# SEMI-MAGIC SQUARES AND ELLIPTIC CURVES 

EDRAY HERBER GOINS


#### Abstract

We show that, for all odd natural numbers $N$, the $N$ torsion points on an elliptic curve may be placed in an $N \times N$ grid such that the sum of each column and each row is the point at infinity.


## 1. Introduction

Let $N$ be a positive integer, and consider the integers $1,2, \ldots, N^{2}$. An $N \times N$ grid containing these consecutive integers such that the sum of each column and each row is the same is called a magic square. (This is usually called a semi-magic square in the literature because we do not assume that the sum of both diagonals is also equal to the sum of the columns and rows [6].) For example, when $N=3$, we have the grids

| 3 | 5 | 7 |
| :--- | :--- | :--- |
| 8 | 1 | 6 |
| 4 | 9 | 2 |


| 8 | 1 | 6 |
| :--- | :--- | :--- |
| 3 | 5 | 7 |
| 4 | 9 | 2 |

where the sum of each column and each row is 15 . (The one on the right is a magic square in the classical sense; the one on the left does not have diagonals which sum to 15 .)

We need not limit ourselves to a grid with integer entries. The author of [1], inspired by the discussion in [2, Section 1.4], considered the problem of arranging the 9 points of inflection on an elliptic curve in a $3 \times 3$ magic square. That is, it is possible to arrange the points of order 3 in a $3 \times 3$ grid so that the sum of each row and each column is the same, namely the point at infinity. We generalize this result.

Theorem 1. Let $N \geq 1$ be an odd integer, let $E$ be an elliptic curve defined over an algebraically closed field with characteristic not dividing $N$. Then the $N^{2}$ points of order $N$ on $E$ can be placed in an $N \times N$ magic square such that the sum of each column and each row is the point at infinity $\mathcal{O}$.

We construct such a grid using Lehmer's Uniform Step Method, as motivated by the discussion in [4]. In particular, the theorem holds for any group $G$ such that the $N$-torsion $G[N] \simeq(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z})$.

## 2. Semi-Magic Squares over Abelian Groups

As stated above, we define a magic square to be an $N \times N$ grid containing the consecutive integers 1 through $N^{2}$ such that the sum of each column and each row is the same. Strictly speaking, this is a semi-magic square, but we abuse notation slightly for the sake of brevity. We do not limit ourselves to constructing magic squares with integer entries. Indeed, we will construct an $N \times N$ magic square for a certain class of abelian groups.

Let $G$ be an abelian group under $\oplus$. Given $P \in G$, denote $[-1] P$ as its inverse and $[0] P=\mathcal{O}$ as the identity. For each nonzero integer $m$, denote $[m] P$ as $[ \pm 1] P$ added to itself $|m|$ times, where " $\pm$ " is chosen as the sign of $m$. Denote $G[m] \subseteq G$ as that subgroup consisting of points $P \in G$ such that $[m] P=\mathcal{O}$. We will always assume that $G$ is chosen such that for some positive integer $N$ there is a group isomorphism

$$
\begin{equation*}
\psi: \quad(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z}) \xrightarrow{\sim} G[N] \tag{2.1}
\end{equation*}
$$

We have a bijection $\left\{1,2, \ldots, N^{2}\right\} \rightarrow(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z})$ given by

$$
\begin{equation*}
\phi: \quad k \mapsto\left(k-1 \quad(\bmod N),\left\lfloor\frac{k-1}{N}\right\rfloor \quad(\bmod N)\right) \tag{2.2}
\end{equation*}
$$

where $\lfloor\cdot\rfloor$ is the greatest integer function. That is, if $1 \leq k \leq N^{2}$ then we can write $k-1=m+N n$ for some unique $0 \leq m, n<N$, and so we map $k \mapsto(m, n)$. This means we have a bijection of sets

$$
\psi \circ \phi: \quad\left\{1,2, \ldots, N^{2}\right\} \xrightarrow{\sim} G[N] .
$$

We will use this identification to place the elements in $G[N]$ in an $N \times N$ magic square.

There are two examples in particular which will be of interest to us. Upon fixing $N$, the group $G=(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z})$ satisfies the criterion above. As another example, fix an algebraically closed field $F$ and let $E$ be an elliptic curve defined over $F$. We may choose $G=E(F)$ as the $F$-rational points on $E$, where we have a non-canonical isomorphism $G[N] \simeq(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z})$ only when the characteristic of $F$ does not divide $N$. (For more properties of elliptic curves, see [3].)

