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WEAKLY CONNECTED SUBSETS

Zbigniew Duszyński

Abstract. A generalization of the notion of connectedness of subsets
in a topological space is given. Several properties of this type of subsets
(also those being similar to fundamental results of the theory of connected
subsets) are obtained.

Introduction. Over the last thirty years several concepts of con-
nectedness have been considered. In 1975, Pipitone and Russo [13] in-
troduced the so-called semi-connected spaces. Many characterizations of
such spaces have been given in [4, 5, 10, 12, 17, 20]. Preconnectedness of
topological spaces has been defined by Popa in 1987 [14]. Furthermore,
in 1994, Popa with Noiri and Aho with Nieminen introduced, respectively,
β-preconnectedness [15] and semi-preconnectedness [2] of spaces (both no-
tions are equivalent). The author has investigated some other forms of
connectedness of spaces in [5]. In all the above listed definitions, ‘connect-
edness’ was described in terms of some classes of generalized open subsets
of a space (α-open, semi-open, preopen, semi-preopen sets). For a more
detailed study of various forms of connectedness, the reader is referred to
[18, 19]. In [6, 10, 12] one can find some properties of so-called β-connected
and hyperconnected subsets.

The present paper offers another extension for the classical meaning
of connectedness (of subsets in topological spaces) that is defined without
making use of any other class of subsets of the space. We note in advance
that this form of connectedness is most applicable in spaces which allow a
non-trivial clopen set.

2. Characterizations. Let (X, τ) denote a topological space.

Definition 1. A subset S ⊂ X is said to be weakly connected in (X, τ)
if there are no two clopen subsets X1, X2 in (X, τ) such that X = X1 ∪X2,
X1 ∩ X2 = ∅, and X1 ∩ S 6= ∅ 6= S ∩ X2.

In a standard manner, a subset S ⊂ X will be called weakly discon-
nected if it is not weakly connected. If S is weakly disconnected in (X, τ),
then S is disconnected in (X, τ). The reverse implication can fail in general.

Example 1. Let X = {a, b, c} and τ =
{

∅, X, {a}, {b}, {a, b}
}

. Con-
sider S = {a, b}.

Every singleton set is weakly connected in any (X, τ). In the antidis-
crete space each subset is weakly connected. In the discrete space each
subset S with cardinality greater than 1 is weakly disconnected. In the
space of reals (with the usual topology) each subset is weakly connected.
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More generally, if (X, τ) is connected, then each subset of X is weakly
connected in (X, τ).

Remark 1. For disconnected spaces (X, τ1), (X, τ2) with τ1 ⊂ τ2, and
for any S weakly connected in (X, τ2), S is weakly connected in (X, τ1).

The following theorem does not require a proof.

Theorem 1. A subset S of a disconnected space (X, τ) is weakly con-
nected if and only if for each pair of subsets X1, X2 of X with int(Xi) =
Xi = cl(Xi), i = 1, 2; X1 ∩ X2 = ∅; and X = X1 ∪ X2; we have S ⊂ X1 or
S ⊂ X2.

Theorem 2. In an arbitrary disconnected space (X, τ), the following
statements are equivalent.

(a) S ⊂ X is weakly connected.
(b) for each non-empty clopen subset A of X we have S ⊂ A or S ⊂ X \A.
(c) for each non-empty subset A of X with Fr(A) = ∅, S ⊂ A or S ⊂ X\A.

Proof. (a)⇒(b). Suppose there exists a non-empty clopen subset A

of (X, τ) such that S 6⊂ A and S 6⊂ X \ A = B. This implies that S =
(S ∩ A) ∪ (S ∩ B), where S ∩ A 6= ∅ 6= S ∩ B, X = A ∪ B, A ∩ B = ∅, and
A, B are both clopen in (X, τ). Thus, S is weakly disconnected in (X, τ).
(b)⇒(c). Obvious.
(c)⇒(a). Let A, B be two clopen subsets of (X, τ) such that X = A ∪ B,
A ∩ B = ∅, and A ∩ S 6= ∅ 6= B ∩ S. Thus, there exists a non-void subset
A with Fr(A) = ∅, S 6⊂ A, and S 6⊂ X \ A. This completes the proof.

