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A ROOT-FINDING METHOD FOR THE GENERALIZED

TRIDIAGONAL EIGENPROBLEM

Kuiyuan Li and Matoteng Ncube

Abstract. In this paper a globally convergent, parallel method for the gener-

alized real symmetric eigenproblem is presented. The method can be easily imple-

mented on computers.

1. Introduction. In this paper we consider the generalized eigenvalue prob-

lem

Ax = λMx, (1)

where A and M are both real symmetric tridiagonal and one of them, say M , is

positive definite. Assumptions imply real eigenvalues and the existence of an M -

orthogonal basis of eigenvectors. Eigenvalue problems with such a special structure

arise in many applications, such as numerical solutions of Sturm-Liouville and radial

Schrödinger equations [1,9] and finite element approximation for free longitudinal

vibrations problems of non-uniform rod [10].

There are some approaches to solving (1). The first approach is to reduce (1)

to a standard eigenvalue problem [11]:

L−1AL−T (LTx) = λ(LTx), (2)

where M = LLT is the Cholesky factorization of M . Then the eigenvalue problem

(2) can be solved by many efficient algorithms, such as the QR algorithm [11],

the bisection/multisection algorithms [7], the divide-conquer algorithm [2], and the

homotopy algorithm [5]. However, this approach is less attractive because it cannot

take advantage of the tridiagonal form of A and M , and a full matrix L−1AL−T is

generated in the process. Furthermore, the accuracy of this method also depends on

the conditioning of M since the inverse of L is explicitly required. The complexity

of this method is O(n3).

The second approach, the QZ method [11], disregards the symmetry and the

tridiagonal structure of the problem, and after a direct phase requiring O(n3) op-

erations, enters an iterative phase requiring O(n3) operations to simultaneously
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reduce A and M to triangular-quasi-triangular form. This algorithm is not very

sensitive to the conditioning of M though it is even more expensive than the first

approach.

The third approach is the bisection/multisection method [8]. This parallel

method is very easy to implement in practice and is reliable and accurate. However,

the rate of the convergence is linear.

Another approach is the homotopy-like method [6]. The method employs

the determinant evaluation, split-and-merge strategy and the Laguerre’s iteration.

Since Laguerre’s iteration requires us to compute the first and second derivatives

of f(λ) = det(A− λM), more computations are needed.

Recently, the Durand-Kerner root finding method [4] was proposed for this

problem. The method does not require us to compute f ′(λ) or f ′′(λ). Although it

always converges in practice [4], and no counterexample has been given so far, no

proof of this property has been given.

In this paper, we present a parallel method which converges monotonically and

quadratically without computing f ′(λ) or f ′′(λ).

2. Proposed Root Finding Method. Let p(x) = 1
α
det(A − λM), where

α = (−1)n det(M). Since M is positive definite, α 6= 0. Clearly, to find the

eigenvalues, one only needs to find the zeros of p(x).

For this purpose, we propose the following root-finding method. Let
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Clearly, (3) and (4) give us a fully parallel method for finding all zeros of p(x),

that is, x
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i , i = 1, 2, . . . , n can be computed independently.
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On the other hand,
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Theorem 2.1 implies that x
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For any i,
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It seems that to compute the approximation of λi, two sequences are needed,

and therefore, more computations are needed. However, Theorem 2.2 shows that

more computations may not be really needed. We do two iterations at each step.

Theorem 2.2 also implies that the root finding method converges quadratically.

Remark. The method we discussed is a parallel method, but at the same

time it is possible to use a Gauss-Seidel-like procedure, that is, we use the new

approximations, x
(m+1)
j , where j = 1, 2, . . . , i − 1, to replace x
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j and y
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j ,
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3. Numerical Results. In this section, we present our numerical results.

Our method for finding all eigenvalues can be divided into two stages: root

isolation and root extraction. The root isolation can be done by using the Sturm

sequence. This technique is discussed in detail in [4]. This step results in a list

of intervals containing single roots. When multiple roots are present, the isolation

process continues until the required precision is reached. The root extraction step

uses the proposed root-finding method.

Experiment 1. We implemented our algorithm LGT and the routine RSG in

EISPACK [3] on equation (1). The matrices A and M are obtained from piecewise

linear finite element discretization [9] of the Sturm-Liouville problem

−
d

dx

(

p(x)
du

dx

)

+ q(x)u = λu,

where u = u(x), 0 < x < π, u(0) = u′(π) = 0, and p(x) > 0. When [0, π] is divided

into n+ 1 subintervals of equal length, equation (1) is obtained. Here, both A and

M are symmetric tridiagonal, and positive definite. To make the problem simpler,

we use p(x) = 1 and q(x) = 6.

The experiment was conducted on a Sun-1000 workstation with IEEE standard

and machine precision ǫ ≈ 2.2× 10−16.
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For the generalized symmetric tridiagonal eigenproblem, the subroutine RSG

in EISPACK is somewhat less attractive since it transforms the generalized eigen-

problem Ax = λMx to a standard eigenproblem T̃ y = λy of a dense matrix T̃ . It

cannot take advantage of the tridiagonal structure of the pencil (A,M) and clearly

requires O(n3) flops. The RSG is also sensitive to the conditioning of M . We

conduct the comparison here mainly because it is the only algorithm available in

EISPACK for eigenproblems of symmetric definite pencils.

Table 1 shows the results of our algorithm LGT and the algorithm RSG. The

execution time apparently shows that the complexities of LGT and RSG are O(n2)

and O(n3), respectively for the generalized tridiagonal problem.

Order Execution Time of All Eigenvalues
n RSG LGT
100 2.25 0.31
200 19.02 1.21
300 70.29 2.79
400 194.71 4.87

Table 1: Execution time (seconds) of computed eigenvalues.

Experiment 2. Our algorithm LGT and the routine BIS, the bisection method

are applied to equation (1), where A and M are symmetric random matrices with

mi,i = 2(mi,i−1 + mi,i+1) so that M is positive definite. For each n, we ran 50

problems to find the average time. Both the LGT and BIS can fully take advantage

of the symmetric tridiagonal forms of A and M . Since the bisection converges only

linearly, Table 2 shows that our algorithm leads in speed by a considerable margin.

Order Execution Time of All Eigenvalues
n BIS LGT
100 0.76 0.34
200 3.09 1.26
300 6.47 2.99
400 11.46 5.04

1000 77.19 27.24

Table 2: Execution time (seconds) of computed eigenvalues.
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