## 3. Uniform Step Method

Fix a positive integer $N$. Let $G$ be an abelian group under $\oplus$, and assume

$$
G[N]=\left\{R_{1}, R_{2}, \ldots, R_{k}, \ldots, R_{N^{2}}\right\} \simeq(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z})
$$

We wish to place these $N^{2}$ elements in an $N \times N$ grid such that the sum of each row and the sum of each column, as an element in $G$, is the same. We use an idea of D. H. Lehmer from 1929, known as the Uniform Step Method. To this end, we are motivated by the discussion in [4, Chapter 4].

Given an $N \times N$ grid, we consider its entries in Cartesian coordinates. For the moment, fix integers $a, b, c$, and $d$, and consider placing the element $R_{k} \in G[N]$ in the $\left(x_{k}, y_{k}\right)$ position. After arbitrarily placing $R_{1}$ in the $\left(x_{1}, y_{1}\right)$-position, we will define $x_{k}$ and $y_{k}$ by the recursive sequence

$$
\begin{aligned}
x_{k} \equiv x_{1}+a(k-1)+b\left\lfloor\frac{k-1}{N}\right\rfloor & (\bmod N) \\
y_{k} \equiv y_{1}+c(k-1)+d\left\lfloor\frac{k-1}{N}\right\rfloor & (\bmod N)
\end{aligned}
$$

We will exhibit conditions on these integers $a, b, c$, and $d$ such that the sequences above indeed generate a magic square.

Proposition 2. If $N$ is odd and relatively prime to $a d-b c$, then the sequence $\left(x_{k}, y_{k}\right)$ places exactly one $R_{k}$ in each of the $N^{2}$ cells of the $N \times N$ grid.
Proof. It suffices to show that $\left(x_{k_{1}}, y_{k_{1}}\right)=\left(x_{k_{2}}, y_{k_{2}}\right)$ only when $k_{1}=k_{2}$; for then we would have $N^{2}$ different points so they must fill in the entire grid. Using the bijection $\phi$ as in (2.2) note that we may write

$$
\begin{aligned}
x_{k} & \equiv x_{1}+a m+b n \quad(\bmod N) \\
y_{k} & \equiv y_{1}+c m+d n \quad(\bmod N)
\end{aligned} \quad \text { where } \quad(m, n)=\phi(k) .
$$

Write $\left(m_{1}, n_{1}\right)=\phi\left(k_{1}\right)$ and $\left(m_{2}, n_{2}\right)=\phi\left(k_{2}\right)$, so that

$$
\left(x_{k_{1}}, y_{k_{1}}\right)=\left(x_{k_{1}}, y_{k_{2}}\right) \quad \Longleftrightarrow \quad \begin{aligned}
& a\left(m_{1}-m_{2}\right)+b\left(n_{1}-n_{2}\right) \equiv 0 \quad(\bmod N) \\
& c\left(m_{1}-m_{2}\right)+d\left(n_{1}-n_{2}\right) \equiv 0 \quad(\bmod N)
\end{aligned}
$$

Since $a d-b c(\bmod N)$ is invertible, we see that this happens if and only if

$$
\phi\left(k_{1}\right)=\left(m_{1}, n_{1}\right)=\left(m_{2}, n_{2}\right)=\phi\left(k_{2}\right)
$$

and so $k_{1}=k_{2}$.
Proposition 3. If $N$ is relatively prime to $a$ and $b$, then the sum of the entries in the ith column is $\mathcal{O}$. If $N$ is relatively prime to $c$ and $d$, then the sum of the entries in the $j$ th row is $\mathcal{O}$.

Proof. The entries in the $i$ th column consist of those $R_{k}$ corresponding to $k$ such that $x_{k}=i$. Similarly, the entries in the $j$ th row consist of those $R_{k}$ corresponding to $k$ such that $y_{k}=j$. Hence, the sum of the entries in the $i$ th column and $j$ th row are

$$
\sum_{x_{k}=i} R_{k} \quad \text { and } \quad \sum_{y_{k}=j} R_{k}, \quad \text { respectively }
$$

First we determine the values of $k$ which occur in the $i$ th column. Since $N$ is relatively prime to $a$ and $b$, there are exactly $N$ pairs $(m, n) \in(\mathbb{Z} / N \mathbb{Z}) \times$ $(\mathbb{Z} / N \mathbb{Z})$ satisfying $a m+b n \equiv i-x_{1}(\bmod N)$; indeed, given any $m$ we
can solve for $n$, and vice-versa. Hence, there are exactly $N$ integers $k \equiv$ $1+m+N n\left(\bmod N^{2}\right)$ such that $x_{k}=i$, which we denote by $k_{\alpha}$. If we denote $\left(m_{\alpha}, n_{\alpha}\right)=\phi\left(k_{\alpha}\right)$ using the bijection in (2.2), then it is clear we have $\left\{\ldots, m_{\alpha}, \ldots\right\}=\left\{\ldots, n_{\alpha}, \ldots\right\}=\mathbb{Z} / N \mathbb{Z}$.

