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NONZERO INJECTIVE COVERS OF MODULES

Richard Belshoff and Jinzhong Xu

Abstract. We show that if R is a ring such that every nonzero left R-module

has a nonzero injective cover, then R is left Artinian. The converse is not true. If

R is commutative, then the properties are equivalent.

1. Background. A projective cover of a left R–module M (first introduced

by H. Bass [2] in the early 1960s) can be characterized as a pair (P, f), where P is

a projective left R-module and f :P → M is a linear map satisfying the following

two properties:

(i) if P ′ is projective and g:P ′ → M is a linear map, then there exists a linear

map h:P ′ → P such that f ◦ h = g.

(ii) any linear map h:P → P such that f ◦ h = f is an automorphism of P .

The dual notion of an injective envelope of an R-module M consists of an

injective left R–module E and a linear map f :M → E such that

(i) if E′ is injective and g:M → E′ is a linear map, then there exists a linear map

h:E → E′ such that h ◦ f = g, and

(ii) any linear map h:E → E such that h ◦ f = f is an automorphism of E.

Using these categorical definitions of projective cover and injective envelope as

motivation, other types of covers and envelopes can be defined. This was initiated

by E. Enochs in [4]. An injective cover of a left R-module M consists of an injective

module E and a linear map f :E → M satisfying the following two properties:

(i) if E′ is injective and g:E′ → M is a linear map, then there exists a linear map

h:E′ → E such that f ◦ h = g.

(ii) any linear map h:E → E such that f ◦ h = f is an automorphism of E.

It was shown in [4] that a ring R is left Noetherian if and only if every left

R-module has an injective cover. However, we find that injective covers of many

nonzero modules are zero. For example, the injective cover of Z, or any finitely

generated Z-module, is zero. Therefore, we are interested in studying a nonzero

map φ:E → M , where M 6= 0 is a left R-module, and E is an injective module.

Using the result cited above, it is easy to see that for a left Noetherian ring R, if

every nonzero module M has the property that there is a nonzero map E → M

where E is injective, then M has a nonzero injective cover.
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In this paper, R will denote an associative ring with identity, and all modules

will be unital left R-module. We denote by l(x) = {r ∈ R | rx = 0} the left

annihilator of x ∈ R, and if R is commutative we use the notation Ann(x).

2. Perfect Rings and Injective Modules. Perfect rings were originally

defined and studied using projective and flat modules. If R is any ring, then by

Theorem P of [2], R is left perfect if and only if R satisfies any one of the following

equivalent conditions:

• every module has a projective cover.

• the Jacobson radical J = J(R) is T -nilpotent and R/J is Artinian

• every flat module is projective.

The results in this section provide a new way of viewing perfect rings by using

injective modules.

Theorem 1. Let J = J(R) be the Jacobson radical of a ring R and suppose

that for every a ∈ R, the set of left annihilator ideals {l(an) | n ≥ 1} satisfies the

ascending chain condition (ACC). If for every nonzero left R-module M there is a

nonzero map E → M where E is injective, then J is a nil-ideal.

Proof. By Zorn’s Lemma, there is a maximal nil-ideal N contained in J . We

claim that N = J . If J/N 6= 0, then there is a nonzero map φ:E → J/N where E is

injective. Define TrJ/N (E) to be the sum of all the images h(E), where h:E → J/N

is a linear map. That is, TrJ/N (E) = {
∑

h(E) | h ∈ HomR(E, J/N)}. Certainly

TrJ/N (E) is a submodule of J/N . Thus, TrJ/N (E) = N1/N for some ideal N1

containing N , and N1/N 6= 0.

For any a ∈ N1, there is an integer n such that l(an) = l(a2n). Let c =

an = an + N . Then c ∈ TrJ/N (E) and so there is an integer t so that c =

h1(e1)+ · · ·+ht(et), for some linear maps hi:E → J/N , and some elements ei ∈ E,

for 1 ≤ i ≤ t. If we let e∗ = e1 + · · · + et, let E∗ = E ⊕ · · · ⊕ E denote t copies

of E, and let h = ⊕t
i=1hi, then h:E∗ → J/N , e∗ ∈ E∗ and h(e∗) = c. Define

f :Rc2 → E∗ by f(rc2) = rce∗. Then we have the diagram
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and since E∗ is injective, there is a map g which extends f . Let e∗ = g(1) ∈ E∗.

