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FROM TWIN-PEAKS TO MULTIPEAKS:

AN APPLICATION OF JENSEN’S INEQUALITY

Xin-Min Zhang

1. Introduction. We shall begin with the following question.

Problem 1. One is given a circular disk of radius 1 and asked to cut out a

sector of angle θ that will be used to form a cone. How large should the angle θ be

in order to construct a cone of maximum volume?

This is a standard calculus problem which is accessible to first semester calculus

students. Suppose that x = θ/2π, then 0 ≤ x ≤ 1. From the following Figure 1, we

see that the volume of the cone made by a sector of angle θ can be written as

V (x) =
π

3
x2(1− x2)1/2.

By differentiating V with respect to x we find that V (x) has two critical points

0 and
√

2/3. The second derivative test indicates that V (x) attains its maximum

at
√

2/3, that is, V (
√

2/3) = 2
√

3π/27.

Let us note that, in Problem 1, the remaining part of the disk can be used to

make another cone. This leads us to the following question.
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Problem 2. A circular disk of radius 1 is cut into two sectors, each of which

is used to form a cone. How do we make the cut in order to minimize the total

volume of the two cones?

Although this is again a simple first semester calculus problem, the output

reflects some interesting symmetric properties of the underlying function which

enlightens us to the main problem of this note. We shall let x be the same as in

Problem 1 and denote the volume of the first cone by V1(x). Then the volume of

the second cone is V2 = V1(1− x). The total volume of the two cones is given by

V (x) = V1(x) + V1(1− x) =
π

3
{x2(1− x2)1/2 + (1− x)2[1− (1− x)2]1/2},

the quantity we want to minimize. Instead of differentiating the right hand side

of the above equation, we notice that V (x) is symmetric with respect to x = 1/2.

Therefore,

V ′(x) = V ′1(x)− V ′1(1− x), and V ′(1/2) = 0.
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Following the second derivative test we find that V (x) attains a local minimum

at 1/2. The two problems above together with some relatives have been discussed

by Adrian Oldknow in [8]. It is interesting to see that the “twin-peaks” can refer

to the two cones, and also can be regarded as the two peaks on the graph of the

volume function V (x). See Figure 3. This vivid example brought my attention to

the general problem in the following section.

2. Multivariable Functions and Multipeaks. We now are concerned with

the following question.

Problem 3. One is asked to cut a circular disk of radius 1 into n (n ≥ 3)

sectors of angles θ1, θ2, . . . , θn and use these to form n cones, where 0 < θi < π,

i = 1, 2, . . . , n; and
∑n
i=1 θi = 2π. How do we make the cuts in order to have the

minimal total volume for the n cones?

Let Vi(xi) be the volume of the cone constructed from the sector of angle θi,

where xi = θi/2π, i = 1, 2, . . . , n. Then the total volume of the n cones is

V (x) = V (x1, x2, . . . , xn) =
π

3

n∑
i=1

x2i (1− x2i )1/2,

where xi ∈ (0, 1/2) and
∑n
i=1 xi = 1.

Suggested by Problem 2, we claim that V (x) attains its minimum at the point

(1/n, 1/n, . . . , 1/n). In general, one could find the extreme value of V (x) under
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the constraint
∑n
i=1 xi = 1 by using the method of Lagrange multipliers. How-

ever, when the objective function involves more than three variables, the routine

calculation could cause certain degrees of complexity. First of all, locating the

critical point(s) requires solving a system of equations. Then one needs to com-

pute a number of determinants of different orders at each critical point to decide

where the function attains local minimum and local maximum. Finally, perhaps,

a more difficult task is to find the global extremum [5]. The interested readers are

invited to carry out the necessary steps described above and compare the amount

of calculation with the solution in this note. In what follows, we shall apply the

well-known Jensen’s inequality for a convex function to this problem. By a brief

review of convex functions, we can solve the general problem easily and perceive

the extreme value problem from a different viewpoint.

Convex Functions. Let I = (a, b), I = [a, b], and f be a real function defined

on I or I. A function f is called convex (resp. strictly convex) on a segment I if

and only if

f [λx1 + (1− λ)x2] ≤ λf(x1) + (1− λ)f(x2) (resp., <)

holds for all x1, x2 ∈ I, and for all real numbers λ ∈ [0, 1]. In particular, when

λ = 1/2, and f is strictly convex, we have

f

(
x1 + x2

2

)
≤ f(x1) + f(x2)

2
(1)

with equality holding if and only if x1 = x2.

