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MEFTAH AL-HESAB: A SUMMARY

Mohammad K. Azarian

Introduction. Meftah al-hesab (“The Key of Arithmetic” or “The Calcula-
tor’s Key”) was written in Arabic by Jamshid Kashani. In the preface of Meftah
al-hesab, Kashani (Al-Kashani) introduced himself as Jamshid-ibn-e Masud-ibn-e
Mahmud-e Tabib-e Kashani mulaqqab be Ghiyath ud-din; that is, “Jamshid son
of Masud, Masud son of Mahmud, a physician from the city of Kashan, known
as Ghiyath ud-din.” Although Kashani was a physician, his main interest was in
mathematics and astronomy. Kashani’s exact birth date is not known, but it was
sometime during the second half of the fourteenth century in the city of Kashan in
central Iran. Kashani died on the morning of Wednesday June 22, 1429 (Ramadan
19, 832 A. H. L.) outside Samarqand at the observatory he had helped to build in
Uzbekistan. (For the start of the Islamic calendar and the lunar months, see the
remark just before the acknowledgment.)

Meftah al-hesab is Kashani’s best known work. It contains some of Kashani’s
original findings, as well as his improvements on earlier Muslim mathematicians’
works. Written primarily as a textbook, Meftah al-hesab was used for more than
five centuries, not only as a textbook, but also as an encyclopedia; it served many
generations of students, accountants, astronomers, architects, engineers, land sur-
veyors, merchants, and other professionals. It took Kashani more than seven years
to complete Meftah al-hesab, which he did on March 2, 1427 (Jamadi al-awwal 3,
830 A. H. L.). To support himself financially, he dedicated this unique mathematical
masterpiece to Sultan Ulugh Beg, grandson of Timur and the ruler of Samarqand.

An English summary of Meftah al-hesab, like this present paper, is long over-
due. Original handwritten copies of Meftah al-hesab can be found in libraries
throughout the world. The most authentic manuscript of Meftah al-hesab was
written by Abdul Razzaq-ibn-e Mohammad, known as Muein ud-din Kashi, just
two months after its completion. This copy is preserved at the Ketabkhaneh-e
Melli-e Malek (“National Library of Malek”) in Iran as part of the collection num-
ber 3180. Also in this library, another handwritten copy of Meftah al-hesab exists
under collection Number 3252. Some other handwritten copies of Meftah al-hesab
which exist in Iran are: Numbers 445 and 165 at the Central Library of the Astan-e
Quds-e Razavi (in Mashhad); Numbers 2066, 1790.1, and 6287 at the Central Li-
brary of the University of Tehran; Number 442.1 at the School of Literature of the
University of Tehran; Number 1530 (1519) of the Library at the Majlis-e showra-e
Melli.

Meftah al-hesab has been translated in part or in whole with comments into
other languages. A. Dakhel [4] used the Princeton University copy as well as other
copies to write an English translation with commentary of the fifth chapter of the
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third book. N. Rajaei [8], also has written her doctoral thesis in English on the
invention of decimal fractions based on Meftah al-hesab and Resaleh-e Muhitiyyeh.
Thus, other than the fifth chapter of the third book, the rest of Meftah al-hesab,
namely the other thirty-six chapters in its five books, are neither translated nor
have comments in English. F. Woepcke [12] translated part of the preface as well as
some selected rules (formulas) ofMeftah al-hesab into French. P. Luckey in his book
[5] translated the preface as well as the introduction into German, and discussed
some selected parts of Meftah al-hesab. Also, P. Luckey’s article [6] concerning
the extraction of the nth root of an integer and the binomial expansion in Islamic
mathematics is based on Meftah al-hesab. A. Qurbani in his book [7] explained
and commented on most of Meftah al-hesab topics in Persian, and translated the
entire preface from Luckey’s German translation into Persian. Qurbani used Arabic
manuscripts as well as English, French, German, Persian, and Russian sources.
Qurbani’s book has been the main source for this article. Most examples and
equations presented here can be found in Qurbani’s book as well. M. Tabatabaei
translated a few lines of the preface into Persian also. B. A. Rosenfeld’s translation
of Meftah al-hesab into Russian, along with commentaries by A. P. Youschkevitch,
can be found in [9]. In his 1956 book, B. A. Rosenfeld included the Arabic text
with his revised Russian translation with extended commentaries, and included an
exposition by M. Chelebi (grandson of both Qazi Zadeh-e Rumi and Ali Qushji).