Then

ce∗ = f(c2) = g(c2) = c2g(1) = c2e∗1.

Now h(ce∗) = h(c2e∗1) implies that c2(1−h(e∗1)) = 0 ∈ J/N ⊂ R/N . It follows that

c2 = 0 ∈ R/N , so a2n = c2 ∈ N which means that a is nilpotent in R. Therefore,

N1 is a nil-ideal of R, and N ⊂ N1.

Corollary 1. If R is left self-injective and for every a ∈ R the set of left

annihilator ideals {l(an) | n ≥ 1} has ACC, then J(R) is nil and R/J(R) is regular.

Proof. If R is left self-injective, then every nonzero cyclic left R-module is a

homomorphic image of an injective module, hence by Theorem 1, J(R) is nil and

by Anderson-Fuller, [1] R/J(R) is regular.

Recall that a ring R is said to be left perfect if and only if every left R-module

has a projective cover. This is the case if and only if J(R) is left T-nilpotent and

R/J(R) is Artinian semi-simple. See [2].

Theorem 2. If R satisfies the following conditions, then R is a left perfect ring.

(a) For every nonzero R-module M there is a nonzero map E → M where E is

injective.

(b) For any sequence {an | n ≥ 1} in R, the set of left annihilator ideals

{l(a1 · · · an) | n ≥ 1} has ACC.

(c) The union of any ascending chain of left T-nilpotent ideals is left T-nilpotent.

Proof. We will first show that the Jacobson radical J is left T-nilpotent. By

(c) and Zorn’s Lemma, there is a maximal left T-nilpotent ideal N ⊂ J . If J 6= N ,

i.e. if J/N 6= 0, then by hypothesis (a) we have a nonzero map φ:E → J/N where

E is injective. Set TrJ/N (E) = L/N , where L is an ideal of R containing N . By (b),

for any sequence {an ∈ L | n ≥ 1}, there is an integer n1 such that l(a1 · · ·an1−1) =

l(a1 · · ·an1
). Now an1

= an1
+ N ∈ L/N . By definition of TrJ/N (E), there is

some integer t so that an1
= h1(e1) + · · · + ht(et), where hi:E → J/N is a linear

map, and ei ∈ E for i = 1, . . . , t. Let E∗ be the direct sum of t copies of E, let

h = ⊕t
i=1hi, and let e∗ = e1 ⊕ · · · ⊕ et. Then h:E∗ → J/N and h(e∗) = an1

. Now
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define f :Ra1 · · ·an1−1an1
→ E∗ by f(ra1 · · · an1−1an1

) = ra1 · · · an1−1e
∗, and let g

be a map which extends f . So we have the commutative diagram

If we let e∗1 = g(1) ∈ E∗, then

a1 · · · an1−1e
∗ = f(a1 · · ·an1

) = a1 · · ·an1
e∗1,

h(a1 · · · an1−1e
∗) = h(a1 · · · an1

e∗1),

a1 · · · an−1an1
= a1 · · · an1

h(e∗1),

a1 · · · an1
= a1 · · · an1

h(e∗1).

So a1 · · · an1
(1 − h(e∗1)) = 0 implies that a1 · · ·an1

∈ N . Set b1 = a1 · · ·an1
∈ N .

Similarly, for the sequence {ak | k ≥ n1 + 1}, we can find an integer n2 such

that an1+1 · · ·an2
∈ N . Set b2 = an1+1 · · · an2

. Consequently we get a sequence

{bt | t ≥ 1} ⊂ N , where bt = ant+1 · · ·ant+1
with n0 = 0. SinceN is left T-nilpotent,

for some integer s we have b1b2 · · · bs = 0, and then a1 · · · ans+1
= 0. Hence L is

left T-nilpotent. It follows that L = N is left T-nilpotent, and TrJ/N (E) = L/N is

zero. Therefore, J = N is left T-nilpotent.

