
VOLUME 11, NUMBER 1, WINTER 1999 19

SOLVING BOUNDARY VALUE PROBLEMS NUMERICALLY

USING STEEPEST DESCENT IN SOBOLEV SPACES

W. T. Mahavier

Abstract. Elementary boundary value problems are used as a vehicle to

introduce upper level undergraduate students or first year graduate students to

descent algorithms. The paper is expository in nature and includes references

for Euclidean and Sobolev steepest descent while serving as an introduction to

optimization techniques such as variable metric and conjugate gradient methods.

Numerical algorithms for solving boundary value problems with both Euclidean

and Sobolev descent are developed. Results for constrained, unconstrained, and

singular problems are displayed and properties of descent algorithms are outlined.

1. Introduction. Let k1, k2 , k3, a, b ∈ R with a < b. Let f : [a, b]×R → R be

differentiable with respect to the second variable. This paper illustrates a numerical

method for solving the class of first order, boundary value problems with linear

inhomogeneous boundary conditions,

y′(t) = f(t, y(t)) (1)

k1 ∗ y(a) + k2 ∗ y(b) = k3.

This paper illustrates a simple application of a universal procedure. Written while

the author was a graduate student, it is accessible to upper-level undergraduate

and first year graduate students and was used by the author to supplement tradi-

tional topics in a two semester first year graduate numerical methods course. By

incorporating the material of this paper, students were introduced to finite dimen-

sional vector space theory in such a way that the concepts generalized to infinite

dimensional settings [13]. Because this paper rests heavily on results from linear

algebra and advanced calculus, we use bullets to highlight these results as they are

needed.

Steepest descent is a highly versatile technique. It is used for finding a relative

minimum (or maximum) of a function and is often used to find a starting point

for Newton’s method [2]. Traditional texts on differential equations and numerical

methods consider the methods of Euler, Taylor, and Runga-Kutta for initial value

problems and two point boundary value problems. To demonstrate the versatility

20 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

of descent methods, we first consider the class of problems, Equation 1, which

incorporates not only initial and final value problems but also problems with mixed

boundary conditions that previously mentioned methods are not able to handle.

Section 4 includes examples of unconstrained, constrained, non-linear, and singular

problems all of which utilize the same algorithm.

Given a function, Φ, and a point in the domain of the function, x0, the process

is to generate a sequence of points in the domain of the function which converge

to a point at which Φ attains a relative minimum. The sequence is generated by

setting xk+1 = xk − δk∇Φ(xk) for k = 0, 1, 2, . . . where δk is some small (perhaps

optimally chosen) positive number. More thorough introductory information on

steepest descent may be found in [10, 20, 21]. Using steepest descent to solve

differential equations requires that we determine a function whose minima represent

solutions to the differential equation. Such methods were first introduced in Cauchy

in [3], however, with the advent of computers it was discovered that such methods

were numerically inefficient. Modifications such as conjugate gradient and variable

metric methods were introduced to speed up the convergence. In the introduction

to Hestenes’ book, [7], he states, “Variable metric methods are considered by many

to be the most effective technique for optimizing a nonquadratic function.” Sobolev

steepest descent is an example of this technique where gradients are not based on

Euclidean space but on Sobolev spaces which will be defined in this paper. In

Section 4 we will see that the choice of the gradient has considerable impact on the

speed of convergence of the algorithm.

Sobolev steepest descent originates with J. W. Neuberger and this paper rests

firmly on his work. In [16] sufficient conditions are given for the convergence of

constrained steepest descent utilizing the Sobolev gradients in continuous spaces.

In [12] a convergence proof is given for discrete spaces such as those in this paper

and in [13] results for first and second order boundary value problems with lin-

ear singularities are considered. Additional theory of Sobolev steepest descent for

systems of ordinary differential equations may be found in [17] and references for

the application of the method to partial differential equations include [14, 15, 18].

Pressing applied problems have been addressed using these methods in [4, 5, 8]. A

general reference for Sobolev spaces is [1].