Recall that subsets A, B of X are called separated in (X, τ) if B ∩
cl(A) = ∅ = A ∩ cl(B).

Theorem 3. A subset S of a disconnected space (X, τ) is weakly con-
nected in this space if and only if the following condition holds.

For every pair A, B of non-empty separated subsets of X

such that X = A ∪ B we have S ⊂ A or S ⊂ B. (1)

Proof. (⇒). Suppose S is weakly connected and let non-empty A, B ⊂
X be such that X = A ∪ B and A ∩ S 6= ∅ 6= B ∩ S. The sets A and B

may not be closed simultaneously (by weak connectedness of S). So, one of
them is not closed, say A. Thus, there exists an x0 ∈ cl(A) \ A and hence,
x0 ∈ B. This shows that x0 ∈ B ∩ cl(A) = ∅, a contradiction.
(⇐). Assume that condition (1) holds, but S is not weakly connected
in (X, τ). Hence, there exist clopen subsets X1, X2 of (X, τ) with X =
X1 ∪X2, X1 ∩X2 = ∅, S 6⊂ X1, and S 6⊂ X2. Since X1, X2 are closed, they
are separated. So, by (1), we get S ⊂ X1 or S ⊂ X2, a contradiction.
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3. Properties. The example below shows that a subset S ⊂ X0 ⊂ X

can be weakly connected in X , but weakly disconnected in X0.

Example 2. Let X = {a, b, c, d} and τ =
{

∅, X, {a}, {b, c}, {a, b, c}
}

.
Consider S = {a, b} and X0 = {a, b, c}.

Observe that if we put above S = {c, d} and X0 = {b, c, d}, S would
be weakly connected both in X and X0.

Theorem 4. Let a set S ⊂ X0 be weakly connected in a subspace X0

of a disconnected (X, τ). Then, S is weakly connected in (X, τ).

Proof. Clear.

Recall that a topological space is called totally (or globally) disconnected
if each open subset is closed. It is worthwhile to observe that there exist
finite totally disconnected spaces which are neither discrete nor antidiscrete.

Example 3.

(1) Let X = {a, b, c, d} and τ1 =
{

∅, X, {a}, {b}, {a, b}, {c, d}, {a, c, d},

{b, c, d}
}

.

(2) Let X be as above and τ2 =
{

∅, X, {a, b}, {c, d}
}

.

Theorem 5. Let an S ⊂ X0 ⊂ X be weakly connected in (X, τ). If
(X, τ) is totally disconnected, then S is weakly connected in X0.

Proof. Suppose S is weakly disconnected in
(

X0, τX0

)

. Hence, there
exist X0

1 , X0
2 ∈ τX0

such that X0 = X0
1∪X0

2 , X0
1∩X0

2 = ∅, and X0
1∩S 6= ∅ 6=

X0
2∩S. We have X0

i = X0∩Gi for certain Gi ∈ τ , i = 1, 2. Put G = G1∪G2.
By hypothesis, G3 = X \G ∈ τ . So,

{

G1 \(G1∩G2), G2∪G3

}

is a partition

of (X, τ) and
(

G1 \ (G1 ∩ G2)
)

∩ S 6= ∅ 6= (G2 ∪ G3) ∩ S. Therefore, S is
weakly disconnected in (X, τ).

Corollary 1. Let (X, τ) be totally disconnected and S ⊂ X0 ⊂ X .
Then, S is weakly connected in X if and only if it is weakly connected in
X0.

The following is easily observed. Let (X, τ) be disconnected and S ⊂
X0 ⊂ X ; if S is connected in X , then S is weakly connected in X0 (since
S is connected as a subspace).

Theorem 6. Let (X, τ) be disconnected and S ⊂ X0 ⊂ X , and X0 be
clopen and disconected in X . If S is weakly connected in X , then it is
weakly connected in X0.

