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UNIQUENESS OF ROW ECHELON FORM

David B. Surowski and Yuhua Wang

The following definition is familiar to every student having had any exposure
to linear algebra or matrix theory:

Definition. Let A = (aij) be an n×m matrix over a field k. We say that A is
in row echelon form if:

(a) The first non-zero entry of each row is 1.
(b) Rows 1, 2, . . . , r are the non-zero rows and rows r+1, r+2, . . . n are zero rows.
(c) If a1,i1 , a2,i2 , . . . , ar,ir are the first non-zero entries in rows 1, 2, . . . r, respec-

tively, then i1 < i2 < · · · < ir.
(d) For all j = 1, 2, . . . , r and for all k < j, we have ak,ij = 0.

Students learn that by using Gauss-Jordan elimination, any matrix is row-
equivalent to a matrix in row echelon form. However, while linear algebra or ma-
trix theory textbooks often assert the uniqueness of row echelon form of a matrix,
relatively few actually provide a proof. The most commonly found proof [2,3,4]
shows first that the columns i1, i2, . . . , ir carrying the initial 1s of (a) above are
uniquely determined, and then goes on to show that the remaining entries all co-
incide. A second proof, found in [1], interprets the matrix as the matrix of a linear
transformation T :U → V , where row equivalence is manifested through changes of
ordered bases in V . Furthermore, if the matrix is in row echelon form, then the
representing ordered basis in V is necessarily uniquely determined by T and a fixed
ordered basis of U .

While neither proof above is difficult, both are “microscopic,” involving a close
scrutiny of matrix entries. The present approach, on the other hand, is based on
more holistic properties of matrix products.

The key ingredient of the present approach is to use the notion of Hermite

normal form, defined below.

Definition. Let A = (aij) be an n×n matrix, i.e., a square matrix and assume
that

1. The first non-zero entry of each row is 1.
2. The first non-zero entry of each row is on the diagonal.
3. If ajj 6= 0, then for all k < j we have akj = 0.

Then we say that the matrix A is in Hermite normal form. Note that unlike a
matrix in row echelon form, a matrix in Hermite normal form may have zero rows
interspersed among the non-zero rows. However, note that by a permutation of



VOLUME 15, NUMBER 1, WINTER 2003 37

rows, a matrix in Hermite normal form is clearly row equivalent to a matrix in row
echelon form.

Next we investigate the holistic properties of matrices in Hermite normal form.

Lemma 1. Let A, A′ be matrices in Hermite normal form having the same
diagonal elements. Then AA′ = A′.

Proof. Let A = (αij), A′ = (α′

ij), AA′ = (α′′

ij); since A, A′ are upper-
triangular, so is AA′, and so if i > j, α′′

ij = 0. If i ≤ j,

α′′

ij =

j
∑

k=i

αikα
′

kj .

If αii = 0, then αik = 0, for all k. Therefore α′′

ij = 0 for all j ≥ i. However, since
αii = 0, we have α′

ii = 0 and so α′

ij = 0 = α′′

ij . If αii = 1 then αik 6= 0 implies that
αkk = 0. Therefore, α′

kk = 0 and so α′

kj = 0 for all j ≥ k. Therefore,

α′′

ij =

j
∑

k=i

αikα
′

kj = αiiα
′

ij = α′

ij .

The proof follows.

The following is immediate.

Corollary. If A is in Hermite normal form, then A is idempotent, i.e., A2 = A.

As already indicated above, by using Gauss-Jordan elimination any matrix is
row-equivalent to a matrix in row echelon form, and that any square matrix is row
equivalent to a matrix in Hermite normal form.

Lemma 2. Assume that the square matrices A1, A2 are in Hermite normal
form and are row equivalent. Then A1A2 = A1.

Proof. We have A2 = PA1 for some nonsingular matrix P . Therefore
PA1PA1 = PA1; since P is nonsingular we have A1PA1 = A1, i.e., A1A2 = A1.

Corollary. Let A1, A2 be as in Lemma 2, above. Then A1, A2 have the same
diagonal elements.

Proof. We have (A1−A2)
2 = A2

1−A1A2−A2A1+A2
2 = A1−A1−A2+A2 = 0.

Thus, A1−A2 is nilpotent; since A1−A2 is upper triangular, the diagonal elements
are zero. The result follows.
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Corollary. If A is a square matrix, then A has a unique Hermite normal form.

Proof. If A has Hermite normal forms A1, A2, then A1, A2 are row equivalent
and so

A1 = A1A2 = A2.

We now return to the question of uniqueness of row echelon form. Given an
n×m matrix A, we set r = max{m,n}, and let AH be the r× r matrix by adding
rows (or columns) of 0’s to make A into an r × r matrix. Thus, if

A =

[

∗ ∗ ∗
∗ ∗ ∗

]

then AH =





∗ ∗ ∗
∗ ∗ ∗
0 0 0



 .

Similarly, if

A =





∗ ∗
∗ ∗
∗ ∗



 then AH =





∗ ∗ 0
∗ ∗ 0
∗ ∗ 0



 .

Theorem. Let A be an n ×m matrix. Then A is row equivalent to a unique
matrix in row echelon form.

Proof. Let A be row equivalent to matrices A1, A2, where A1, A2 are in row
echelon form. Then A1 and A2 are row equivalent; hence, so are (A1)H and (A2)H .
Furthermore, by simple permutations of the rows of (A1)H and (A2)H , we may
obtain matrices in Hermite normal form, which must coincide. This clearly implies
that (A1)H = (A2)H , and so A1 = A2.
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