2. Euclidean Descent. Our space is (Rn+1, 〈·, ·〉) where 〈·, ·〉 denotes the

Euclidean inner product (the “dot” product). Let ‖ · ‖ denote the Euclidean norm

and denote x ∈ Rm by x = (x1, . . . , xm). Let k1, k2, k3, a, b ∈ R with a < b. Let

VOLUME 11, NUMBER 1, WINTER 1999 21

f : [a, b]×R → R be differentiable with respect to the second variable. Suppose n is

the number of divisions we wish to partition the interval [a, b] into and δ = (b−a)/n.

• If U and V are finite dimensional vector spaces and L(U, V) denotes the

set of all linear operators from U to V then every M ∈ L(U, V) has a matrix

representation.

To simplify our notation, we define discretized versions of the identity and

derivative operators. It will be simplest to think of D0 and D1 as their matrix

representations. Let D0 and D1 ∈ L(Rn+1,Rn) be defined by

D0(x) =

x1+x2

2

...
xn+xn+1

2

and D1(x) =

x2−x1

δ

...
xn+1−xn

δ

.

In order to solve the differential equation y′(t) = f(t, y(t)) we construct a

function whose minimum is a solution to the equation. Let y ∈ Rn+1 and for all

k = 1, 2, . . . , n+1, let tk = a+(k−1)∗δ and fk = f(tk, yk). Define Φ: (Rn+1, ‖·‖) →

R by

Φ(y) = ‖D1y −D0f‖
2/2 = 1/2

n
∑

k=1

(

yk+1 − yk
δ

−
fk + fk+1

2

)2

.

If we are able to determine a point, y, in the domain of Φ that satisfies Φ(y) = 0

then we have D1y = D0f . This equation is the discrete version of the differential

equation, y′(t) = f(t, y(t)), that we desired to solve. As we outlined in the intro-

duction, we will minimize Φ via successive approximations. The function Φ will

remain the same for both the Euclidean and Sobolev descent.

Algorithm 1.

1. Choose y ∈ Rn+1.

2. Compute ∇Φ(y) =
(

∂Φ
∂y1

, ∂Φ
∂y2

, . . . , ∂Φ
∂yn+1

)

.

3. Determine h which minimizes Φ(y − h∇Φ(y)) (or try h = .01).

4. Let ynew = y − h∇Φ(y).

22 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

5. If ‖ynew − y‖ < ǫ, we have a solution; else, put y = ynew and repeat steps 2

through 5.

3. Sobolev Descent. The heart of this paper is that Rn+1 may be considered

as two distinct spaces if we place two different inner products on Rn+1. Thus, you

should think of the difference between this section and the last one as follows.

In the previous section we introduced a pair which were intimately related. The

space, (Rn+1, 〈·, ·〉), and the gradient of Φ based on the space, ∇Φ. In this section

we introduce a second intimately related pair. The space, (Rn+1, 〈·, ·〉s), and the

gradient of Φ based on this space, ∇sΦ. In section 4 you will see that descent based

on these two different spaces yields quite different results in terms of the necessary

number of iterations and the amount of time required to solve a problem.

We first introduce the notation and theory needed to perform descent in the

simplest case; the case where we have no boundary conditions. Introducing the

material in this way lays the foundation for the transition to the case with boundary

conditions. Our space is (Rn+1, 〈·, ·〉s) where 〈·, ·〉s denotes the discretized Sobolev

inner product defined by

〈u, v〉s = 〈D0(u), D0(v)〉+ 〈D1(u), D1(v)〉

=

n
∑

k=1

(

uk+1 + uk
2

)(

vk+1 + vk
2

)

+

(

uk+1 − uk
2

)(

vk+1 − vk
2

)

for all u, v ∈ Rn+1. Define D ∈ L(Rn+1,R2n) by D(x) =

(

D0(x)
D1(x)

)

and ‖ · ‖s =

√

〈·, ·〉s. Observe that D relates the Euclidean and Sobolev norms by ‖·‖s = ‖D(·)‖.

The fact that our new inner product (and norm) take into account “derivatives”

provides some intuition as to why they are better suited to solving differential

equations via descent methods.

• (Halmos, [6]). If F is a linear functional on the finite dimensional inner

product space, (V, 〈·, ·〉) then there exists a unique element z ∈ V which satisfies,

F (x) = 〈z, x〉 for all x ∈ V .

• If F is a differentiable function on Rn and x ∈ Rn then F ′(x) is a linear

functional.