Proof. Suppose S is weakly disconnected in X0. Then, there exist
subsets A0, B0 ∈ τX0

with X0 = A0 ∪ B0, A0 ∩ B0 = ∅, and A0 ∩ S 6= ∅ 6=
S∩B0, where A0 = X0∩A, B0 = X0∩B for some A, B ∈ τ . By hypothesis,
A0, B0 ∈ τ , X = A0 ∪

(

B0 ∪ (X \X0)
)

, where X \X0 ∈ τ . So, S is weakly
disconnected in X .
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Theorem 7. Let subsets M, N ⊂ X be non-empty and separated in
a disconnected space (X, τ), and let a set S ⊂ X0 = M ∪ N be weakly
connected in X0. Then, S ⊂ M or S ⊂ N .

Proof. Since M and N are separated in X0, by hypothesis, and with
Theorem 3, we obtain that S ⊂ M or S ⊂ N .

Theorem 8. A topological space (X, τ) is connected if and only if for
each pair of distinct points from X , there exists a weakly connected subset
containing these points.

Proof. (⇒) Obvious. (⇐) Suppose the sufficiency condition holds but
the space (X, τ) is disconnected. For if, for certain nonempty X1, X2 ∈ τ

we would have X = X1 ∪ X2, X1 ∩ X2 = ∅. Let x1 ∈ X1, x2 ∈ X2,
and let x1, x2 ∈ S be weakly connected in X . Our supposition leads to a
contradiction.

Theorem 9. Let A ⊂ X be dense and weakly connected in (X, τ).
Then the space (X, τ) is connected.

Proof. Suppose (X, τ) is disconnected. Thus, X = X1∪X2, X1∩X2 =
∅ for certain non-empty X1, X2 ∈ τ . Clearly, we have X1∩A 6= ∅ 6= X2∩A.
This proves that A is not weakly connected in (X, τ), a contradiction.

Corollary 2. Let an S ⊂ X be weakly connected in a totally discon-
nected space (X, τ) and let S ⊂ X0 ⊂ clX(S). Then, X0 is connected in
X .

Proof. Observe that clX0
(S) = X0 ∩ clX(S) = X0, i.e., S is dense in

(

X0, τX0

)

. By Theorem 5, S is weakly connected in X0. Therefore, by
Theorem 9, X0 is a connected subspace of X .

The following property is obvious.

Theorem 10. Let (X, τ) be a disconnected space and let S1 ⊂ S2 ⊂ X .
If S2 is weakly connected in X , then S1 is weakly connected in X .

Corollary 3. Let {Si}i∈I be a family of subsets of disconnected (X, τ)
and let, for some i0 ∈ I, Si0 be weakly connected in X . Then,

⋂

i∈I
Si is

weakly connected in X .

Corollary 4. Let Y1, Y2, U be such subsets of a disconnected (X, τ) that
Y1 ⊂ Y2 and U ⊂ Y2 \ Y1. If Y2 is weakly connected in X , then the union
Y1 ∪ U is weakly connected in X .

Theorem 11. Let S1, S2 be weakly connected in a disconnected space
(X, τ) and let S1 ∩ S2 6= ∅. Then S1 ∪ S2 is weakly connected.

Proof. Suppose S = S1 ∪ S2 is weakly disconnected, i.e., for certain
clopen X1, X2 such that X = X1 ∪X2, X1 ∩X2 = ∅, we have X1 ∩S 6= ∅ 6=
X2 ∩ S. By Theorem 1 and our hypothesis, Si ⊂ X1 or Si ⊂ X2, i = 1, 2.
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Since S1 ∩ S2 6= ∅, then S1 ∪ S2 ⊂ X1 or S1 ∪ S2 ⊂ X2. Thus, S ∩ X1 = ∅
or S ∩ X2 = ∅, a contradiction.

Corollary 5. Let {Si}i∈N be a family of weakly connected subsets of
(X, τ). If

⋂

i∈N
Si 6= ∅, then Si1 ∪ · · · ∪ SiN

is weakly connected for any
i1, . . . , iN ∈ N.

Proof. By induction (with respect to i ∈ N) it is clear that every union
S1∪· · ·∪Si, i ∈ N is weakly connected in (X, τ) (apply Theorem 11). Now,
put i = max {i1, . . . , iN} + 1 and use Theorem 10.

