
EXTENSIONS AND REFINEMENTS OF SOME

PROPERTIES OF SUMS INVOLVING

PELL NUMBERS

BRIAN BRADIE

Abstract. Falcón Santana and Dı́az-Barrero [Missouri Journal of

Mathematical Sciences, 18.1, pp. 33–40, 2006] proved that the sum
of the first 4n+1 Pell numbers is a perfect square for all n ≥ 0. They
also established two divisibility properties for sums of Pell numbers
with odd index. In this paper, the sum of the first n Pell numbers
is characterized in terms of squares of Pell numbers for any n ≥ 0.
Additional divisibility properties for sums of Pell numbers with odd
index are also presented, and divisibility properties for sums of Pell
numbers with even index are derived.

1. Introduction

The Pell numbers are an integer sequence defined recursively by P0 = 0,
P1 = 1, and Pn = 2Pn−1 + Pn−2 for all n ≥ 2. Whereas the Fibonacci

numbers are associated with the golden ratio, 1+
√

5
2 , the Pell numbers are

associated with the so-called silver ratio, 1 +
√

2. Pell numbers arise in
many areas of mathematics. For example, successive convergents to the
continued fraction expansion of

√
2 take the form

Pn + Pn+1

Pn+1

for each n ≥ 0 [8, sequences A000129 and A001333]. Moreover, all solutions
to the Pell equations x2 − 2y2 = ±1 [3, Section 14.5, Theorem 244] and all
square triangular numbers [1, pp. 16-17] can be characterized in terms of
Pell numbers. To construct right triangles with integer length sides that
are nearly isosceles (the lengths of the legs differ by 1), the lengths of the
sides must be given by

a = 2PnPn+1, b = P 2
n+1 − P 2

n , and c = P2n+1,

for some n ≥ 1 [5, p. 195]. Pell numbers also have applications in certain
combinatorial enumeration problems [2] and [7].
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Falcón Santana and Dı́az-Barrero [6] examined the sequence

Sn =

n
∑

k=0

Pk,

and proved that S4n+1 is always a perfect square; in particular,

S4n+1 = (P2n + P2n+1)
2.

They also established two divisibility results involving sums of Pell numbers
of odd index. Benjamin, Plott, and Sellers [2] reconsidered the identities
obtained in [6] by interpreting the Pell numbers as enumerators of tilings of
a board of length n using white squares, black squares and gray dominoes.
In so doing, they obtained proofs of each result from a purely combinatorial
viewpoint.

Our goal is to provide extensions and refinements of the results obtained
by Falcón Santana and Dı́az-Barrero and Benjamin, Plott, and Sellers.
In the next section, we obtain a closed form representation for the entire
sequence Sn, as well as for the sums

n
∑

k=0

P2k+1 and
n

∑

k=0

P2k.

Several Pell number identities needed to derive our main results are devel-
oped in Section 3. Then in Section 4, the sum of the first n Pell numbers
is characterized in terms of squares of Pell numbers. Additional divisi-
bility results involving sums of Pell numbers of odd index and divisibility
properties for sums of Pell numbers of even index are also presented.

2. Sums of Pell Numbers

We start by presenting explicit formulas for the three sums

Sn =

n
∑

k=0

Pk,

n
∑

k=0

P2k+1, and

n
∑

k=0

P2k.

Rewrite the Pell number recurrence as

2Pk = Pk+1 − Pk−1. (1)

Summing both sides of this expression from k = 1 to k = n gives

2
n

∑

k=1

Pk =
n

∑

k=1

(Pk+1 − Pk−1)

= (P2 − P0) + (P3 − P1) + (P4 − P2) + · · · +
(Pn − Pn−2) + (Pn+1 − Pn−1)

= Pn+1 + Pn − 1.
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Because P0 = 0 it follows that

Sn =

n
∑

k=0

Pk =

n
∑

k=1

Pk =
1

2
(Pn+1 + Pn − 1). (2)

If we now replace the subscript k in (1) by 2k + 1 and sum from k = 0 to
k = n, we find

2

n
∑

k=0

P2k+1 =

n
∑

k=0

(P2k+2 − P2k)

= (P2 − P0) + (P4 − P2) + (P6 − P4) + · · · + (P2n+2 − P2n)

= P2n+2.