VOLUME 11, NUMBER 1, WINTER 1999 23

We use these two facts to construct our gradient based on the new inner product

space, (Rn+1, 〈·, ·〉s). Since (R
n+1, 〈·, ·〉s) is a finite dimensional inner product space

and for each u ∈ Rn+1,Φ′(u) is a linear functional, there exists a unique element,

z, depending on Φ and u which satisfies Φ′(u)(h) = 〈z, h〉s for all h ∈ Rn+1. We

define ∇sΦ(u) to be this element. In order to compute this new gradient, we prove

a theorem which relates the Sobolev gradient to the Euclidean gradient.

Theorem 1. If 〈·, ·〉s denotes the discretized Sobolev inner product on Rn+1

and 〈·, ·〉 represents the standard inner product on Rn+1 then there exists an A ∈

L(Rn+1,Rn+1) such that 〈x, y〉s = 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ Rn+1. Moreover,

A = DtD and A∇sΦ(x) = ∇Φ(x) for all x ∈ Rn+1.

Proof. Two facts from linear algebra will be useful.

• If (V, 〈·, ·〉) is a finite dimensional vector space, then 〈Mx, y〉 = 〈x,M ty〉 for

every linear operator, M on V .

• If (V, 〈·, ·〉) is a finite dimensional vector space and x, y ∈ V such that 〈x, v〉 =

〈y, v〉 for every v ∈ V then x = y.

Using these facts and the linearity of the inner product,

〈x, y〉s = 〈D0x,D0y〉+ 〈D1x,D1y〉

= 〈Dt
0D0x, y〉+ 〈Dt

1D1x, y〉

= 〈(Dt
0D0 +Dt

1D1)x, y〉

for all x, y ∈ R
n+1. Therefore, A = DtD. Given u ∈ R

n+1 we have

〈∇Φ(u), h〉 = Φ′(u)(h)

= 〈∇sΦ(u), h〉s

= 〈A∇sΦ(u), h〉

for all h ∈ Rn+1. Consequently, A∇sΦ(x) = ∇Φ(x) for all x ∈ Rn+1 and the

theorem is proved.

Now we outline the method. Compute the matrix, A, which is diagonally

dominant and tridiagonal. Choose an initial guess, y. Compute the standard

gradient, ∇Φ(y), and solve the linear system from Theorem 1, A∇sΦ(y) = ∇Φ(y),

24 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

for the Sobolev gradient, ∇sΦ(y). Follow the negative of this direction an ‘optimal’

distance, h. Since we seek a zero of Φ, ‘optimal’ implies that Φ(y − h∇sΦ(y))

is minimized. Consider the distance between the new point, ynew, and y. If this

distance is less than ǫ, consider ynew a solution, else repeat the process with ynew

as an initial guess.

Algorithm 2.

1. Compute the matrix A.

2. Choose y ∈ Rn+1.

3. Compute the gradient of Φ at y,∇Φ(y).

4. Solve A∇sΦ(y) = ∇Φ(y) for ∇sΦ(y).

5. Determine h which minimizes Φ(y − h∇sΦ(y)).

6. Let ynew = y − h∇sΦ(y).

7. If ‖ynew − y‖ < ǫ, we have a solution; else, put y = ynew and repeat steps 3

through 7.

We have now outlined both Euclidean and Sobolev descent for Equation 1 in

the simplest case; the case with no boundary conditions. At this point the reader

should be able to write a short code which verifies the results for Sobolev descent

in Table 1 of Section 4. Having developed the notation and the spaces, we may

now add the boundary conditions, k1 ∗ y(a) + k2 ∗ y(b) = k3.

• If (V, 〈·, ·〉) is a finite dimensional inner product space and S ⊂ V is a subspace

then there exists a function π:V → S called the orthogonal projection of V onto S

that satisfies, ‖πv − v‖ ≤ ‖v − s‖ for all s ∈ S.

Let Rn+1
0 = {x ∈ R

n+1 : k1∗x1+k2∗xn+1 = 0} and let πs denote the orthogonal

projection of Rn+1 onto R
n+1
0 under the Sobolev inner product. A generalization

of the case without boundary conditions follows. Start with an initial guess, y.

