COMPLEMENTARY INTEGER SEQUENCES THAT HAVE ONLY INITIAL COMMON MOMENTS

Hang Chen

The $k^{\text {th }}$ moment, $m_{k}(R)$, of a nonnegative integer sequence $R=\left\{r_{i}\right\}_{1}^{n}$ of length n is defined to be the sum of the $k^{t h}$ powers of the elements, that is,

$$
m_{k}(R)=\sum_{i=1}^{n} r_{i}^{k}
$$

It is convenient to assume that the $0^{\text {th }}$ power of any number is 1 . Two equallength sequences R and Q of nonnegative integers are said to share the $k^{t h}$ moment if $m_{k}(R)=m_{k}(Q)$. The common moment set of R and Q is $P=$ $\left\{k \mid m_{k}(R)=m_{k}(Q)\right\}$. The initial interval of the common moment set is defined to be $P_{0}=\{0,1,2, \ldots, m(R, Q)\}$, where $m(R, Q)=\max \left\{j \mid m_{k}(R)=\right.$ $\left.m_{k}(Q), 0 \leq k \leq j\right\}$. Therefore, the common moment set is $P=P_{0} \cup A$, where $A \subset\{m(R, Q)+2, m(R, Q)+3, \ldots\}$. If R and Q are identical sequences, we interpret $p=\infty$. If R and Q are two distinct sequences, the common moment set P is a finite set. We shall discuss nonidentical sequences in this paper.

Chen, Erdős, and Schwenk [2] studied the comment moment sets for the score sequences of complementary tournaments and showed that such a common moment set is $P=\{0,1,2, \ldots, 2 p\} \cup A$, where $p \geq 0$ and $A \subset\{2 p+3,2 p+4, \ldots\}$. Chen [1] provided parallel results for degree sequences of complementary graphs.

Two nonnegative integer sequences $R=\left\{r_{i}\right\}_{1}^{n}$ and $Q=\left\{q_{i}\right\}_{1}^{n}$ are said to be complementary if $r_{i}+q_{i}$ is a constant for $i=1,2, \ldots, n$. In this paper, we show that the initial interval of the common moment set for complementary sequences is $P=$ $\{0,1,2, \ldots, 2 p\}$, that is, $m(R, Q)=2 p$ for some $p \geq 0$. We present complementary integer sequences that share only the initial moments. For any given integer $p \geq 0$, we shall construct complementary integer sequences of length 4^{p} that have the common moment set $P=\{0,1,2, \ldots, 2 p\}$.

For two sequences of length n both arranged in nonincreasing order, we say that $R=\left\{r_{i}\right\}_{1}^{n}$ dominates $Q=\left\{q_{i}\right\}_{1}^{n}$ if there is an index i_{0} such that $r_{i_{0}}>q_{i_{0}}$ and $r_{i}=q_{i}$ for $i<i_{0}$. For example, $R=\{6,5,3\}$ dominates $Q=\{6,4,4\}$. For distinct sequences, one must always dominate the other.

When R dominates Q, we define the characteristic function as

$$
f(x ; R, Q)=\sum_{i=1}^{n}\left(x^{r_{i}}-x^{q_{i}}\right)
$$

We use the standard multiset notation for sequences. Let $\left\{n_{1} \cdot r_{1}, n_{2} \cdot r_{2}, \ldots, n_{p}\right.$. $\left.r_{p}\right\}$ denote a sequence consisting of elements r_{i} with the repetition number n_{i}, for $i=1,2, \ldots, p$.

In [2], Chen, Erdős, and Schwenk gave the following useful Lemma. Chen [1] added the Corollary.

Lemma. Let R and Q be two sequences of length n, and let R dominate Q. Then $f(x ; R, Q)=(x-1)^{1+m(R, Q)} g(x)$ with $g(1) \neq 0$.

Proof. By definition, $f(1 ; R, Q)=0$, so there exists a $p \geq 0$ such that $f(x ; R, Q)=(x-1)^{p+1} g(x)$, with $g(1) \neq 0$. We define $F_{k}(x)$ recursively by

$$
\begin{align*}
& F_{0}(x)=f(x ; R, Q) \\
& F_{k}(x)=x F_{k-1}^{\prime}(x),(k \geq 1) \tag{1}
\end{align*}
$$

Evaluation of $F_{k}(x)$ at $x=1$ yields

$$
F_{k}(1)=\sum_{i=1}^{n}\left(r_{i}^{k}-q_{i}^{k}\right)=m_{k}(R)-m_{k}(Q), \quad \text { for } k \geq 1
$$

Thus, $x-1$ is a factor of $F_{k}(x)$ and $F_{k}(x)=(x-1) g_{k}(x)$ for $0 \leq k \leq p$. By repeatedly applying (1) to $(x-1)^{p+1} g(x)$, we get

$$
F_{p+1}(x)=(x-1) g_{p+1}(x)+(p+1)!x^{p+1} g(x)
$$

Therefore, $F_{k}(1)=0$ for $k=0,1, \ldots, p$, and $F_{p+1}(1)=(p+1)!g(1) \neq 0$. Hence, $p=\max \left\{j \mid m_{k}(R)=m_{k}(Q), 0 \leq k \leq j\right\}=m(R, Q)$.

Corollary. If $f(x ; R, Q)=(x-1)^{p+1} g(x)$ and $g(x)$ is a polynomial with all positive coefficients, then $m_{k}(R) \neq m_{k}(Q)$ for $k>p$.