Thus,
n

∑

k=0

P2k+1 =
1

2
P2n+2. (3)

Finally, replace the subscript k in (1) by 2k and sum from k = 1 to k = n.
The right-hand side again telescopes, leaving

2

n
∑

k=1

P2k = P2n+1 − 1.

Because P0 = 0,
n

∑

k=0

P2k =

n
∑

k=1

P2k =
1

2
(P2n+1 − 1). (4)

3. Some Pell Number Identities

To proceed further with our analysis of the sums (2), (3), and (4), we
need several Pell number identities. The first two can be derived from the
Pell number analogue of Cassini’s identity [4, equation (30),p. 249]:

Pn−1Pn+1 − P 2
n = (−1)n.

Replacing Pn+1 by 2Pn + Pn−1 from the Pell number recurrence and rear-
ranging terms yields

2Pn−1Pn = P 2
n − P 2

n−1 + (−1)n. (5)

Adding P 2
n +P 2

n−1 to both sides of (5) and factoring the resulting left-hand
side then gives

(Pn−1 + Pn)2 = 2P 2
n + (−1)n. (6)

To establish the remaining identities, we will make use of the relation

Pr+s = PrPs+1 + Pr−1Ps
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[4, equation (28) on page 249]. Set r = s = n to obtain

P2n = PnPn+1 + Pn−1Pn = Pn(Pn+1 + Pn−1)

= 2Pn(Pn + Pn−1). (7)

Next, set r = 2n + 1 and s = 2n. Then

P4n+1 = P 2
2n+1 + P 2

2n.

From (5), with n replaced by 2n + 1,

P 2
2n+1 = 2P2nP2n+1 + P 2

2n + 1,

so
P4n+1 = 2P2nP2n+1 + 2P 2

2n + 1 = 2P2n(P2n+1 + P2n) + 1. (8)

Finally, set r = 2n + 2 and s = 2n + 1. Then

P4n+3 = P 2
2n+2 + P 2

2n+1

= P 2
2n+2 + P2n(2P2n+1 + P2n) + 1

= P2n+2(P2n+2 + P2n) + 1

= 2P2n+2(P2n+1 + P2n) + 1. (9)

4. Main Results

Our first objective is to express each term in Sn in terms of squares of
Pell numbers. From (2), (7), (8), and (5)

S4m =
P4m+1 + P4m − 1

2

=
2P2m(P2m+1 + P2m) + 1 + 2P2m(P2m + P2m−1) − 1

2
= 2P2m+1P2m

= P 2
2m+1 − P 2

2m − 1. (10)

For the case n = 4m + 1, (2), (7), and (8) yield

S4m+1 =
P4m+2 + P4m+1 − 1

2

=
2P2m+1(P2m+1 + P2m) + 2P2m(P2m+1 + P2m) + 1 − 1

2

= (P2m+1 + P2m)2, (11)

thus reproducing the result found in [2] and [6]. When n = 4m+2, we find

S4m+2 =
P4m+3 + P4m+2 − 1

2

=
2P2m+2(P2m+1 + P2m) + 1 + 2P2m+1(P2m+1 + P2m) − 1

2
= (P2m+2 + P2m+1)(P2m+1 + P2m).

40 VOLUME 22, NUMBER 1



PROPERTIES OF SUMS INVOLVING PELL NUMBERS

Rearranging the terms in the Pell number recurrence relation, it follows
that P2m+1 + P2m = P2m+2 − P2m+1; hence,

S4m+2 = P 2
2m+2 − P 2

2m+1. (12)

Finally, when n = 4m + 3,

S4m+3 =
2P2m+2(P2m+2 + P2m+1) + 2P2m+2(P2m+1 + P2m) + 1 − 1

2

= 2P 2
2m+2. (13)

Before summarizing our findings, we note that S4m+1 and S4m+3 have
alternate representations in terms of squares of Pell numbers. In particular,

1 + S4m+1 = 1 + (P2m+1 + P2m)2 = 2P 2
2m+1

by (6) with n = 2m + 1, and

1 + S4m+3 = 1 + 2P 2
2m+2 = (P2m+2 + P2m+1)

2

by (6) with n = 2m + 2. Thus,

S4m+1 = 2P 2
2m+1 − 1; and (14)

S4m+3 = (P2m+2 + P2m+1)
2 − 1. (15)

Now, combining (10)–(15), we have the following theorem.