Meftah al-hesab consists of a preface, an introduction, and five books. In
the introduction Kashani defines the terms arithmetic, fraction, and various types
of numbers (throughout this paper number means “non-negative integer”, unless
otherwise noted). In the remainder of this paper we are going to discuss some
content of each of the five books. The reader is reminded that this article is by
no means a translation of Meftah al-hesab. In this paper we present those topics
and ideas from each book of Meftah al-hesab which we believe are mathematically
significant, and easy to communicate in modern notations without getting into
lengthy discussions and complicated calculations.

Book I: On the Arithmetic of Integers. Book I ofMeftah al-hesab consists
of six chapters. In chapter one, Kashani did not recognize zero as a number or a
digit. In chapter two, he still did not recognize zero as a digit, and said that zero
does not have a half. Nonetheless, in dividing zero by two, he wrote zero as the
quotient. Finally, in chapter three he said that the product of zero by any other
number is zero, and thus he treated zero as a number. Also, in chapter three he
defined multiplication of two numbers as, “To multiply two numbers is to obtain a
number such that its ratio to one of the numbers is equal to the ratio of the other
number to the unit.” He then gave a rule for such multiplication, and supported
his argument by examples. He used networks to obtain multiplication results. His
method of multiplication differed from the modern way of multiplying two numbers.
However, he was aware of the modern method, and he used it later in dealing with
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the quotient of two numbers. He thought his method was easier to comprehend
for beginners than the methods used nowadays. In the preface of Meftah al-hesab,
Kashani acknowledged that the above method of multiplication was not his own.
As an example, he obtained the product of 7806 by 175 using this method (Table
1). In this table, the first column (right hand side) is the product of 6 by 1, 7, and
5, respectively. The second column is the product of 0 by 1, 7, and 5. Columns
three and four are defined analogously. To find the result of the product, he added
the numbers in each slant strip like nowadays’ addition, carrying out the 10 as 1
to the second slant strip, carrying 20 as 2 to the next slant strip, and so on. This
method, with a slight change, can be found in Talkheith-e aamal al-hesab written
by the Arab-Spanish mathematician ibn-e Al-bana-e Marakeshi about a century
before Kashani’s time. Kashani also presented his own multiplication network with
a slight variation and called it shabakeh-e muvarrab “slant network.” In addition, he
presented his method without using a network. He illustrated his network method
by finding the product of 624 by 358 (Table 2). Other than its appearance, the
idea and the method used in Table 2 are the same as that of Table 1.

In the beginning of chapter four he defined the quotient of two numbers as,
“To divide two numbers is to obtain a number such that its ratio to the unit is
equal to the ratio of the dividend to the divisor, or to obtain a number such that
its ratio to the dividend is the same as the ratio of the unit to the divisor.” He
then presented a general rule for division which he obtained from his Muslim math-
ematician forefathers, yet which he himself improved. For purposes of illustration,
he divided 3565908 by 475 in two slightly different ways. Finally, he discussed his
own methods (two methods) of division, which were very similar to the modern
method, and gave examples.

Chapter five is devoted to the extraction of the nth root. In this chapter,
Kashani defined the exponent and the root of a number, and defined many other
terms related to the exponent of a number. He improved his predecessors’ method
of finding square roots and presented two methods which were similar to the modern
way of extracting square roots. To find the square root of a perfect square he used
the identity

(a+ b+ c+ · · · )2 = a2 + (2a+ b)b+ (2a+ 2b+ c)c+ · · · . (1)

To approximate the square root of a whole number X which is not a perfect square,
his method led to the formula

√
X =

√

T 2 + r ∼= T +
r

2T + 1
. (2)