Proof. From the proof of the Lemma, we observe that $F_{k}(x)=(x-1) g_{k}(x)+$ $h_{k}(x)$. If $k>p$, then $h_{k}(x)$ is a polynomial with all positive coefficients. Therefore, $m_{k}(R)-m_{k}(Q)=F_{k}(1)=h_{k}(1)>0$. That is, $m_{k}(R) \neq m_{k}(Q)$.

Now we shall present the main results as the following theorems.
Theorem 1. Let R and Q be complementary nonnegative integer sequences. Then $m(R, Q)=2 p$ for some $p \geq 0$.
 not identical. Then there exists a number sequence $S=\left\{s_{i}\right\}_{1}^{n}$ such that $r_{i}=a+s_{i}$ and $q_{i}=a-s_{i}$ where $a=\frac{1}{2} c$. Hence,

$$
\begin{aligned}
& r_{i}^{k}=\left(a+s_{i}\right)^{k}=\sum_{j=0}^{k}\binom{k}{j} a^{k-j} s_{i}^{j} \\
& q_{i}^{k}=\left(a-s_{i}\right)^{k}=\sum_{j=0}^{k}\binom{k}{j} a^{k-j}(-1)^{j} s_{i}^{j} .
\end{aligned}
$$

We also use $m_{k}(S)$ to denote the sum of the $k^{t h}$ power of s_{i}, that is, $m_{k}(S)=$ $\sum_{i=1}^{n} s_{i}^{k}$. Therefore,

$$
\begin{align*}
& m_{k}(R)=\sum_{i=1}^{n} r_{i}^{k}=\sum_{j=0}^{k}\binom{k}{j} a^{k-j} m_{j}(S) \\
& m_{k}(Q)=\sum_{i=1}^{n} q_{i}^{k}=\sum_{j=0}^{k}\binom{k}{j} a^{k-j}(-1)^{j} m_{j}(S) . \tag{2}
\end{align*}
$$

From (2), we observe that $m_{k}(R)=m_{k}(Q)$ if and only if

$$
\begin{equation*}
2 \sum_{j=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor}\binom{k}{2 j+1} a^{k-2 j-1} m_{2 j+1}(S)=0 \tag{3}
\end{equation*}
$$

For any $k_{0}, m(R, Q) \geq k_{0}$ if and only if $m_{k}(R)=m_{k}(Q)$ for $k=1,2, \ldots, k_{0}$. But these k_{0} moments are equal if and only if (3) holds for $k=1,2, \ldots, k_{0}$. Thus,
$m_{2 j+1}(S)=0$ for $j=0,1, \ldots,\left\lfloor\frac{k_{0}-1}{2}\right\rfloor$. If k_{0} is odd, then $\left\lfloor\frac{k_{0}-1}{2}\right\rfloor=\left\lfloor\frac{\left(k_{0}+1\right)-1}{2}\right\rfloor$. Therefore, (3) always holds up to an even k, that is, $m(R, Q)=2 p$ for some $p \geq 0$.

Theorem 2. For any integer $p \geq 0$, there exist complementary integer sequences of length 4^{p} such that the common moment set is $P=\{0,1,2, \ldots, 2 p\}$.

Proof. We let the two sequences of length 4^{p} be

$$
\begin{aligned}
& R=\left\{\left.\binom{2 p+1}{2 i} \cdot(2 p+1-2 i) \right\rvert\, i=0,1, \ldots, p\right\}, \\
& Q=\left\{\left.\binom{2 p+1}{2 j+1} \cdot(2 p-2 j) \right\rvert\, j=0,1, \ldots, p\right\} .
\end{aligned}
$$

Since the sequences are both arranged in nonincreasing order this makes it harder for us to check whether R and Q are complementary. First, we rearrange the sequence Q in nondecreasing order by setting $2 i=2 p-2 j$ such that

$$
Q=\left\{\left.\binom{2 p+1}{2 p+1-2 i} \cdot(2 i) \right\rvert\, i=0,1, \ldots, p\right\}
$$

Now, the sum of a member in R and its corresponding member in Q is $(2 p+1-2 i)+$ $(2 i)=2 p+1$. Furthermore, $2 p+1-2 i$ of R and $2 i$ of Q have the same repetition number. Therefore, R and Q are complementary sequences. R dominates Q since $2 p+1>2 p$. The characteristic function of R and Q is $f(x ; R, Q)=(x-1)^{2 p+1}$. By the Lemma and its Corollary, $m_{k}(R)=m_{k}(Q)$ for $k \leq 2 p$ and $m_{k}(R) \neq m_{k}(Q)$ for $k>2 p$, that is, the common moment set $P=\{0,1,2, \ldots, 2 p\}$.

$\underline{\text { References }}$

1. H. Chen, "Common Moments of Complementary Graphs," Congressus Numerantium, 90 (1992), 211-224.
2. H. Chen, P. Erdős, and A. Schwenk, "Tournaments That Share Several Common Moments with Their Complements," Bulletin of the Institute of Combinatorics and Its Applications, 4 (1992), 65-89.

Mathematics Subject Classification (2000): 11B99

Hang Chen
Department of Mathematics and Computer Science
Central Missouri State University
Warrensburg, MO 64093
email: hc8907@cmsu2.cmsu.edu