Compute the sobolev gradient, ∇sΦ(y), and the projection, πs. Project ∇sΦ(y)

onto R
n+1
0 under πs and follow the negative of this direction an optimal distance,

h. Consider the distance between the new point, ynew, and y. If this distance is

less than ǫ, consider ynew a solution, else repeat the process with ynew as our initial

guess.

Algorithm 3.

1. Compute the matrix A.

2. Choose y ∈ Rn+1 such that y satisfies the boundary conditions.

3. Compute the gradient of Φ at y, ∇Φ(y).

VOLUME 11, NUMBER 1, WINTER 1999 25

4. Solve A∇sΦ(y) = ∇Φ(y) for ∇sΦ(y).

5. Compute the Sobolev projection, πs, and project ∇sΦ(y) onto R
n+1
0 .

6. Determine h which minimizes Φ(y − hπs∇sΦ(y)).

7. Let ynew = y − hπs∇sΦ(y).

8. If ‖ynew − y‖ < ǫ we have a solution; else, put y = ynew and repeat steps 3

through 8.

Since πs∇sΦ(y) is in the linear subspace, Rn+1
0 , boundary conditions are ex-

actly maintained at each iteration. To implement this algorithm we would need an

explicit definition for the projection πs. We avoid this computation, by combining

steps 4 and 5 in order to compute the quantity πs∇sΦ(y) by solving one system of

n+ 1 equations. This allows us to avoid computing the projection πs directly. We

now exhibit the method used to compute πs∇sΦ(y). The next results come from

linear algebra.

• If (V, 〈·, ·〉) is a finite dimensional inner product space and π is a projection

on V then 〈πx, y〉 = 〈x, πy〉 for all x, y ∈ V .

Let g = ∇sΦ(y) and define γ:Rn+1
0 → R by γ(x) = ‖x− g‖2s/2. Minimizing γ

over Rn+1
0 corresponds to determining x ∈ R

n+1
0 such that x = πs∇sΦ(y). Let πe

denote the orthogonal Euclidean projection onto R
n+1
0 .

γ(x) = ‖x− g‖2s/2

= ‖D(x− g)‖2/2

and

γ′(x)(z) = 〈D(x − g), D(z)〉

= 〈DtD(x− g), z〉

= 〈DtD(x− g), πe(z)〉

= 〈πeD
tD(x− g), z〉.

Therefore γ′(x)(z) = 0 for all z ∈ R
n+1
0 if and only if πeD

tD(x) = πeD
tD(g).

Substituting A = DtD, g = ∇sΦ(y), and A∇sΦ(y) = ∇Φ(y) into this equation

yields πeAx = πe∇Φ(y). The solution to this equation is the desired quantity,

x = πs∇sΦ(y).

26 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Having avoided direct computation of the projection, πs, we must still deter-

mine the projection, πe by defining ψ(x) = ‖x−u‖2/2 and minimizing ψ over Rn+1
0

to obtain

πe(x) =

(

k2(k2x1 − k1xn+1)

k21 + k22
, x2, x3, . . . , xn,

−k1(k2x1 − k1xn+1)

k21 + k22

)

.

Certain values of k1 and k2 cause numerical difficulties. For example, πe is not

defined if k1 = k2 = 0. Let us look at each of the four possible cases. If k1 = k2 = 0,

we do not wish to use the projection as we have no boundary conditions; we merely

apply Algorithm 2 where πe was neither defined nor needed. If k1 = 0 and k2 6= 0 we

are considering the final value problem, y(b) = k3/k2. Here, πe zeroes out the last

row of the matrix A. Therefore, we replace this row by the data, (0, . . . , 0, k2), and

zero out the final entry of the gradient vector, ∇Φ(y), before solving the system. If

k1 6= 0 and k2 = 0, we are considering the initial value problem, y(a) = k3/k1. In

this case πe zeroes out the first row of the matrix A and we replace this row by the

data, (k1, 0, . . . , 0) and zero out the first entry of the gradient vector ∇Φ(y), before

solving the system. If k1 and k2 are both non-zero, πe is well defined, yet when we

apply the projection to the matrix A, the first and last rows of the projected matrix

are linearly dependent. In this case, we replace the last row by the boundary data,

(k1, 0, . . . , 0, k2) and zero out the last entry of the gradient vector, ∇Φ(y), before

solving the system. Notice that in each of these cases, replacing the appropriate

rows of the matrix assures that πeA is non-singular and that the solution to the

system will be an element of Rn+1
0 so that boundary conditions are maintained at

each iteration.

