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INFINITELY MANY COMPOSITE NSW NUMBERS:
AN INDUCTIVE PROOF

James A. Sellers

1. Motivation. The NSW numbers were introduced approximately 20 years
ago [3] in connection with the order of certain simple groups. These are the numbers
fn which satisfy the recurrence

fn+1 = 6fn - fn—l (1)

with initial conditions f; =1 and fo = 7.

In recent years, these numbers have been studied from a variety of perspectives
[1, 2]. Moreover, the author, in collaboration with Hugh Williams, has proven that
there are infinitely many composite NSW numbers [4] as requested in [1]. The goal
of this note is to provide a purely inductive proof of the main theorem in [4]. We
restate it here.

Theorem 1.1. For all m > 1 and all n > 0, fu|f2m—1)ntm-
2. The Necessary Tools. To prove Theorem 1.1, we need to develop a few
key tools.

Proposition 2.1. For all integers a,b > 0, and for all 1 < j < a+b— 2, we have

Satb = Sjt1fatv—j — Sjfatb—j—1 (2)
where

5j = i(—l)”jfi-

=1

Proof. We prove this proposition using induction on j. First, when j =1, the

right hand side of (2) is (fo — f1)fa+v—1 — f1fatb—2 OF 6fatrp—1 — fatb—2, Which
equals f,yp thanks to (1).
Next, we assume

fa+v = Sjr1fatv—j — Sjfarb—j—1



VOLUME 16, NUMBER 1, WINTER 2004

21

for j < a+b—2. Thus, since fo1p—; = 6farv—j—1 — fatb—j—2, we have

fatb = Sj+1(6fa+b—j—1 - fa+b—j—2) — 8j fatb—j—1

= (65541 — 8j) farb—j—1 — Sj+1farb—j—2-
Then we note that by (1)

Jj+1

J
6sjr1—s; =6y (1)L =N (=1,
i=1 i=1

Jj+1

1A 6 ()T =Y ()T
=2 =1

J

PP A 6 ()T i =Y (F) T
i=1

i=1

= (fo— f)(=1)"2 + Z 1)HY2(6 firr — fi)

(f2 _ fl J+2 + Z l+j+2fi+2

J+2

=(f2 = fi)(= J+2+Z 1) f;

Jj+2

= Z(—l)iﬂfi



22 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Therefore, we have

fatv = (65541 — 55) farb—j—1 — Sjt1 farv—j—2

= Sj12fatb—j—1 = Sj+1fatb—j—2,

which completes the proof of Proposition 2.1.
Proposition 2.2. For all m > 1 and for all 1 <c¢<m —1, fm|fmtec + frn—c-

Proof. For ¢ = 1, we know from (1) that 6 f,, = fimt1+ fm—1, so that f| fmr1+
fm—1. Next, we assume fp,|fm+tc + fm—c for 1 < ¢ < d for some value d < m — 1.
Since

frtde1 =6fmid — fmya—1 and  fr—d—1 =6fm—a— frm—dt1,

we know

Jmtd+1 + fm—(a+1) = 6fm+d — fmrd—1+6fm—-a — fm—as1
=6(fmrd + fm—da) = (frmrd—1 + frn—(a—1))-

By the induction hypothesis, the result follows.
Proposition 2.3. For all m > 1, f,,|s2m-1.

Proof. We see that

2m—1

som1= > (D) fi=fi—fotfa— A ()" A fomo

i=1

Notice that this sum is centered about f,,, which divides itself, and that the rest of
the terms can be paired in such a way that Proposition 2.2 can be applied easily.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. When n = 0, the result is clear. Next, assume
fm|f(2m—1)n+m or fm|f2mn7n+m- We want to prove

fm|f(2m—l)(n+1)+m or fm|f2mn—n+m+(2m—l)'
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Using Proposition 2.1 with a = 2mn —n+m, b=2m —1, and j = 2m — 2, we have

f2mn7n+m+(2m71) = S2m—1f2mn—n+m+l - 82m—2f2mn—n+m'

From Proposition 2.3, we know f,,|S2m—1, and from the induction hypothesis,
fml|femn—n+m-. The result follows.
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