Many Iranian mathematicians as well as other Muslim mathematicians worked on
the extraction of the nth root prior to Kashani, including: Aub-Alwafa-e Buzjani
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and Kushaiar ibn-e Gilani in the fourth century A. H. L.; Abu-Rayhan-e Beiruni,
Mohammad Ibn-e Ayyub-e Tabari, Ali ibn-e Ahmad-e Nasvi, and Omar Khayyam-e
Nishabouri in the fifth century A. H. L.; Nasir ud-din-e Tusi in the seventh century
A. H. L.; and Nezam ud-din-e Aaraj in the eighth century A. H. L. It was Kashani,
however, who described in detail a general method for extracting the nth root of a
whole number in the decimal system as well as the sexagesimal system (base 60).
More than four centuries later, in the nineteenth century, Kashani’s method was
rediscovered by European mathematicians, and now is known as Ruffini-Horner’s
method. According to A. Juschkewitsch [13], “The only known general rule for the
extraction of the nth root of a whole number ever written by a Muslim mathemati-
cian is the one in Meftah al-hesab.” However, based on Karine Chemla’s paper [3],
Kashani was not the originator of the Ruffini-Horner’s method for extracting roots.
To approximate the nth root Kashani used the formula

n

√
X = n

√
T n + r ∼= T +

r

(T + 1)n − T n
, (3)

which is a generalization of his square root approximation (formula (2)). At the
conclusion of chapter five of Book I, Kashani stated that he had another method for
the extraction of the nth root, and that he would publish it in a separate treatise.
Unfortunately, no record of such a treatise exists.

Toward the end of chapter five, he gave a general rule identical to that of
Newton for the expansion of (a + b)n, and he made use of a triangular table to
find the coefficients in this expansion. Nowadays, this triangle is called the Pascal
triangle. Qurbani in his book [7] claimed that the binomial expansion as well as
the Pascal triangle both were discovered by the Persian mathematician, astronomer,
scientist, and poet Omar Khayyam Nishabouri about six centuries before the era of
Newton and Pascal. But, we know that both the binomial expansion and the Pascal
triangle were known before him by Karaji (Al-Karaji) in Persia and by various
mathematicians in China (and even possibly in India). At the end of chapter five,
Kashani presented a method for calculation of an−bn, and he extended this method
to find an expansion for (a + b)n − bn. He then applied this method to calculate
(T +1)n − T n in the extraction of the nth root formula. Finally, in chapter six, he
described the “casting out 9” method for checking the accuracy of multiplication
as well as division and root extraction. It is apparent from Meftah al-hesab that
Kashani had a better grasp of this procedure than his forefathers.

Book II: On the Arithmetic of Fractions. Book II consists of twelve
chapters. In the beginning of the first chapter Kashani defined several types of
fractions in the decimal system and hinted at sexagesimal fractions. In some places
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he used the word “fraction” for both the numerator of the fraction as well as
the fraction itself. He then categorized fractions, gave a name to each category,
and presented rules for the arithmetic of fractions. For instance, he called all
fractions, with one as the numerator kasr-e mujarrad (“single fraction”). Kashani’s
inspiration for sexagesimal fractions led him to the discovery of decimal fractions in
1423 (for further detail see [1]). In the second chapter, he discussed ways of writing
a fraction, and introduced symbols for addition, subtraction, multiplication, and
division of fractions. He devoted the third chapter to the discussion of the greatest
common divisor (GCD) of two natural numbers, and he presented a method for
finding the GCD of two numbers by repeated use of division. Basically, his method
was equivalent to the Euclidean Algorithm (Proposition 2 of book seven of the
Elements). In chapter four, he dealt with mixed and improper fractions as well as
their conversion from mixed to improper and vice versa. In the fifth chapter, he
presented two methods for finding the least common denominator (LCD) for a sum
of fractions. These two methods differed slightly, but both were very similar to our
current methods of finding the LCD. The sixth, seventh, eighth, and ninth chapters
all were devoted to the arithmetic of decimal fractions.

In chapter ten, for two whole numbers a and b he used the formula

n

√

a

b
=

n

√
bn−1a

b
, (4)

for the extraction of the nth root of the fraction a/b < 1. Then, he used formula
(3) to approximate the numerator bn−1a in equation (4). He made use of both
(3) and (4) to approximate the nth root of the fraction a/b > 1. In order to get a
better approximation, he advised to change mixed fractions into improper fractions,
prior to approximation. In chapter eleven he presented a method for rewriting a
given fraction with a desired denominator. Finally, in chapter twelve he introduced
consumer fractions such as 1/6, 1/24, 1/96, etc., and gave rules for multiplication
and division of these fractions.

