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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

40. [1991, 150; 1992, 150–151] Proposed by Stan Wagon, Macalester College,
St. Paul, Minnesota.

A tetrahedron is a geometric solid with 4 vertices, 6 edges, and 4 triangu-
lar faces. A Heron triangle is one whose sides and area are integers. A Heron
tetrahedron is one having Heron triangles as faces and whose volume is an integer.

(a) Show that if △ABC is acute, then a tetrahedron exists with each of its faces
congruent to △ABC.

(b)* John Leech has shown that a Heron tetrahedron exists: Let △ABC have sides
148, 195, and 203 and let T be the tetrahedron obtained from this triangle as
in (a). Then each face of T has integer area and T has integer volume. The
following question is inspired by Jim Buddenhagen’s investigation of Heron
triangles whose area is a square. Question: Is there a Heron tetrahedron
whose volume is a perfect square or perfect cube?

Comment by Les Reid, Southwest Missouri State University, Springfield,
Missouri. Once the existence of a Heron tetrahedron is known, it’s relatively easy
to construct a Heron tetrahedron whose volume is a perfect square (or, in fact, any
perfect power whose exponent is not a multiple of 3). In general, if we scale the
tetrahedron by a factor of L, the volume will increase by a factor of L3 and the area
by a factor of L2 (so it will still be an integer). If we choose L to be the square-free
part of the volume, the volume will be a perfect square. For example, starting with
Leech’s tetrahedron having four congruent faces with edges of length 148, 195, and
203, it’s volume is

611520 = 26 ∗ 3 ∗ 5 ∗ 72 ∗ 13,

whose square-free part is 3 ∗ 5 ∗ 13. Therefore, the corresponding tetrahedron with
edges of length 28860, 38025, and 39585 will have a volume of

21294002.

A similar argument works as long as the exponent of the power is not a multiple of
3. For example, if we want the volume to be a fifth power (and begin with Leech’s
tetrahedron), we would choose

L = 2x ∗ 3y ∗ 5z ∗ 7s ∗ 13t,
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so that 6 + 3x = 0 mod 5, 1 + 3x = 0 mod 5, 1 + 3z = 0 mod 5, 2 + 3s = 0
mod 5, and 1 + 3t = 0 mod 5 (which have solutions since 3 is relatively prime to
5).

[I still haven’t been able to find a volume that’s a perfect cube.]

The question remains: “Are there primitive Heron tetrahedra whose volume is a
perfect square?” [Here, primitive means the GCD of the edge lengths is 1.]

100
∗. [1996, 136; 1997, 196–197] Proposed by Bryan Dawson, Emporia State

University, Emporia, Kansas.

Let C be the set of constructible numbers. Let f :C → R be given by f(x) = n
where n is the minimum number of arcs necessary to construct a segment of length
x under the following rules:
1) Only compass and straightedge may be used for the construction.
2) The construction starts with only a segment of unit length and this segment

may not be used for any other purposes than measurement (i.e., the construc-
tion cannot be built using the segment; f(1) = 1).

3) The number of uses of the straightedge must be finite.

Prove or disprove that f has a point of continuity.

Solution by Les Reid, Southwest Missouri State University, Springfield,
Missouri. With the author’s stipulation that f(1) = 1, the function f :C → R

is, in fact, constant (and hence, continuous everywhere). Once we draw one cir-
cle, any construction which can be done with compass and straightedge can be
done with straightedge alone. This is an old result of Steiner [for example, see
100 Great Problems of Elementary Mathematics, Their History and Solution by
Heinrich Dorrie, pp. 165–170]. Therefore f(x) = 1 for all x in C.

125. [1999, 46] Proposed by F. J. Flanigan, San Jose State University, San
Jose, California.

Let d be a positive integer. The real polynomial h(x) is d-simple on the open
interval (a, b) if and only if h(x) = c(x− x1) · · · (x− xe) with 0 ≤ e ≤ d and the xi

pairwise distinct elements of (a, b). Let f(x) be a real polynomial of degree n ≥ 1.
Prove that if

∫ b

a

f(x)h(x)dx = 0

for all d-simple polynomials h(x) on (a, b), then
(i) f(x) has at least d+ 1 roots of odd multiplicity in (a, b), and
(ii) if d = n− 1, then f(x) has n distinct simple roots in (a, b).
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Solution by the proposer. Note first that

∫ b

a

f(x) dx = 0,

since h(x) ≡ 1 is d-simple, with degree e = 0 and c = 1. Thus, f(x) must change
sign at least once in (a, b), and this implies that f(x) has at least one root of odd
multiplicity in (a, b).

Next, suppose f(x) has exactly k ≥ 1 distinct roots of odd multiplicity in (a, b).
Thus,

f(x) = (x − x1)
m1 · · · (x− xk)

mkF (x)

with the xi pairwise distinct elements of (a, b), the mi odd positive integers, and
F (x) a real polynomial which does not change sign in the interval (a, b). Now
consider the product

f(x)(x − x1) · · · (x− xk) = (x− x1)
m1+1 · · · (x − xk)

mk+1F (x).

Observe that the polynomial on the right has no sign changes in (a, b). Thus,

∫ b

a

f(x)(x − x1) · · · (x− xk)dx 6= 0.

Thus, (x − x1) · · · (x − xk) is not d-simple on (a, b), which implies k > d. This
proves (i).

If d = n − 1, it follows that f(x) has n distinct roots of odd multiplicity in
(a, b). But f(x) has degree n, and it follows that each of these must have multiplicity
mi = 1, proving (ii).