A revised algorithm follows.

1. Compute the matrix A and the projection πe.

2. Choose y ∈ Rn+1 such that y satisfies the boundary conditions.

3. Compute the gradient of Φ at y, ∇Φ(y).

4. Apply πe to the matrix A and the gradient ∇Φ(y).

5. Make πeA nonsingular by replacing the necessary rows.

6. Solve πeA(πs∇sΦ(y)) = πe∇Φ(y) for πs∇sΦ(y).

7. Determine h which minimizes Φ(y − hπs∇sΦ(y)).

8. Let ynew = y − hπs∇sΦ(y).

VOLUME 11, NUMBER 1, WINTER 1999 27

9. If ‖ynew − y‖ < ǫ, we have a solution; else, put y = ynew and repeat steps 3

through 9.

4. Examples. In this section we consider three problems. In Section 5 we

illustrate the algorithm on the differential equation y′ = y. We consider the uncon-

strained problem and the initial value problem. In Section 6 we consider a nonlinear

equation with mixed boundary conditions and in Section 7 we address Legendre’s

equation which is singular at x = 1. Neither of the problems considered in Sec-

tions 6 and 7 could be solved by methods traditionally taught in undergraduate

differential equations or numerical methods courses.

A desired accuracy of ǫ requires that ‖ynew−y‖ < ǫ and average absolute error

is defined by

average absolute error =
1

n+ 1

n+1
∑

i=1

|ytruek − yapproxk |,

while maximum absolute error is given by

maximum absolute error = max{|ytruek − yapproxk | : k = 1, 2, . . . , n+ 1}.

y′ = y ǫ = 10−2 N = 100
Gradient Iterations Seconds Aver. Abs. Error Max. Abs. Error

E 1845 3 5.9× 10−1 9.2× 10−1

S 4 1 5.6× 10−4 7.5× 10−4

y′ = y ǫ = 10−4 N = 1000
Gradient Iterations Seconds Aver. Abs. Error Max. Abs. Error

E 14,777 27 6.6× 10−3 9.2× 10−3

S 6 1 8.7× 10−6 1.0× 10−5

y′ = y ǫ = 10−6 N = 10, 000
Gradient Iterations Seconds Aver. Abs. Error Max. Abs. Error

S 8 22 1.9× 10−7 2.6× 10−7

Table 1: The simplest differential equation.

28 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

5. Results for y′ = y. All the results in this section correspond to the

differential equation y′ = y on the interval [0, 1] with an initial guess of y0 = 3.

The unconstrained case is included because the results in Table 1 may be obtained

without reading beyond Algorithm 2. Since all solutions are of the form c ∗ E

where E(t) = et on [0, 1], we may determine the solution to which each process will

converge by minimizing the functions, γE(c) = ‖y0 − cE‖2L for Euclidean descent

and γS(c) = ‖y0 − cE‖2H for Sobolev descent where

‖f‖L =

√

∫ 1

0

f2 and ‖f‖H =

√

∫ 1

0

(f2 + (f ′)2).

These functions are quadratic in c; hence the minimum is easily obtained.

Table 1 indicates the difference between Euclidean (E) and Sobolev (S) descent

for the unconstrained case. Several observations are in order. First, Sobolev descent

outperforms Euclidean descent in terms of the time required to solve the problem,

the accuracy achieved, and the number of iterations. Second, as we increase the

number of divisions from 100 to 1,000, Euclidean descent requires approximately

9 times the number of iterations to converge. On the other hand, even as we

increase the number of divisions from 100 to 10,000, Sobolev descent requires only

twice the number of iterations. Third, the order of magnitude of the error in

the solution obtained via Sobolev descent is comparable to the desired accuracy

while for Euclidean descent the achieved accuracy is consistently lower than the

desired accuracy. Finally, for N = 10, 000 we have omitted Euclidean descent as

convergence was not obtained in this case.

Table 2 contains the results for the initial value problem for Sobolev descent.

Euclidean results are omitted, but are similar to those in Table 1.

y′ = y y(0) = 3 y0 = 3 ǫ = 10−5 N = 10, 000
Gradient Iterations Seconds Max. Abs. Error

S 21 5 2.3× 10−5

Table 2: The initial value problem.