Now we compute the sum of the values in the $i$ th column. Using the group isomorphism in (2.1), denote $P=\psi((1,0))$ and $Q=\psi((0,1))$ so that we have $R_{k}=[m] P \oplus[n] Q$ when $(m, n)=\phi(k)$. This gives the sum

$$
\sum_{x_{k}=i} R_{k}=\sum_{\alpha} R_{k_{\alpha}}=\sum_{\alpha}\left(\left[m_{\alpha}\right] P \oplus\left[n_{\alpha}\right] Q\right)=\left[m^{\prime}\right] P \oplus\left[n^{\prime}\right] Q,
$$

where we have set

$$
m^{\prime} \equiv n^{\prime} \equiv \sum_{\alpha} m_{\alpha} \equiv \sum_{\alpha} n_{\alpha} \equiv \sum_{m \in \mathbb{Z} / N \mathbb{Z}} m \equiv \frac{N(N-1)}{2} \quad(\bmod N)
$$

Since $N$ is assumed odd, this sum is a multiple of $N$ so that $\left[\mathrm{m}^{\prime}\right] P=$ $\left[n^{\prime}\right] Q=\mathcal{O}$. Hence, the sum of the entries in the $i$ th column is indeed $\mathcal{O}$.

A similar argument works for the $j$ th row.
We summarize this as follows.
Theorem 4. Let $G$ be an abelian group under $\oplus$, and assume that there is a positive odd integer $N$ such that

$$
G[N]=\left\{R_{1}, R_{2}, \ldots, R_{k}, \ldots, R_{N^{2}}\right\} \simeq(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z})
$$

Fix integers $a, b, c$, and $d$ relatively prime to $N$ such that $a d-b c$ is also relatively prime to $N$, and consider the sequence $\left(x_{k}, y_{k}\right)$ defined by

$$
\begin{aligned}
x_{k} \equiv x_{1}+a(k-1)+b\left\lfloor\frac{k-1}{N}\right\rfloor & (\bmod N) \\
y_{k} \equiv y_{1}+c(k-1)+d\left\lfloor\frac{k-1}{N}\right\rfloor & (\bmod N)
\end{aligned}
$$

The $N \times N$ grid formed by placing $R_{k}$ in the $\left(x_{k}, y_{k}\right)$ position is a magic square, where the sum of each column and each row is the identity $\mathcal{O}$.

We remark that this method does not exhaust all ways in which a magic square can be generated. For example, this method does not seem to work for $N$ even. Indeed, the sum of each column and each row involves the expression $N(N-1) / 2$, which in general is not a multiple of $N$. Also, when $N=4$, we have the magic square

| 16 | 3 | 2 | 13 |
| :---: | :---: | :---: | :---: |
| 5 | 10 | 11 | 8 |
| 9 | 6 | 7 | 12 |
| 4 | 15 | 14 | 1 |

It is easy to check that such a square cannot be generated by a sequence $\left(x_{k}, y_{k}\right)$ for any $a, b, c$, or $d$. This first appeared in 1514 in an engraving by Albrecht Dürer entitled "Melencolia."

## 4. Applications

We can specialize $a, b, c$, and $d$ to generate examples of magic squares.
Corollary 5. Let $G$ be an abelian group under $\oplus$, and assume that there is an odd positive integer $N$ such that

$$
G[N]=\left\{R_{1}, R_{2}, \ldots, R_{k}, \ldots, R_{N^{2}}\right\} \simeq(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z})
$$

Then these elements can be placed in an $N \times N$ magic square such that the sum of each column and each row is the identity $\mathcal{O}$.

Proof. We follow the construction using a method first outlined by De la Loubère in 1693. (An example of how this method works follows at the end of the paper.) Using Theorem 4 , set $a=1, b=c=-1$, and $d=2$. As $N$ is odd, it is relatively prime to these integers as well as the determinant $a d-b c=1$.

Remark. Theorem 1 follows from this corollary, since the group $E[N]$ of $N$-torsion points on an elliptic curve $E$ is isomorphic to $(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z})$.