It is well-known that the family {Si : i = 1, . . . , n} of sets is called a
chain joining S1 and Sn, if Si ∩ Si+1 6= ∅ for each i = 1, 2, . . . , n − 1. A
family F is said to be a chaining family if for any two S1, S2 ∈ F there
exists a chain of subsets from F joining S1 and S2.

Theorem 12. If {S1, S2, . . . , Sn} is a chain of weakly connected subsets
in a disconnected (X, τ) joining S1 and Sn, then the union

⋃n

i=1 Si is weakly
connected in X .

Proof. Induction with respect to n and Theorem 11.

Theorem 13. Let F be a chaining family of weakly connected subsets
of (X, τ). If F is a cover of X , then X is connected.

Proof. Let x1, x2 ∈ X , x1 6= x2, be arbitrarily chosen and let S1, S2 ∈
F be such that x1 ∈ S1, x2 ∈ S2. There exists a chain F ′ ⊂ F joining S1

and S2. So,
⋃

F ′ is weakly connected (Theorem 12) and contains x1, x2.
Thus, by Theorem 8, the space (X, τ) is connected.

Theorem 14. Let S be a subset of (X, τ). If S is weakly connected,
then cl(S) is weakly connected.

Proof. Let cl(S) be weakly disconnected in X . Then, for certain clopen
X1, X2 with X = X1∪X2, X1∩X2 = ∅, we have X1∩cl(S) 6= ∅ 6= X2∩cl(S).
But, ∅ 6= Xi ∩ cl(S) ⊂ cl(Xi ∩ S), i = 1, 2. Hence, X1 ∩ S 6= ∅ 6= X2 ∩ S

and S is weakly disconnected.

Thus, by Theorem 10, we have the following corollary.

Corollary 6. A subset S of a disconnected space (X, τ) is weakly con-
nected if and only if cl(S) is weakly connected.

By Theorems 10 and 14, one obtains the following corollary.

Corollary 7. A subset S of a disconnected space (X, τ) is weakly con-
nected in X if and only if each S1 ⊂ X such that S ⊂ S1 ⊂ cl(S) is weakly
connected.

Obviously, if S is weakly connected in disconnected (X, τ), then every
S1 ⊂ cl(S) is also weakly connected (compare Corollary 4).
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Theorem 15. Let {Si}i∈I be a family of subsets of disconnected (X, τ).
If

⋃

i∈I
Si ⊂ S and S is weakly connected, then

⋃

i∈I
cl(Si) is weakly

connected.

Proof. From Theorem 12 we have that cl(S) is weakly connected in
X . So, the inclusions

⋃

i∈I
cl(Si) ⊂ cl

(
⋃

i∈I
Si

)

⊂ cl(S) and Theorem 10
imply that

⋃

i∈I
cl(Si) is weakly connected in X .

Directly from Theorems 10 and 14, we get the following corollary.

Corollary 8. If an S is weakly connected in a disconnected (X, τ), then
cl(int(cl(S))) is also weakly connected.

Theorem 16. Let S1, S2 be two weakly connected sets in a disconnected
(X, τ) and let S1 ∩ S2 6= ∅. Then, cl(int(cl(S1))) ∪ cl(int(cl(S2))) is weakly
connected.

Proof. By hypothesis, cl(S1)∩cl(S2) 6= ∅. From Theorem 14 we obtain
that cl(S1), cl(S2) are weakly connected. Hence, by Theorem 11, we get that
cl(S1)∪ cl(S2) is weakly connected. So, by Theorems 10 and 14, we obtain
that

cl
(

int
(

cl(S1) ∪ cl(S2)
))

= cl(int(cl(S1))) ∪ cl(int(cl(S2)))

is weakly connected.

The following corollaries are immediate consequences of Theorems 10
and 14.

Corollary 9. If an S is weakly connected in a disconnected (X, τ), then
the sets cl(int(S)), int(cl(S)), and int(cl(int(S))) are also weakly connected
in X .

Recall that a subset S of (X, τ) is said to be semi-open [7] (resp. α-
open [9]; preopen [8]; semi-preopen [1, 3]) if S ⊂ cl(int(S)) (resp. S ⊂
int(cl(int(S))); S ⊂ int(cl(S)); S ⊂ cl(int(cl(S)))).