Book III: On the Computation of Astronomers. All six chapters of this
book are concerned with the sexagesimal system, which was useful for computation
in astronomy. Kashani discussed hesab-e jamal (“jamal arithmetic”) in the first
chapter, and like other medieval Muslim mathematicians he used it in his mathe-
matical arguments. In jamal arithmetic the 28 letters of the Arabic alphabets are
used in a specified order (different than alphabetical order) to represent 1’s, 10’s
and 100’s. Kashani used a combination of jamal letters to represent a number in
the sexagesimal system.
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Chapter one dealt with the writing of numbers in sexagesimal system. The ear-
liest Persian mathematician to write a book on sexagesimal fractions was Kushaiar
ibn-e Gilani. Muslim mathematicians before Kashani used to use a combination of
decimal and sexagesimal systems in products as well as quotients of numbers. The
Greeks did not use a pure sexagesimal system either. For instance, Ptolemy wrote
the length of the year in terms of days as a combination of decimal and sexagesimal
system as:

365 14 48, which abbreviates 365 +
14

60
+

48

(60)2
.

However, all discussions and all arithmetic in the third book of Meftah al-hesab
are done in pure sexagesimal system, including the extraction of the nth root.
Thus, Kashani was the first Muslim mathematician to work in a purely sexagesimal
system or purely decimal system, without combining the two. From his discussion
in Meftah al-hesab it is apparent that the rules of arithmetic in sexagesimal system
reached their final form during Kashani’s time. It is noteworthy that Kashani was
the first Muslim mathematician to use zero as an exponent, as in 600 = 1. He also
used negative exponents in dealing with minutes (60−1), seconds (60−2), and other
numbers smaller than a second.

The fifth chapter is devoted to the extraction of roots. He presented a general
rule for the extraction of the nth root in the sexagesimal system, and illustrated his
method by finding the following roots (to write a number in base 60 with modern
notation, we separate digits by commas, and the integral and the fractional parts
by a semicolon):

√

10, 9, 49, 20 = 24, 41; 40,

√

18, 52; 59, 43, 51, 25 = 10; 25, 30,

6

√

34, 59, 1, 7, 14, 54, 23, 3, 47, 37; 40 = 14, 0; 30.

In the last chapter of the third book, Kashani continued his discussion of decimal
fractions before giving rules for conversion of sexagesimal fractions into decimal
fractions.

Book IV: On the Measurement of Plane Figures and Bodies. This
book contains nine chapters and an introduction. It is concerned with the measure-
ment of dimensions, areas, and volumes of geometric solids. Once again Kashani
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showed his calculation skills in finding the areas of regular n-gons as well as the
volumes of regular polyhedra in both the sexagesimal and the decimal systems.
At the conclusion of the seventh chapter, Kashani indicated that he obtained the
rules for the calculations of volumes of solids from Khajeh Nasir ud-din Tusi’s book
called Ousul-e Ouqlidusi (“Euclidean Foundations”). Kashani created several ta-
bles in the sexagesimal system as well as the decimal system, including a table
for the volume of solids, and a table for the values of jaibs (the jaib of an angle
α is the number 60 sinα, where α ranges from 0◦ to 90◦ in one-degree steps) and
gave instructions for their usage. He defined the center of a triangle and gave the
definitions of a rhombus, parallelogram, right trapezoid, quadrilateral with sides of
different lengths, and two other quadrilaterals. Essentially all definitions were the
same as the modern definitions. He also gave definitions regarding the perpendicu-
lar bisector of a chord of a circle, the area between two concentric circles, and other
shapes involving two intersecting circles.