Next we will prove that R/J is Artinian semi-simple. First of all, any set

of orthogonal idempotent elements of R/J can be lifted to a set of orthogonal

idempotent elements of R. The set of left annihilator ideals {l(a1 · · · an) | n ≥ 1}

has ACC by assumption, and R/J has an indecomposable decomposition as a left

R-module. Let R = R/J = N1 ⊕ · · · ⊕ Nt, where each Ni is an indecomposable

submodule of R/J . Now we will show that Ni is a simple R/J-module.

Let H be a nonzero submodule of Ni. Since Ni is indecomposable, in order to

prove H = Ni we only need to show that H contains a nonzero direct summand

of Ni. By the correspondence between idempotents and direct summands, we only

need to construct a special idempotent element w in R/J such that it creates a

direct summand of Ni.
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By (a), there is an injective module E and a map φ:E → H with φ 6= 0. Set

TrH(E) = I/J ⊂ H , and I/J 6= 0. For any a ∈ I, by (b) there is an integer n such

that l(an) = l(an+2). Now a = a+ J ∈ TrH(E), so there is an integer t such that

a = h1(e1)⊕· · ·⊕ht(et) for some linear maps hi:E → H and for some ei ∈ E. If we

let E∗ be the direct sum of t copies of E, let e∗ = e1 ⊕ · · · ⊕ et and let h = ⊕t
i=1hi,

then h:E∗ → H and h(e∗) = a. Now define f :Ran+2 → E∗ by f(ran+2) = rane∗,

and let g be a map which extends f . We have a commutative diagram

and if we set g(1) = e∗1 ∈ E∗, then

ane∗ = f(an+2) = g(an+2) = an+2e∗1.

Since h(E∗) is contained in TrH(E) = I/J , if we set b = h(e∗1) ∈ I/J , then since

h(e∗) = a,

an+1 = an+2b.

We can also find an integer m and an element c ∈ I/J such that b
m

= b
m+1

c.

Consequently,

a(n+1)+m+(n+1)+1b
m+(n+1)+1

= an+1,

a2(m+(n+1)+1)b
m+(n+1)+1

= a(n+1)+m+1,

b
m+(m+n+1)+1

cm+n+1+1 = b
m
,

b
2(m+(n+1)+1)

cm+(n+1)+1 = b
m+(n+1)+1

.
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Set x = an+1+m+1, y = b
m+n+1+1

and z = cm+n+1+1. Then x2y = x and y2z = y.

And because z − x ∈ I/J , there is an integer k and an element d ∈ I/J such that

(z − x)k+1d = (z − x)k. From these three relations

x2y = x,

y2z = y,

(z − x)k+1d = (z − x)k,

we can prove that x = xyx. (See the Appendix.)

Since x 6= 0, if we set w = yx, then w ∈ I/J ⊂ H and w2 = yxyx = yx = w.

Hence, R = Rw⊕K, where Rw ⊂ Ni, and Ni = Rw⊕ (K ∩Ni). This implies that

Ni = H , since Ni is indecomposable, and then R/J is Artinian semi-simple.

Corollary 2. If every nonzero left R-module has a nonzero injective cover, then

R is left Artinian.

Proof. If every left R-module has an injective cover, then R is left Noetherian,

and it follows that the hypotheses (a), (b) and (c) in Theorem 2 are all satisfied.

Hence, R is left Artinian.

The following example shows that the converses to Theorem 2 and Corollary 2

are not true. We will give an example of a left Artinian ring R for which hypothesis

(a) of Theorem 2 is not satisfied.

Let F be a field, let

e11 =

(

1 0
0 0

)

, e12 =

(

0 1
0 0

)

, e22 =

(

0 0
0 1

)

,

and let

R = Fe11 + Fe12 + Fe22 =

{(

a b
0 c

)
∣

∣

∣

∣

a, b, c ∈ F

}

.

We know that R is left Artinian. Now we will show that the hypothesis (a) is

not satisfied by R.

Since R = Re11 ⊕ (Re12 + Re22), Re11 is a projective simple module of R. If

there is a nonzero map E → Re11 with E injective, then Re11 is injective.
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However, the homomorphism f :Re12 → Re11 given by f(re12) = re11, can not

be extended. For if we consider the diagram

where g | Re12 = f , if

g(1) =

(

a 0
0 0

)

∈ Re11,

then f(e12) 6= 0 but

g(e12) = e12g(1) =

(

0 1
0 0

)(

a 0
0 0

)

=

(

0 0
0 0

)

.