Corollary 10. Let (X, τ) be a disconnected space and let S ⊂ X . If
int(S) is weakly connected and S is semi-open, then S is weakly connected.

From Corollaries 8 and 9 and Theorem 10 we get the following.

Corollary 11. Let S be a semi-open (resp. α-open; preopen; semi-
preopen) subset of a disconnected (X, τ). Then S is weakly connected in
X if and only if cl(int(S)) (resp. int(cl(int(S))); int(cl(S)); cl(int(cl(S))))
is weakly connected in X .

Definition 2. Let an (X, τ) be disconnected and let a p ∈ X . A subset
Sp of X is called a w-component of p, if p ∈ Sp, Sp is weakly connected in
X , and it is a proper subset of no weakly connected set in X .

Theorem 17. Let a space (X, τ) be disconnected. Then,
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(1) there exists a subset X ′ ⊂ X such that

X =
⋃

p∈X′

Sp,

where sets Sp are w-components of respective p’s and Sp1
∩ Sp2

= ∅ if
p1 6= p2;

(2) for each point p ∈ X its w-component Sp is closed in (X, τ).

Proof. (1) and (2) hold for any discrete space.

(1) Let (X, τ) be a disconnected and not discrete space such that there is
no subset X ′ ⊂ X with X =

⋃

p∈X′ Sp and Sp1
∩ Sp2

= ∅ for p1 6= p2

(p1, p2 ∈ X ′). Thus, for any subset X ′′ ⊂ X such that X =
⋃

p∈X′′ Sp,
there exists a pair of distinct points p1, p2 ∈ X ′′ such that Sp1

∩ Sp2
6= ∅

and Sp1
6= Sp2

. Obviously, Sp1
6⊂ Sp2

and Sp2
6⊂ Sp1

. Let q ∈ Sp2
\ Sp1

.
The set Sp1

∪ {q} is weakly disconnected. It follows from the inclusion
Sp1

∪ {q} ⊂ Sp1
∪ Sp2

that Sp1
∪ Sp2

is weakly disconnected (Theorem 10).
On the other hand, with Theorem 11, we obtain that Sp1

∪ Sp2
is weakly

connected, a contradiction.

(2) The proof is obvious by maximality of each Sp (Definition 2) and by
Theorem 14.

Problem 1. Is it true that in any disconnected space, w-components
are connected?

Applying Theorem 3 we obtain the following.

Corollary 12. Suppose two points p1, p2 belong to the same w-
component Sq in a disconnected (X, τ). If X = A ∪ B, where A, B are
non-empty and separated, both p1 and p2 must belong either to A or to B.

The family of all α-open subsets of (X, τ) one usually denotes with
τα. This family forms a topology on X such that τ ⊂ τα [9]. The reverse
inclusion is false, in general.

Theorem 18. Let S be a subset of a disconnected (X, τ). Then, S is
weakly disconnected in (X, τ) if and only if it is weakly disconnected in
(X, τα).

Proof. Clear, because the family of all clopen subsets of X with respect
to τ coincides with the family of all clopen subsets with respect to τα.

A function f : (X, τ) → (Y, σ) is said to be α-continuous [11, 16] if
the preimage f−1(S) ∈ τα for every S ∈ σ. Each continuous function
is α-continuous, but it is known that the converse can fail in general [11,
Example 2.3].
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Theorem 19. Let (X, τ), (Y, σ) be disconnected and an f : (X, τ) →
(Y, σ) be α-continuous. If an S is weakly connected in X , then f(S) is
weakly connected in Y .

Proof. Let f(S) be weakly disconnected in Y . Then, for certain clopen
(in Y ) sets Y1, Y2 we have Y = Y1 ∪ Y2, Y1 ∩ Y2 = ∅, and Y1 ∩ f(S) 6= ∅ 6=
Y2∩f(S). Hence, X = f−1(Y ) = f−1(Y1)∪f−1(Y2), f−1(Y1)∩f−1(Y2) = ∅,
and f−1(Y1) ∩ S 6= ∅ 6= f−1(Y2) ∩ S. Since f−1(Y1), f

−1(Y2) ∈ τα, the set
S is weakly disconnected in X by Theorem 18.
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