Chapter three concerns regular polygons. Kashani referred to the diameter
of the circumscribed circle as the qutr-e atval (“the long diameter”) of the regular
n-gon, and the diameter of the inscribed circle as the qutr-e aqsar (“the short
diameter”) of the regular n-gon. To compute the radius Rn of the circumscribed
circle, the radius rn of the inscribed circle, and the area Sn of a regular n-gon with
sides of length xn he presented the following formulas:

Rn =
xn

2 sin
(

180
n

)

◦
,

rn =
xn

2
cot

(

180

n

)

◦

,

and

Sn

x2
n

=
n

4
cot

(

180

n

)

◦

.

To calculate S3, the area of an equilateral triangle with sides of length x3, and
areas of regular n-gons (n = 5–10, 12, 15, 16) he used the formula (n/4) cot(180/n)◦

to produce two separate tables in sexagesimal and decimal systems. If we represent
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the area of a regular n-gon by Sn (n = 5–10, 12, 15, 16), then his table in modern
base 10 notation can be summarized as:

S3 = 0.433012x2
3,

S5 = 1.720477x2
5,

S6 = 2.598076x2
6,

S7 = 3.633914x2
7,

S8 = 4.828447x2
8,

S9 = 6.181825x2
9,

S10 = 7.694909x2
10,

S12 = 11.196152x2
12,

S15 = 17.642363x2
15,

S16 = 20.109358x2
16.

For an equilateral triangle with an altitude h Kashani obtained the following
formula for the area as well:

S3 =

√

3
(x3

2

)4
=

√

h4

3
,
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where h =
√

(3x2
3)/4. Regarding hexagons Kashani gave the following formulas:

S6 =
√

12r46,

S6 =

√

27x4
6

2
,

2r6 =
√

3x2
6,

(S6)
2 = x3

6(6x6)(1 + 1/8).

Similarly he obtained the following formulas for octagons:

S8 = (2r8)
2 − x2

8 = 2x2
8 + 2x8

√

2x2
8 = 2x2

8(1 +
√
2),

2r8 =
√

2x2
8 + x8 = x8(

√
2 + 1),

x8 =
√

2(2r8)2 − 2r8 = 2r8(
√
2− 1).

For a scalene triangle ABC with sides of lengths a, b, and c, and the inscribed
circle of radius r with p = (a+ b+ c)/2 he obtained

S3 =
√

p(p− a)(p− b)(p− c),

S3 =
r3(a+ b+ c)

2
,

AH = ha = c sinB,

BH =
a2 − b2 + c2

2a
,

where AH is the altitude perpendicular to the side BC. Note that the last formula
can be written

b2 = a2 + c2 − 2ac cosB,
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that is, the Law of Cosines. When the sides b and c and the angle A are known,
he presented the following formula to calculate the side a, which is another way of
obtaining the Law of Cosines:

a2 = (b± c cosA)2 + c2 sin2 A,

where we have +2bc cosA, if the angle A is obtuse. Continuing the discussion of
scalene triangles, he also obtained

a

sinA
=

b

sinB
=

c

sinC
,

which is the so-called Law of Sines. At the conclusion of his discussion of scalene
triangles, Kashani presented the formulas

r3 =
bc sinA

a+ b+ c
,

and

S3 =
r3(a+ b+ c)

2
.

He claimed that the formula

r3 =
bc sinA

a+ b+ c
,

was his own discovery. As A. Qurbani pointed out, it seems strange that Kashani
did not compare the above two relations to obtain the very useful formula

S3 =
1

2
bc sinA.

Concerning regular polyhedra, Kashani studied not only the five famous pla-
tonic solids (regular tetrahedron, cube, regular octagon, regular dodecahedron, and
regular icosahedron) but also two semi-regular polyhedra as well. One was a semi-
regular polyhedron with fourteen faces, where eight faces were equilateral triangles,
and the other six faces were squares. The length of each edge was equal to the
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radius of the circumsphere of this semi-regular polyhedron. The other semi-regular
polyhedron had thirty two faces, where twenty faces were equilateral triangles and
the other twelve faces were pentagons. For each of the above seven solids, Kashani
calculated the edge of the solid in terms of the radius of its circumsphere and
vice versa. He also calculated the volume of each solid. However, his calculations
were not in reduced forms. For instance, he calculated the volume of a regular
tetrahedron in terms of the radius R4 of its circumsphere, without simplifying it,
as

V4 =
2

9
(2R4)

(1

2

)

√

2

3
(2R4)2

√

1

2
(2R4)2;

this simplifies to

V4 =
8
√
3

27
R3

4.