VOLUME 11, NUMBER 1, WINTER 1999 29

y′ = (t+ y)2 y0(t) = −t ǫ = 10−3 N = 100
Gradient Iterations Seconds Max. Abs. Error

S 6 1 3.0× 10−7

Table 3: Nonlinear with Mixed Boundary Conditions.

6. A Nonlinear Example with Mixed Boundary Conditions. The

results in Table 3 apply to the differential equation, y′(t) = (t+y(t))2 with boundary

conditions, y(−π/4)+y(π/4) = 0 on the interval [−π/4, π/4]. The solution is given

by y(t) = tan(t)− t.

7. Legendre’s equation. As a final example we present results for Legendre’s

equation which has a singularity at t = 1. Table 4 includes data for descent based on

three distinct gradients. The first two gradients are the Euclidean (E) and Sobolev

(S) gradients as introduced in previous sections. The last gradient is based on a

weighted Sobolev (Sw) inner product, i.e., a gradient custom built for the singular

nature of the problem at hand. Detailed information on the modifications made to

the algorithm may be found in [13]. A general reference on weighted spaces is [9].

The problem is to solve ((1− t2)u′)′+2u = 0 on I with u(0) = 0, u(1) = 1, and

u ∈ C2
I . General solutions are u(t) = c1t+

c2
2
t ln

(

1+t
1−t

)

and only u(t) = t satisfies

the boundary conditions.

For the second and third tables we increase the number of divisions of the

interval and decrease the desired accuracy. The second table omits the Euclidean

descent results which appeared in the first table as Euclidean descent will not

converge for the tighter stopping criteria. Likewise, the third table omits both

the Euclidean and Sobolev descent because neither converge for the still tighter

stopping criteria.

These tables demonstrate clearly the advantage of applying gradients for a

given problem. We see that the weighted Sobolev descent outperforms Sobolev

descent which in turn outperforms Euclidean descent in terms of the time and the

number of iterations required to achieve a desired accuracy.

30 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

((1 − t2)u′)′ + 2u = 0 y(0) = 0 y(1) = 1 ǫ = 10−6 N = 100
Grad. Iter. Sec. Av. Abs. Err. Max. Abs. Error
E 5948 24 1.0× 10−1 6.6× 10−1

S 1998 7 1.0× 10−6 3.7× 10−5

Sw 64 1 1.0× 10−7 8.0× 10−6

((1− t2)u′)′ + 2u = 0 y(0) = 0 y(1) = 1 ǫ = 10−6 N = 10, 000
Grad. Iter. Sec. Av. Abs. Err. Max. Abs. Error
S 2142 82 1.0× 10−6 3.4× 10−5

Sw 85 3 1.0× 10−6 1.2× 10−5

((1− t2)u′)′ + 2u = 0 y(0) = 0 y(1) = 1 ǫ = 10−15 N = 100, 000
Grad. Iter. Sec. Av. Abs. Err. Max. Abs. Error
Sw 325 125 1.0× 10−14 1.7× 10−14

Table 4: Legendre’s Equation.

8. Conclusions. In this section we comment on a few of the nicer properties

of descent algorithms that we have observed. Tables 1 and 4 support these observa-

tions, but do not represent isolated incidences. The author has applied the method

to some 50 or more problems and the following traits appear consistently.

1. For the problems presented weighted Sobolev descent outperforms Sobolev

descent which in turn outperforms Euclidean descent.

2. Sobolev descent is not sensitive to the number of divisions of the interval

(see Table 1). Given a desired accuracy, the number of iterations required for

convergence of Sobolev descent does not increase significantly as the number of

divisions is increased. Such properties are particularly significant when considering

partial differential equations where the number of grid points is greatly increased

and experimental runs may use courser grids.

3. The same statement cannot be made of Euclidean descent.

4. The average absolute error and maximum absolute error for both Sobolev

and weighted Sobolev descent are on the order of magnitude of the residual. Re-

stated, if the stopping criteria is ‖ynew− y‖ < ǫ for successive iterations y and ynew

then we may expect that upon convergence to a solution, yapprox, we have

VOLUME 11, NUMBER 1, WINTER 1999 31

1

n+ 1

n+1
∑

i=1

|ytruek − yapproxk | ∼= ǫ

and

max{|ytruek − yapproxk | : k = 1, 2, . . . , n+ 1} ∼= ǫ.