Theorem 1. If n is even, then

Sn =

n
∑

k=0

Pk = P 2
1+n/2 − P 2

n/2 − εn,

where

εn =

{

1, n ≡ 0(mod 4)
0, n ≡ 2(mod 4)

.

If n is odd, then Sn =
(

P(n+1)/2 + P(n−1)/2

)2 − δn, where

δn =

{

0, n ≡ 1(mod 4)
1, n ≡ 3(mod 4)

.

Alternately, if n is odd, then Sn = 2P 2
(n+1)/2 − δ̂n, where δ̂n = 1 − δn.

Next, consider sums of Pell numbers with odd index only. Falcón Santana
and Dı́az-Barrero [6] showed that

P2n+1

∣

∣

∣

∣

∣

2n
∑

k=0

P2k+1 and P2n

∣

∣

∣

∣

∣

2n
∑

k=1

P2k−1 . (16)
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Benjamin, Plott, and Sellers [2] combined these two results into the single
statement

Pn+1

∣

∣

∣

∣

∣

n
∑

k=0

P2k+1 . (17)

From (3) and (7),

n
∑

k=0

P2k+1 =
1

2
P2n+2 = Pn+1(Pn+1 + Pn). (18)

Formulas (16) and (17) follow immediately from (18), as does the following
divisibility property.

Theorem 2. For all n ≥ 0, (Pn+1 + Pn)

∣

∣

∣

∣

∣

n
∑

k=0

P2k+1 .

Another new divisibility property is given by the following theorem.

Theorem 3. For all m ≥ 1, Pm

∣

∣

∣

∣

∣

2m−1
∑

k=0

P2k+1 and (Pm+Pm−1)

∣

∣

∣

∣

∣

2m−1
∑

k=0

P2k+1 .

Proof. From (18) and (7),

2m−1
∑

k=0

P2k+1 = P2m(P2m + P2m−1) = 2Pm(Pm + Pm−1)(P2m + P2m−1).

�

We now move on to sums of Pell numbers with even index. If n = 2m,
then (4) and (8) imply

n
∑

k=0

P2k =
1

2
(P4m+1 − 1) = P2m(P2m + P2m+1) = Pn(Pn + Pn+1); (19)

on the other hand, if n = 2m + 1, then (4) and (9) imply

n
∑

k=0

P2k =
1

2
(P4m+3−1) = P2m+2(P2m+1 +P2m) = Pn+1(Pn +Pn−1). (20)

From (19) and (20) we obtain the following divisibility properties.

Theorem 4. If n is even, then

Pn

∣

∣

∣

∣

∣

n
∑

k=0

P2k and (Pn + Pn+1)

∣

∣

∣

∣

∣

n
∑

k=0

P2k .
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On the other hand, if n is odd, then

Pn+1

∣

∣

∣

∣

∣

n
∑

k=0

P2k and (Pn + Pn−1)

∣

∣

∣

∣

∣

n
∑

k=0

P2k .

Moreover, combining (19) and (20) with (7) yields the following theorem.

Theorem 5. If n is even, then

Pn/2

∣

∣

∣

∣

∣

n
∑

k=0

P2k and (Pn/2 + Pn/2−1)

∣

∣

∣

∣

∣

n
∑

k=0

P2k .

On the other hand, if n is odd, then

P(n+1)/2

∣

∣

∣

∣

∣

n
∑

k=0

P2k and (P(n+1)/2 + P(n−1)/2)

∣

∣

∣

∣

∣

n
∑

k=0

P2k .
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