Kashani calculated x12 and x20, the lengths of the edges of a regular dodecahedron
and a regular icosahedron in terms of the radii R12 and R20 of their circumspheres,
respectively as follows:

x12 =

√

5
( 1

12

)

(2R12)2 −
√

( 1

12

)

(2R12)2

and

x20 =

√

[

R20 −
√

( 1

20

)

(2R20)2
]2

+
1

5
(2R20)2.

The above two formulas reduce to

x12 =
R12(

√
15−

√
3)

3

and

x20 =
R20

5

√

10(5−
√
5).



86 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Similarly, he calculated x32, the length of each side of the 32-faced polyhedron
described above in terms of the radius R32 of its circumsphere as

x32 =

√

5
(2R32)2

16
−
√

(2R32)2

16

which reduces to

x32 =
R32

2
(
√
5− 1).

Also, he calculated the diameter of the circumsphere of a regular dodecahedron as

(2R12)
2 = d2 = 3

(

x12 +

√

x2
12 +

x2
12

4
− x12

2

)2

which reduces to
d =

x12

2
(
√
15 +

√
3).

The eighth chapter is concerned with the calculation of the volumes of some
objects from their respective weights. After stating how to obtain the volume of an
object from its weight, Kashani presented two tables for 30 substances, including
gold, mercury, and lead. In one of these tables, he recorded the weight of water
having the same volume as one hundred methqals (one methqal is approximately
5 grams) of each substance. In the other table he compared the weights of solids
occupying the same volume as of one hundred methqals of gold. Finally, in the
ninth chapter of this book Kashani gave instructions for calculations of volumes
and surface areas of vaults, rooms, domes, and other structures. He performed his
calculations in both decimal and sexagesimal systems. In dealing with surface areas
and volumes of structures, Kashani claimed that his methods were more complete
and more efficient than those of his predecessors.

Book V: On the Solution of Problems by Means of Algebra. This
book contains four chapters. The first chapter is concerned with jabr va muqabeleh
and it consists of ten sections. In the first section Kashani defined jabr, muqabeleh,
rad, and takmeel as follows:
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Jabr (or algebra). “If on one side or on both sides of an equation there is a
negative term, we cancel it and we add a term like it to the other side of the
equation.”
Muqabeleh. “Cancellation of two equal terms from both sides of an equation is
called muqabeleh.”
Rad. “If on one side of an equation the coefficient of the highest degree of the
unknown is larger than one, then we divide both sides of the equation by this
leading coefficient so that the coefficient of the highest degree of the unknown
becomes one.”
Takmeel. “If on one side of an equation the coefficient of the highest degree of
the unknown is less than one, then we multiply both sides of the equation by
the reciprocal of this leading coefficient so that the coefficient of the highest
degree of the unknown becomes one.”
In the second and third sections of the first chapter Kashani presented rules for

addition and subtraction of polynomials, and in the fourth section of chapter one he
gave a rule for the multiplication of polynomials. Other than the notations used,
his rules were similar to modern techniques of polynomial addition, subtraction,
and multiplication. In the fifth section of chapter one he discussed division of
monomials and polynomials by monomials, and in the sixth he discussed extraction
of square roots of monomials and polynomials provided they were perfect squares.
He then illustrated his rule of extraction of the square roots by examples including
the following three:

√

4x2 + 20x3 + 25x4 = 5x2 + 2x,

√

4x2 + 20x3 + 41x4 + 40x5 + 16x6 = 2x+ 5x2 + 4x3,

√

4x2 + 20x3 + 41x4 + 52x5 + 46x6 + 24x7 + 9x8 = 2x+ 5x2 + 4x3 + 3x4.

For these three examples, it is clear that Kashani used Equation (1) for the extrac-
tion of the square roots.
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In the seventh section of chapter one Kashani presented the following six alge-
braic equations:

ax2 + bx = c,

ax2 + c = bx,

ax2 = bx+ c,

ax = c,

ax2 = bx,

ax2 = c.