126. [1999, 47] Proposed by F. J. Flanigan, San Jose State University, San
Jose, California.

For which coefficient functions b(t) will the equation

y′′(t) + b(t)y′(t) +
√

1 + y(t)2 = 0

admit a solution y(t) which is oscillatory on some interval, that is, rising and falling
repeatedly (as, for example, a perturbed sine wave, or a polynomial with several
real roots, etc.)?
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Solution by the proposer. For no coefficient function b(t) will this equation
admit an oscillatory solution. This follows from the following proposition.

Proposition. If y(t) is a solution to the given equation, then y(t) has no local
minimum.

Proof. If t0 is a critical value for the solution y(t), then y′(t0) = 0, and so the
differential equation implies

y′′(t0) = −
√

1 + y(t0)2 ≤ −1 < 0.

By the second derivative test of differential calculus, the critical value yields a strict
local maximum for y(t). This completes the proof.

It follows that a solution y(t) cannot have two local maxima on an interval of
definition, for between two local maxima there would be at least one local minimum.
This paucity of local extrema rules out oscillatory behavior.

Comments by the proposer.
i) The above proof employs a rudimentary version of the ‘maximum principle’

(though here it would be the ‘minimum principle,’ with y(t) attaining its min-
imum on a closed interval only at an endpoint.)

ii) One does not have to know ‘how to solve differential equations’ to work this
problem.

iii) Note that if b(t) ≡ 0, then the equation of the problem is roughly similar to

y′′(t) + y(t) = 0,

whose solutions are periodic and therefore oscillatory. But there is a crucial
difference . . . .

127. [1999, 47] Proposed by Vincent Dunn (student) and Donald P. Skow,
University of Texas-Pan American, Edinburg, Texas.

If x is a triangular number, a and b are positive integers, under what conditions
is ax+ b also a triangular number? For example, 25x+ 3 satisifies the conditions.

Solution by James T. Bruening, Southeast Missouri State University, Cape
Girardeau, Missouri. We shall prove the following theorem.

Theorem. If x is any triangular number and a and b are positive integers, then
ax + b is a triangular number if and only if a is an odd square and b is the kth
triangular number, where

k =

√
a− 1

2
.
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Proof. Throughout this proof, write x in the form

n(n+ 1)

2
,

the general form of a triangular number.
Now assume a = (2k + 1)2, an odd square, so that

√
a− 1

2
=

2k + 1− 1

2
= k,

and

b =
k(k + 1)

2

is the kth triangular number. This implies

ax+ b =
(2k + 1)2n(n+ 1)

2
+

k(k + 1)

2

=
(2k + 1)2n(n+ 1) + k(k + 1)

2

=
((2k + 1)n+ k)((2k + 1)n+ (k + 1))

2

=
m(m+ 1)

2
,

where m = (2k + 1)n+ k. Thus, ax+ b is a triangular number.
For the converse, now assume

ax+ b =
an(n+ 1)

2
+ b =

an2 + an+ 2b

2
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is a triangular number. If

an2 + an+ 2b

2

is to factor in the form

m(m+ 1)

2
,

then there must exist positive integers c and k such that

an2 + an+ 2b = (cn+ k)(cn+ k + 1)

= c2n2 + (2ck + c)n+ k2 + k.

This implies a = c2, a = 2ck + c, and 2b = k2 + k. Then c2 = 2ck + c, so that
c = 0 or c = 2k + 1. c = 0 makes a = 0, not a positive integer, so disregard the
solution c = 0.

Next consider the solution c = 2k + 1. This makes c an odd integer, so that
a = c2 = (2k + 1)2 is an odd square. Furthermore,

b =
k(k + 1)

2

is the kth triangular number, where

k =
c− 1

2
=

√
a− 1

2
.

This completes the proof.

Also solved by Joe Howard, New Mexico Highlands University, Las Vegas, New
Mexico; N. J. Kuenzi and John Koker, University of Wisconsin-Oshkosh, Oshkosh,
Wisconsin; David Lung (graduate student), University of Texas-Pan American,
Edinburg, Texas; Kenneth B. Davenport; Frackville, PA; and the proposers.
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Comment by James Bruening and the proposers. David M. Burton, in his
book Elementary Number Theory, Fourth Edition, The McGraw-Hill Companies,
New York, 1998, p. 15, Problem 1(d), seems to credit Euler in 1775 with discovering
these conditions. Burton, who is also a notable mathematics historian, lists many
references in the back of his book (pp. 341–345) which could be checked to find a
discussion of Euler’s work with triangular numbers.

128
∗. [1999, 47] Proposed by Curtis Cooper and Robert E. Kennedy, Central

Missouri State University, Warrensburg, Missouri.

Let b ≥ 2 be a positive integer. Let g(x) be periodic of period 1/(b − 1) and
on [0, 1/(b− 1)] be equal to the piecewise linear function connecting the points

(

d

b2 − b
,
(b − d)d

2b

)

,

where d is a nonnegative integer and 0 ≤ d ≤ b. Let

f(x) =

∞
∑

i=0

1

bi
g(bix).

For b = 2 it is known that the maximum value of f is 1/3 and the set E where this
occurs is the set of values whose fractional part can be represented as the infinite
quaternary fraction 0.α1α2 . . . αn . . . , where every αi is either one or two.

What is the maximum value of f for a general b and what is the set E where
these maximum values occur?

Comment by the editor. No solution was received. Therefore, the problem
remains open.