This inequality is known as Jensen’s inequality for strictly convex functions

[6,7]. When f is twice differentiable on I, then f is convex (resp., strictly convex)

if and only if f ′′ ≥ 0 (resp., >). Intuitively, the graph of a strictly convex function

f is always below the chord segment joining every pair of its points. See Figure 4.
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In general, Jensen’s inequality, one of the most important and best known

classical analytic inequalities states that if f is convex on I, then

f

( n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi), (2)

for any xi ∈ I, i = 1, 2, . . . , n and for any λi ≥ 0, i = 1, 2, . . . , n with
∑n
i=1 λi = 1

[1,6]. When λ1 = λ2 = · · · = λn = 1/n, and f is strictly convex, then inequality

(2) becomes

f

(
1

n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

f(xi) (3)

and equality holds if and only if x1 = x2 = · · · = xn.

We shall omit the proof of (2) and (3), since it can be found in many references

such as [4,6,7]. Under most circumstances, students would be easily convinced by

the special case when n = 2 and the above Figure 4. The rigorous proof of the

general case is a matter of induction.
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Solution of Problem 3. We shall apply inequality (3) to the total volume func-

tion. Let f(x) = π
3x

2(1 − x2)1/2, then V (x1, x2, . . . , xn) =
∑n
i=1 f(xi). We want

to show that

π

3

√
n2 − 1

n2
= nf

(
1

n

n∑
i=1

xi

)
≤

n∑
i=1

f(xi) = V (x1, x2, . . . , xn).

To this end, by virtue of Jensen’s inequality (3), we only need to verify that f

is a strictly convex function on (0, 1/2), or f ′′(x) > 0 for x ∈ (0, 1/2). A direct

calculation yields that

f ′(x) =
π

3

x√
1− x2

(2− 3x2), and

f ′′(x) =
π

3

1√
1− x2

[
2− 3x2

1− x2
− 6x2

]
.

It is clear that f ′′(x) > 0 for x ∈ (0, 1/2) if and only if

6x4 − 9x2 + 2 > 0 on (0, 1/2).

By either solving the above quadratic inequality in x2 directly or graphing the

function 6x4−9x2+2 on a graphing calculator, it is not hard to find that f ′′(x) > 0

on (0, 1/2). Therefore, the total volume function V (x1, x2, . . . , xn) attains its global

minimum at the point (1/n, . . . , 1/n), that is,

V (1/n, 1/n, . . . , 1/n) =
π

3

√
n2 − 1/n2 ≤ V (x1, x2, . . . , xn).

3. Concluding Remarks.

(1) Problem 3 requires that xi ∈ (0, 1/2) for i = 1, 2, . . . , n, that is, each sector

cannot be bigger than one half of the disk. For n = 2, this is impossible

except that x1 = x2 = 1/2. One of the differences between the cases of

n = 2 and n ≥ 3 is that, V (1/2) in [8] is only a local minimum (intuitively,

if x1 is small enough, the resulting sum of the two cones could be very small)
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whereas our V (1/n, . . . , 1/n) with n ≥ 3 is the global minimum (see Figure 5

below). Nevertheless, the formula V (1/n, 1/n, . . . , 1/n) = π
3

√
n2−1
n2 is a natural

generalization of V (1/2) = π
3

√
3
4 ≈ 0.45345 in [8]. By contrast with Oldknow’s

twin peaks in his flat function, we include a graph of V (x) when n = 3.

Keep in mind that the variables x1, x2, x3 are in (0, 1/2) and constrained by∑3
i=1 xi = 1. Therefore, only the part of the graph over the region 1

2 −x1 < x2

represents our problem. See Figure 5.

Note that the three maxima at the corners might be viewed as “tri-peaks.”

An alternating interpretation of the term “tri-peaks” would be the three resulted

cones.

(2) My motivation to this problem is very much inspired by Chakerian’s note [2]

which not only generalized the earlier work of Kouba [3], but also brought up

some very interesting geometric concepts, as well as some different approaches

to extremum problems in standard calculus. My primary intention in this

note is to follow Chakerian’s step in the same direction. For more extremum

problems using different inequalities, we recommend the interested reader to

Ivan Niven’s book Maxima and Minima Without Calculus published by the

MAA in 1981.

(3) To conclude this note, we shall present the following theorem whose proof is

the same as for Problem 3.
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Theorem. Let xi ∈ (0, l), i = 1, 2, . . . , n; and
∑n
i=1 xi = k, where k ∈ (0, 2l),

l = {(1 − 1/2p) − [(1 − 1/2p)2 − (p − 1)/(p + 1)]1/2}1/p, and p > 1 are constants.

Then

n∑
i=1

xpi (1− x
p
i )

1/p ≥ kp[np − kp]1/p

np
,

with equality holding if and only if x1 = x2 = · · · = xn = k
n .

Proof. The function f(x) = xp(1−xp)1/p (p > 1) is strictly convex (i.e., f ′′ > 0)

on the interval (0, l), and the desired result follows from Jensen’s inequality (3).
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