He called the first three muqtarnat, and the last three mufradat. He discussed their
solutions in the eighth section of chapter one. Kashani recognized 95 particular
equations of degrees 1, 2, 3, or 4, where 25 of them were of degrees 1, 2, or 3. He
stated that these 25 equations had been solved before his time by Sharaf ud-din-e
Masudi, but that the remaining 70 equations were unsolved. He wrote that he also
solved the aforementioned 25 equations independently and wrote, “I wish I knew
whether or not my solutions are simpler than those of Masudi, and whether or not
our solutions are compatible.” He also claimed that he discovered other problems
(equations), and because of lengthy discussions concerning the solutions of these
equations he would publish them in another book. Unfortunately, Kashani died
before fulfilling this plan.

The reason that Kashani and other mathematicians of his time considered
the above quadratic equation as six different types of equations was that they
were not using negative numbers. These six equations were well known to Muslim
mathematicians as early as third century A. H. L., and they were solved by Omar
Khayyam in the fifth century A. H. L. However, it is apparent from Kashani’s
discussion of these equations that Kashani was not aware of Omar Khayyam’s
solutions.

In the ninth section of chapter one he solved equations of the form

±axn+2 ± bxn+1 ± cxn = 0

by rewriting them as quadratic equations. For example, he reduced the solution of
the quintic equation

7x3 = 8x4 + x5
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to the solution of the quadratic equation

7 = 8x+ x2,

without mentioning the zero as a triple root of the given equation. In the tenth
section of the first chapter, Kashani discussed equations of the form axn = bxm,
where m and n are natural numbers. To solve this equation for n > m, he first
rewrote it as xn−m = b/a, and then as x = n−m

√

b/a. However, in his solutions he
ignored negative numbers and zero as roots.

The second chapter is concerned with the finding of an unknown by the hesab-e
khataen (“arithmetic of errors”). Kashani stated that this method is useful only if
the given equation can be reduced to a linear equation of the form

ax+ b = c. (5)

In modern notation and terminology the hesab-e khataen can be summarized as
follows: in (5) we replace x by two arbitrary and different values x1 and x2. If
either one of these is a solution of (5), then we are done. Otherwise, we have

ax1 + b = c+ e1 (6)

and
ax2 + b = c+ e2, (7)

where e1 and e2 are the first and the second errors, respectively. Now, if we first
subtract both sides of equation (5) from corresponding sides of equations (6) and
(7), and then divide the corresponding sides of the results we have

x1 − x

x2 − x
=

e1
e2

.

From this we deduce that

x =
e2x1 − e1x2

e2 − e1
.

Since Kashani dealt only with positive numbers, he said if e1 and e2 are both
negative, then

x =
x1|e2| − x2|e1|

|e2| − |e1|
;



90 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

otherwise (that is, if e1 and e2 have opposite signs),

x =
x1|e2|+ x2|e1|

|e2|+ |e1|
.

In the third chapter, Kashani presented fifty formulas, without proofs. Kashani
stated that only the seventh, ninth, fifteenth, and sixteenth rules were his own
discoveries. Some of these rules are stated here in modern notation.

RULE 7. If a, d, l, and Sn are the first term, the increment, the nth term, and
the sum of the first n terms of an arithmetic progression respectively, then

l = a+ (n− 1)d,

and

Sn =
n(a+ l)

2
.

RULE 9. The sum of the first n terms of the geometric progression with ratio
2 is given by

1 + 2 + 22 + 23 + · · ·+ 2n−1 = 2n − 1.

RULE 10.

n
∑

k=1

k(k + 1) = 1 · 2 + 2 · 3 + · · ·+ n(n+ 1) =
2

3
n
(n+ 1)(n+ 2)

2
.

RULE 11.

n
∑

k=1

k(k + 1)(k + 2) = 1 · 2 · 3 + 2 · 3 · 4 + 3 · 4 · 5 + · · ·+ n(n+ 1)(n+ 2)

=
(n+ 1)(n+ 2)

2

[

(n+ 1)(n+ 2)

2
− 1

]

=
n(n+ 1)(n+ 2)(n+ 3)

3
.
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RULE 12.

n
∑

k=1

k2 = 12 + 22 + 32 + · · ·+ n2 =
2n+ 1

3
(1 + 2+ 3+ · · ·+ n) =

n(n+ 1)(2n+ 1)

6
.