The following was pointed out to the author by J.-K. Yu. Upon choosing the basis $\{P, Q\}$ for $G[N]$ given by $P=\psi((1,0))$ and $Q=\psi((0,1))$, we may write $R_{k}=[m] P \oplus[n] Q$ when $(m, n)=\phi(k)$. (Here, we use the maps defined in (2.1) and (2.2).) In this way, we may identify $R_{k}$ with ( $m, n$ ). If we choose $a=d=1$ and $b=c=0$, then we have a magic square upon placing $(m, n)=\phi(k)$ in the $\left(x_{k}, y_{k}\right)$-position. In general, if for odd $N$ we have an $N \times N$ Latin Square with the ( $m, n$ )-position having entry $a_{m n}$ then we may place $\left(m, a_{m n}\right)$ in the $\left(x_{k}, y_{k}\right)$-position. (For more on Latin squares, see [5].)

We discuss a specific example by considering the 3-torsion on elliptic curves; to this end, set $N=3$. We explain how this construction generalizes that in [1]. Consider an elliptic curve defined over the complex numbers $\mathbb{C}$, and let $G=E(\mathbb{C})$ be the group of complex points on the curve. Then it is well-known that we can express the 3 -torsion as
$E[3]=\{A, B, C, D,[-1] A,[-1] B,[-1] C,[-1] D, \mathcal{O}\} \simeq(\mathbb{Z} / 3 \mathbb{Z}) \times(\mathbb{Z} / 3 \mathbb{Z})$
where $B=A \oplus D$ and $[-1] B=C \oplus D$. If we label these points as

$$
\begin{array}{lll}
R_{1}=\mathcal{O}, & R_{4}=D, & R_{7}=[-1] D, \\
R_{2}=[-1] B, & R_{5}=[-1] A, & R_{8}=C \\
R_{3}=B, & R_{6}=[-1] C, & R_{9}=A
\end{array}
$$

then we can use the magic square from the introduction to place the 3torsion in a magic square:

| 3 | 5 | 7 |
| :--- | :--- | :--- |
| 8 | 1 | 6 |
| 4 | 9 | 2 |$\Longrightarrow \quad$| $B$ | $[-1] A$ | $[-1] D$ |
| :--- | ---: | ---: |
| $C$ | $\mathcal{O}$ | $[-1] C$ |
| $D$ | $A$ | $[-1] B$ |

We can also compute this magic square using the method in the proof of the corollary. Choosing the basis $P=[-1] B$ and $Q=D$; it can be easily checked that $R_{k}=[m] P \oplus[n] Q$ when $(m, n)=\phi(k)$. If we also choose $\left(x_{1}, y_{1}\right)=(2,2)$ as the center of the $3 \times 3$ grid, then $R_{k}$ may be placed in the $\left(x_{k}, y_{k}\right)$-position, where

$$
\begin{aligned}
& x_{k} \equiv x_{1}+(k-1)-\left\lfloor\frac{k-1}{N}\right\rfloor \quad(\bmod N) \\
& y_{k} \equiv y_{1}-(k-1)+2\left\lfloor\frac{k-1}{N}\right\rfloor \quad(\bmod N)
\end{aligned}
$$

As mentioned before, this is known as De la Loubère's method or the Siamese method. Following a comment of the referee, if we choose $\left(x_{1}, y_{1}\right)=$ $(1,2)$ as the center of the $3 \times 3$ grid, then we find the (classically) magic square

| 8 | 1 | 6 |
| :--- | :--- | :--- |
| 3 | 5 | 7 |
| 4 | 9 | 2 |

## 5. Acknowledgement

The author would like to thank Jiu-Kang Yu for helpful comments and the referee for useful suggestions.

## References

[1] E. Brown, Magic squares, finite planes, and points of inflection on elliptic curves, College Mathematics Journal, 32 (2001), 260-267.
[2] V. Prasolov and Y. Solovyev, Elliptic Functions and Elliptic Integrals, Volume 170 of Translations of Mathematical Monographs, translated from the Russian manuscript by D. Leites, American Mathematical Society, Providence, RI, 1997.
[3] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, New YorkBerlin, 1986.
[4] H. M. Stark, An Introduction to Number Theory, MIT Press, Cambridge, MA, 1978.
[5] E. W. Weisstein, Latin square, http://mathworld.wolfram.com/LatinSquare.html.
[6] E. W. Weisstein, Magic square, http://mathworld.wolfram.com/MagicSquare.html.
MSC2000: 14H52, 11Axx, 05Bxx.
Purdue University, Department of Mathematics, Mathematical Sciences Building, 150 North University Street, West Lafayette, IN 47907-2067

E-mail address: egoins@math.purdue.edu