5. Exact boundary conditions are maintained at each step of the descent pro-

cess, guaranteeing exact boundary conditions for the solution. This is a consequence

of the algorithm. Because we perturb our solutions by elements which satisfy zero

boundary conditions, the initial boundary conditions are never changed.

6. The generalization of the code to handle singular multiple point boundary

value problems such as (t−1/4)(t−3/4)y′ = y on [0, 1] with constraints, y(1/4) = 1,

and y(3/4) = 2, requires only a slightly more difficult computation of the projection,

πe.

7. Generalization of the code to partial differential equations is type indepen-

dent, [14, 19]. Many numerical methods which solve partial differential equations

use theory which applies only to elliptic, parabolic, or hyperbolic equations while

many pressing problems address differential equations which are of mixed type.

References

1. R. A. Adams, Sobolev Spaces, Academic Press, 1975.

2. R. L. Burden and J. D. Faires, Numerical Analysis, PWS Publishing Co.,
Boston, 1993.

3. P. L. Cauchy, Méthode Générale pour la Résolution des Systemes D’équations

Simultanées, C. R. Acad. Sci. Paris, 25 (1847).

4. J. G. Dix and T. W. McCabe, “On Finding Equilibria for Isotropic Hyperelastic
Materials,” Nonlinear Analysis, 15 (1990), 437–444.

5. J. Garza, “Using Steepest Descent to Find Energy-Minimizing Maps Satisfying
Nonlinear Constraints,” Dissertation, University of North Texas (1994).

6. P. R. Halmos, Finite Dimensional Vector Spaces, D. Van Nostrand Co. Inc.,
New York, 1958.

7. M. R. Hestenes, Conjugate Direction Methods in Optimization, Springer-
Verlag, New York, NY, 1980.

32 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

8. K. Kim, “Steepest Descent for Partial Differential Equations of Mixed Type,”
Dissertation, University of North Texas, 1992.

9. A. Kufner, Weighted Sobolev Spaces, John Wiley & Sons, New York, NY, 1985.

10. D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, Read-
ing, MA, 1989.

11. W. T. Mahavier, “An Interactive Numerical Analysis Course,” Creative Math

Teaching, 3.2 (1996).

12. W. T. Mahavier, “A Convergence Result for Discrete Steepest Descent in
Weighted Sobolev Spaces,” Journal of Abstract and Applied Mathematics, 2.1–
2 (1997).

13. W. T. Mahavier, “A Numerical Method Utilizing Weighted Sobolev Descent
to Solve Singular Differential Equations,” Nonlinear World, 4.4 (1997).

14. W. T. Mahavier, “A Numerical Method Utilizing Weighted Sobolev Steepest
Descent for Singular Partial Differential Equation,” (in preparation).

15. J. W. Neuberger, “A Numerical Method for Finding Sign-Changing Solutions
of Super Linear Dirichlet Problems,” Nonlinear World, 1996, (to appear).

16. J. W. Neuberger, “Steepest Descent and Differential Equations,” J. Math. Soc.

Japan, 37 (1985).

17. J. W. Neuberger, “Steepest Descent for General Systems of Linear Differential
Equations in Hilbert Space,” Ordinary Differential Equations and Operators,
Springer-Verlag Lecture Notes in Mathematics, 1032, (1982), 390–406.

18. J. W. Neuberger, “Iteration for Systems of Nonlinear Partial Differential Equa-
tion,” Nonlinear Equations in Abstract Spaces, Academic Press, Inc., 1978,
253–263.

19. J. W. Neuberger, A Type-Independent Method for Systems of Nonlinear Partial

Differential Equation, Oak Ridge National Laboratory, CSD TM-161 (1981).

20. J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations

in Several Variables, Academic Press, New York, 1970.

21. A. Ralston and P. Rabinowitz,A First Course in Numerical Analysis, McGraw-
Hill, New York, 1978.

W. T. Mahavier
Department of Mathematics
Nicholls State University
Thibodaux, LA 70310
email: math-wtm@nich-nsunet.nich.edu