RULE 13.

n
∑

k=1

k3 = 13 + 23 + · · ·+ n3 = (1 + 2 + 3 + · · ·+ n)2

=

( n
∑

k=1

k

)2

=

[

n(n+ 1)

2

]2

=
n2(n+ 1)2

4
.

RULE 14.

n
∑

k=1

k4 =

(−1 +
∑

n

k=1 k

5
+

n
∑

k=1

k

) n
∑

k=1

k2.

Ibn-e Haytham-e Mesri about four centuries before Kashani obtained a closely
related formula for

∑n

k=1 k
4:

n
∑

k=1

k4 =

(

n

5
+

1

5

)

n

(

n+
1

2

)[

(n+ 1)n− 1

3

]

.

RULE 15.

n
∑

k=1

ak = a1 + a2 + · · ·+ an =
a · an − a

a− 1
=

a(an − 1)

a− 1
=

an − a

a− 1
+ an,
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where a is any number except 1. For a = p/q < 1, he presented the following
formula

n
∑

k=1

(

p

q

)k

=
(qn − pn)p

(q − p)qn
.

RULE 16. This rule is concerned with the calculation of an, when n is large,
and we wish to avoid multiplying a by itself n times. Kashani illustrated this rule
by the following two examples:

58 = [(52)2]2 = [(25)2]2 = (625)2 = 390625,

and
314 = 32+4+8 = 32 · (32)2 · [(32)2]2 = 9 · 81 · 1561 = 4782969.

The fourth chapter of the fifth book is divided into three sections and consists
of thirty-nine problems, where Kashani solved them by means of jabr va muqabeleh,
hesab-e khataen, and elm-e maftuhat (“without algebraic equations”). Kashani ac-
knowledged that he obtained some of these problems from Al-favaed al-bahaeiyyeh,
a book written by Emad ud-din Baqdadi, but Kashani solved them by different
methods. The first section contains twenty-five problems involving equations with
one or several unknowns of degree one or two, or involving ma-a-delat-e sayyal
(“flowing equations” or “Diophantine equations”). As an example we reproduce
his discussion of the eleventh problem.

We want to partition the number ten into two numbers so that the square of
the first number plus the second number is a perfect square. Let x and x′ be the
two numbers. For x2 + x′ to be a perfect square we must have x′ = 2xy + y2 for
some y. Thus, we need to solve the equation

x+ 2xy + y2 = 10,

which implies that

x =
10− y2

1 + 2y
. (8)

This is a flowing equation which may have more than one solution. If the solutions
are restricted to positive integers only, then by (8), y2 must be less than 10, which
means y must be 1, 2, or 3. Second, 10 − y2 must be divisible by 1 + 2y. With
these restrictions, y = 1 and x = 3 is the only acceptable solution to equation (8),
and x′ = 2xy + y2 = 7, where 32 + 7 = 42. If rational numbers are acceptable as
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well, then there are several solutions including (x = 6/5, x′ = 44/5), and (x = 1/7,
x′ = 69/7).

The second and the third sections of chapter four each contains seven prob-
lems. All problems in the third section are geometric. For instance, Kashani
asks for a point P inside of a given triangle ABC that makes area(PBC) =
(1/2)area(PCA) = (1/3)area(PAB).

Remark. The start of the Islamic calendar is the year 662 A.D., when prophet
Muhammad migrated from his hometown of Makkeh to the city of Madineh.
Prophet Muhammad’s migration is called hejrat (hijra). Nowadays, there are two
Islamic calendars in use. One is the lunar calendar and the other is the solar calen-
dar. The lunar calendar is about 354 days long, while the solar calendar is about
365 days long (the same length as the Gregorian calendar). In this paper, “A. H.
L.” stands for “after hejrat lunar.” The twelve months of the Arabic lunar calen-
dar are: Muharram, Safar, Rabi al-awwal, Rabi al-thani, Jamadi al-awwal, Jamadi
al-thani, Rajab, Shaban, Ramadan, Shawwal, Dhu-al-qadah, Dhu-al-hijjah.
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