k = 3l + 1 and l 6= 2. Again, as we showed in the proof of part
(3) there is no integer solution with x > 1 and y = 0. For this would
imply that lx2 + (l − k)x + l = 0 has an integer root, which is ruled
out by Lemma 2.1. Thus, x > 1 and y2 > 0 in (2.8) which implies
lx2 + (l − k)x + l > 0. The rest of the proof is nearly identical to that
of part (3), so we leave the calculations to the interested reader. We
only note that in the proof of part (4) we have instead 3l − k = −1;
and the condition la4 − a2 − 1 = b2.

3. Proofs of the Two Theorems.

Proof of Theorem 1.1. By Proposition 2.2, we know that the given
equation has no integer solutions with x ≤ 0 and that (x, y) = (1, 0) is
a solution. To conclude the proof we must show that it has no solutions
with x > 1. If it did have a solution (x, y) with x > 1 then according
to Proposition 2.2, we would have that x = a2 + 1 and y = ±ab for some
positive integers a and b satisfying the condition la4+a2+1 = b2. However,
la4 + a2 + 1 = b2 is impossible. Indeed, l = ρ2; ρ a natural number and
consequently

(ρa2)2 < ρ2a4 + ρa2 + 1 < (ρa2 + 1)2,

clearly showing the positive integer ρ2a4 + ρa2 + 1 lies between two con-
secutive integer squares; and hence, itself cannot be an integral or perfect
square.

Proof of Theorem 1.2. If the equation had an integer solution (x, y)
with x > 1 then by Proposition 2.2, we must have that x = a2 + 1 and y =
±ab for some positive integers a, b satisfying the condition la4−a2−1 = b2.
This condition implies that a must be an odd integer. If a were even then
obviously b2 ≡ 3 (mod 4), which is impossible since the square of an integer
is congruent to 0 or 1 mod 4. Thus, a is odd which in turn implies that
a2 ≡ 1 (mod 8) and so a2 ≡ 1 ≡ a4 (mod 8). Thus, la4 − a2 − 1 = b2

implies that l ≡ 2 + b2 (mod 8). However, b2 ≡ 0, 1, 4 (mod 8). Therefore,
l ≡ 2, 3, 6 (mod 8), contrary to the hypothesis that l ≡ 0, 1, 4, 5, 7 (mod 8).
It is now clear that equation (1.1) cannot have an integer solution with
x > 1.
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