Theorem 3. If R is commutative, then the following statements are equivalent.

1. R is perfect.

2. (a) For every nonzero R-module M there is a nonzero linear map E → M

where E is injective.

(b) For any sequence a1, a2, . . . in R, the set of annihilator ideals

{Ann(a1 . . . an) | n ≥ 1} has ACC.

Proof. (1) =⇒ (2). Because R has DCC on principal ideals [2], there is an

integer n such that Ra1 · · · an = Ra1 · · ·an+k, for all k ≥ 1. This implies that

Ann(a1 · · ·an) = Ann(a1 · · ·an+k) for k ≥ 1. Hence, (b) is satisfied. For (a),

consider the decomposition R = R1 ⊕ · · · ⊕ Rt, where each Ri is a local ring with

maximal ideal mi. For any nonzero Ri-module Mi, the simple module Si = Ri/mi

can be embedded in Mi. Let Ei(Mi) be the injective envelope of Mi as an Ri-

module. Then we have a nonzero map Ei(Mi) → Ei(Mi)/miEi(Mi) → Si →֒ Mi.
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Since R is commutative, Ei(Mi) is R-injective. Therefore, for any nonzero R-

module M , we have M = R1M ⊕ · · · ⊕ RtM , where each Mi = RiM is an Ri-

module. Now it is easy to see that there is a nonzero linear map E → M where E

is injective.

(2) =⇒ (1). By Theorem 1, J is nil. For any sequence {an | n ≥ 1} in J ,

there is an integer n such that Ann(a1 · · · an+1) = Ann(a1 · · · an). Since an+1 is

nilpotent, akn+1 = 0 and ak−1
n+1a1 · · ·anan+1 = 0. Then ak−1

n+1 ∈ Ann(a1 · · · an), and so

ak−1
n+1a1 · · · an = 0. Continuing in this way we eventually get that a2n+1a1 · · ·an = 0,

which implies that an+1 ∈ Ann(a1 · · · an). This shows that J is T-nilpotent. Then

by the proof of Theorem 2, R is perfect.

Corollary 3. If R is commutative, then R is Artinian if and only if every

nonzero R-module has a nonzero injective cover.

3. Appendix. The purpose of this appendix is to prove the following propo-

sition. The main idea of the proof is contained in the article by M. F. Dischinger

[3].

Proposition 1. If x, y, z, d are elements of R, and if

(i) x2y = x,

(ii) y2z = y,

(iii) (z − x)k+1d = (z − x)k for some positive integer k,

then xyx = x.

Proof. Using (i) and (ii) it is easy to see that

xz = x2, (1)

xyz = x. (2)

The first equation follows because xz = x2yz = x(x2y)yz = xx2y = xx. The second

equation follows by a similar calculation: xyz = x2yyz = x2y = x.

Using equation (1), we have (z − x)2 = z2 − zx− xz + x2 = z2 − zx and so

(z − x)2 = z(z − x).

Then an induction argument shows that for any integer n ≥ 1,

(z − x)n = zn−1(z − x). (3)

Now use this and equations (1) and (2) to see that

xy(z − x)2 = xyz(z − x) = x(z − x) = xz − x2 = 0. (4)
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Also, by hypothesis (iii), there is some positive integer k so that

(z − x)k = (z − x)k+1d = (z − x)k(z − x)d = zk−1(z − x)2d.

Using hypothesis (ii) as the basis for another induction argument, it follows that

ynzn−1 = y for every positive integer n. Hence by (3),

yn(z − x)n = ynzn−1(z − x) = y(z − x) (5)

for every positive integer n. Now using equation (3), hypothesis (iii) and the equa-

tion above, we have

y(z − x)2d = ykzk−1(z − x)2d = yk(z − x)k+1d = yk(z − x)k = y(z − x) (6)

for some positive integer k. By equation (5) and this equation,

y(z − x)d = y2(z − x)2d = y2(z − x).

By equations (4) and (6)

xy(z − x) = xy(z − x)2d = 0.

Therefore, xyz = xyx. Now since x = xyz, we conclude that xyx = x.
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